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The method of change (or anomaly) detection in high-dimensional discrete-time processes using a multivariate Hotelling
chart is presented. We use normal random projections as a method of dimensionality reduction. We indicate diagnostic
properties of the Hotelling control chart applied to data projected onto a random subspace of R

n. We examine the random
projection method using artificial noisy image sequences as examples.
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1. Introduction

Detection of abnormal measurements, when carried
out on independent and identically distributed (i.i.d)
observations, is usually referred to as outlier detection
and is in many ways equivalent to density estimation.
We assume that the data, d-dimensional vectors, are
independent random samples drawn from an unknown
distribution, let us say f0. If the distribution changes
from f0 to any other distribution f1 (incidentally or
permanently), we should be able to detect this event with
a possibly highest probability. Furthermore, in many
cases it is assumed that only some parameters of the
distribution, typically moments, may change and thus
only these have to be monitored (Montgomery, 1996;
Zorriassatine et al., 2003).

In many industrial applications, it has become
more and more important to monitor the behavior
of complex systems using multivariate measurements.
High-dimensional data: large images, DNA microarray
data and multidimensional time-series are obtained during
process monitoring. Many chemical and process plants
(semiconductor manufacturing, for example) maintain
this process and its quality by using hundreds and
thousands of variables. Manufacturing databases
contain streams of images, hyperspectral images or
videos where the observations have dimensions ranging
from thousands to billions. Statistical monitoring of
high-dimensional processes for faulty state detection is

becoming increasingly important. In fact, it is an open
problem, especially when measurements, images etc.
form data sets of extremely large dimensions. A control
chart based on the Hotelling statistics, i.e., the Hotelling
control chart, is the most popular method for handling
changes of multivariate process data (Montgomery, 1996).
Traditional methods used in statistical process monitoring
are restricted to small-size samples with dimensionality
not greater than hundreds (Wang and Jiang, 2009).

The problem of dimensionality reduction (Lee and
Verleysen, 2007; Wang, 2012) is especially important
when the number of observation, however large, is much
smaller than the dimension of the data. It is obvious that
dimensionality reduction is a major technique in dealing
with high dimensional processes.

Principal Component Analysis (PCA) (Jolliffe, 1986;
Lee and Verleysen, 2007), Partial Least Squares (PLS)
(Wold, 1966) or Independent Component Analysis (ICA)
(Hyvärinen et al., 2001) are, among others, the most
popular methods used to extract a smaller set of variables
that are representative enough for process monitoring
(Tsung and Wang, 2010). Unfortunately, if the dimension
of the data is really large, straightforward usage of these
methods is impossible. Some efforts in this direction have
been made by Skubalska-Rafajłowicz (2006; 2008), who
proposed high-dimensional novelty detection methods in
nonparametric settings.

The goal of this paper is to show that random
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projections (see Achlioptas, 2001; Ailon and Chazelle,
2006; Arriaga and Vempala, 1999; Biau et al., 2008;
Dasgupta and Gupta, 2003; Frankl and Maehara, 1987;
Indyk and Motwani, 1998; Indyk and Naor, 2007; Li et al.,
2006a; Matousek, 2008; Vempala, 2004; Wang, 2012) can
be efficiently used for change detection during statistical
monitoring of a high-dimensional process. We propose
here a new approach to monitoring high-dimensional
time series that is based on the Hotelling statistic (see
Hotelling, 1931; Mason et al., 1992; Mason and Young,
2002; Montgomery, 1996; Rao, 1973) but performed
on projected observations. Thus, the proposed method
can be used for really high-dimensional problems. We
have assumed that the variance-covariance matrix is not
known and due to a high dimensionality its estimation is
impossible even if the number of reference observations
is formally sufficient. Furthermore, we develop some
new properties of random projections when applied to
multivariate independent observations under normality
assumptions.

It should be indicated that these methods can also be
applied to fault diagnosis in dynamical systems (Korbicz
et al., 2004). In discrete time stochastic processes we seek
to detect whether a new observation abnormally deviates
from the usual dynamics of the system. This problem
can be reduced to density monitoring when a suitable
representation of the system observation is Markovian
(Cuturi et al., 2009) and a conditional probability density,
describing the current behavior of the system given past
observation, is known.

Our approach is addressed mostly to problems
of high-dimensional process monitoring with spatial
temporal or spatio-temporal dependencies, as, for
example, to distributed sensor networks based monitoring,
and it is designated for detection of changes in the mean
that is composed of many small changes of a vector’s
coordinates.

Preliminary results of using random projection for
change detection in high-dimensional data streams were
presented at the Conference on Diagnostics of Processes
and Systems 2011 (Skubalska-Rafajlowicz, 2011).

In the next section some prerequisites concerning
statistical process monitoring and control charts are
given. Section 3 presents linear random projections as a
method of dimensionality reduction. The new method of
monitoring multidimensional normal data using random
projections and the Hotelling statistic is introduced in
Section 4, and in the next section its diagnostic properties
are summarized. Experiments presented in Section 6
illustrate the performance of the proposed method used for
mean shifts detection. A discussion and final conclusions
are given in the last section.

2. Statistical process monitoring and
control charts

Control charts are one of the most popular and powerful
techniques of Statistical Process Control (SPC). Control
charts are used for statistical process monitoring and
thereafter process improvement (Mason and Young,
2002; Montgomery, 1996). Statistical control charts
are designed in order to detect abnormalities (out-of
control states) in the process under consideration. The
most common abnormalities are mean shifts, variance or
covariance matrix changes which indicate process faults.
A typical Shewhart-type control chart (Mason and Young,
2002; Montgomery, 1996) has control limits, which are
set at values such that if the process is in control, nearly all
points of a selected statistic (for example, sample means)
will be situated between the upper control limit and the
lower control limit. In other words, control limits form an
acceptance interval (region) for monitored statistic values.
Usually choosing the control limits is equivalent to setting
up the critical region for testing hypothesis. The control
chart only detects assignable causes and an engineering
action will be necessary to eliminate them. However,
control charts provide valuable diagnostic information,
are effective in defect prevention and are a reliable
technique for improving quality. A control chart can
distinguish (in a statistical sense) between a noise in an
in-control state and abnormal variations, indicating a fault
in a final product, in a part of a production process, in
a separate tool or in materials (resources). Thus, control
charts provide diagnostic information which can be used
on different decision levels.

The most familiar multivariate process monitoring is
the Hotelling T 2 control chart (Mason and Young, 2002;
Wang and Jiang, 2009) which is based on the Hotelling
statistic (Rao, 1973; Srivastava, 2009). The basis of the
T 2 statistic is knowledge of the covariance matrix Σ or its
good estimate.

Hotelling’s T 2 chart is designed for monitoring
the mean vector of the process. It is more sensitive
to large mean shifts than to small shifts; while some
other schemes, such as the Multivariate Exponentially
Weighted Moving Average (MEWMA) chart and the
Multivariate CUmulative SUM (MCUSUM) chart, are
more sensitive to shifts with small sizes. All these charts
are based on an analysis of the Mahalanobis distance
or its approximations (Montgomery, 1996; Sullivan and
Woodall, 2000).

2.1. Hotelling control chart. Suppose that
X1, X2, . . . are independent identically distributed
(i.i.d.) normal random vectors observed sequentially, i.e.,
each Xi is an independent copy of a normal random vector
X ∼ Nd(0, Σ). If Σ = Id, then each ||Xi||2 is random
variable which is χ2

d distributed with the expectation d
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and the variance 2d. In the general, non-standardized
case, i.e., when Σ �= Id, ||Xi||2 is a linear combination
of at most d random variables which are independent and
each follows χ2 distribution with one degree of freedom.
It is well known that after standardization (if Σ is a full
rank matrix), XT

i Σ−1Xi = ||Σ−1/2Xi||2 follows the χ2
d

distribution. Further, we will assume that Σ is a full rank
matrix. T 2 statistic in R

d is

T 2 = XT C−1X,

where the covariance matrix Σ is not known and

C =
1
N

N∑

i=1

XiX
T
i

is its sample based estimate (Rao, 1973).
It is known that in our case

T 2 ∼ dN

N − d + 1
F (d, N − d + 1), N ≥ d,

where F is the Snedecor distribution (Forbes et al., 2011).
The F (ν1, ν2) distribution is the ratio of two

chi-square distributions with degrees of freedom ν1 and
ν2, respectively, where each chi-square has first been
divided by its degrees of freedom. Furthermore, if the
dimensionality of data is large, one can approximate this
distribution using a chi-square distribution and then a
univariate normal distribution. If

T 2 < hα =
dN

N − d + 1
Fα(d, N − d + 1),

where α is a significance level, we decide that the process
is not faulty (in-control). The hα value forms the upper
control limit. A lower control limit is generally not used
in the Hotelling control chart.

If the sample size N � d and the covariance
matrix Σ is not known, its sample based estimate C =
1
N

∑N
i=1 XiX

T
i is a singular matrix (with probability

one). Thus, it is not possible to use Hotelling’s T 2 in d
dimensions (Srivastava, 2009). One of the possibilities to
deal with this problem is to reduce the dimension of the
data. Even if we have a sufficient number of observations,
the sample covariance matrix may be too large to be
estimated.

3. Linear random projections for
dimensionality reduction

Random projections (Johnson and Lindenstrauss, 1984;
Frankl and Maehara, 1987; Indyk and Motwani, 1998;
Arriaga and Vempala, 1999; Achlioptas, 2001; Dasgupta
and Gupta, 2003; Vempala, 2004; Ailon and Chazelle,
2006) are widely considered to be one of the most
potential methods of dimensionality reduction (Biau et

al., 2008; Lee and Verleysen, 2007; Wang, 2012), i.e.,
the transformation of data from a high-dimensional vector
space to a space of lower dimensions, when the prior
dimension is very large. The techniques of random
projections can be traced back to Milman’s proof of the
Dvoretsky theorem (Milman, 1971).

In the random projection method, the original
high-dimensional observations are projected onto a
lower-dimensional space using a suitably scaled random
matrix with independent, typically, normally distributed
entries.

A random projection from d dimensions to k
dimensions is a linear transformation represented by a
d × k matrix S ∈ R

k× d, i.e., a matrix whose entries are
i.i.d. samples of a certain random variable.

3.1. Projection. The projection x �→ v = Sx, R
d →

R
k, k � d, is defined by a projection matrix S:

⎡

⎢⎢⎢⎣

s11 s12 . . . s1d

s21 s22 . . . s2d

...
... . . .

...
sk1 sk2 . . . skd

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

...
xd

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

v1

v2

...
vk

⎤

⎥⎥⎥⎦ . (1)

Random projections are closely related to
the Johnson–Lindenstrauss lemma (Johnson and
Lindenstrauss, 1984), which states that any set A,
say, of N points in an Euclidean space can be embedded
in an Euclidean space of a lower dimension (∼ O(log N))
with a relatively small distortion of the distances between
any pair of points from A. The Johnson–Lindenstrauss
lemma has been shown to be useful in applications in
computer science and engineering (Achlioptas, 2001;
Ailon and Chazelle, 2006; Arriaga and Vempala, 1999;
Biau et al., 2008; Donoho, 2000; Indyk and Motwani,
1998; Li et al., 2006a; 2006b; Matousek, 2008; Vempala,
2004; Skubalska-Rafajłowicz, 2008; 2009), among many
others.

The main idea of a random projection is that we can
estimate the distance between two points (two vectors),
let us say u and z, in the d-dimensional Euclidean space
D2(u, z) = ||u − z||2 = (u − z)T (u − z), u, z ∈ R

d,
from the sample squared distances as follows:

D̂2(u, z) =
1
k

k∑

j=1

(sj(u − z))2 =
1
k
||Su − Sz||2, (2)

where sj is the j-th row of S, i.e., an individual projection.
Thus, for any chosen pair of vectors u, v ∈ R

d

E(D̂2) = D2, var(D̂2) = 2
kD4 and kD̂

D2 ∼ χ2
k. These

facts lead to the conclusion that

Pr

{
|D̂2 − D2|

D2
≥ ε

}
≤ 2 exp

(
−k

4
ε2 +

k

6
ε3

)
, (3)
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where ε ∈ (0, 1) (for details, see, e.g., Dasgupta and
Gupta, 2003; Vempala, 2004).

Moreover, it is easy to see that, because the random
projection defined by S ∈ R

k×d is a linear mapping, we
obtain

S
( 1

N

N∑

i=1

zi

)
=

1
N

N∑

i=1

Szi, (4)

where z1, . . . , zN ∈ R
d are any given column vectors.

This means that any change in the projected vectors
Sz1, . . . , SzN mean indicates a change in the original
average 1

N

∑N
i=1 zi.

The above simple property can be easily generalized
as a mean invariance under a linear random projection
property, which is a basis for the method proposed in this
paper. Since, if Xi, i = 1, . . . , N are i.i.d., finite first
moment (E(Xi) = E(X) < ∞, i = 1, . . . , N ) random
vectors, then

E{S 1
N

N∑

i=1

Xi|S} = SE(X),

where E |̇S stands for the conditional expectation, given
S.

3.2. Sparse random projections. We do not have to
use sij ∼ N (0, 1) for dimension reduction in a space
with Euclidean norm. For example, we can sample
sij from any sub-Gaussian tails distributions (Ailon and
Chazelle, 2006; Matousek, 2008). We say that a random
variable X has a sub-Gaussian tail if both X and −X have
sub-Gaussian upper tails, i.e., if there exists a constant
a > 0 such that, for all ε > 0,

Pr{|X | > ε} ≤ exp (−aε2). (5)

To speed up the computations, one can generate a
sparse random projection matrix. In particular, Achlioptas
(2001) proved that the entries of the projection matrix
S can be chosen as independent random variables with
values +1, −1 (each with probability 1/2).

More generally, a projection matrix composed from
independent entries of the form

sij =
√

c

⎧
⎨

⎩

1 with probability 1/2c,
0 with probability 1 − 1/c,
−1 with probability 1/2c,

(6)

leads to the projection distribution with sub-Gaussian tails
(at least up to a suitable threshold).

An Achlioptas variant of this result (with c = 3) has
the entries attaining a value of 0 with probability 2/3 and
values +1 and −1 with probability 1/6 each. This setting
allows computing the projection about three times faster
than the Gaussian. Since S is sparse, only about one third
of the entries are nonzero numbers.

The proof of the Johnson–Lindenstrass lemma using
a projection matrix with the entries to be arbitrary
independent random variables with zero mean, unit
variance, and a sub-Gaussian tails is given by Matousek
(2008). To avoid misunderstanding, we will distinguish
between the random projection matrix S as a matrix
of independent random variables and a matrix of real
numbers S ∈ R

k×d, a sample of S.

4. Monitoring multidimensional normal
data streams using random projection

We restrict here our attention to normal random
projections of data. However, almost all results presented
in this section can be generalized to random projections
with sub-Gaussian tails.

So, we assume that of the elements the projection
matrix S are obtained as independent, identically
distributed samples of a normal random variable (or a
variable with sub-Gaussian tails), having zero mean and
unit variance.

Throughout this paper we assume that observations
are random vectors X which follow a multivariate
Gaussian distribution, i.e., that multidimensional data
points, are i.i.d. normal Nd(0, Σ). Σ is a symmetric,
nonnegative-definite covariance matrix, but it is not
known.

4.1. Design phase: Analysis of historical data.
We assume that there are fewer observations than the
dimension of the observation vector X , i.e., the collected
sample size N is less than the dimension d.

In the design phase we project the collected data
X1, X2, . . . , XN into a k-dimensional (k < N � d)
space using random linear projections with a projection
matrix S. However, once generated projection matrix S is
kept constant (the same for all data).

Since Xi are i.i.d. random normal vectors Xi ∼
Nd(0, Σ), we obtain k-dimensional random vectors V
which also follow a normal distribution. More precisely,
for any constant projection matrix S,

Vi = S Xi, Vi|S ∼ Nk(0, S Σ ST ),
i = 1, . . . , N. (7)

Note that for the sake of simplicity we assume that
E(Xi) = 0. Thus, we also have E(Vi) = 0.

The next step is to compute the new covariance
matrix estimate for random vector V , based on projected
samples:

CS =
1
N

N∑

i=1

ViV
T
i . (8)

If the new dimension k < N , we can expect that the
matrix CS is nonsingular. CS is a k × k, full rank matrix
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(with probability 1 with respect to S), even if the original
covariance matrix Σ is singular.

Note that for any projection S CS is a random (with
respect to observations) matrix

CS =
1
N

N∑

i=1

SXiX
T
i ST = SCST , (9)

where

C =
1
N

N∑

i=1

XiX
T
i

is a singular estimate of the covariance matrix Σ.
Furthermore, for a constant projection matrix S,

N CS |S is distributed as a Wishart distribution of
dimensionality k with N degrees of freedom and the
associated parameter matrix S Σ ST (see, e.g., the works
of Mathai and Provost (1992) as well as Rao (1973) for
known results):

N CS |S ∼ Wk(N, S Σ ST ). (10)

Note that the previous results are true for any fixed
projection matrix of a rank k.

4.2. Detection phase. Now, a new independent
observation X ∼ Nd(0, Σ) is projected using the
projection matrix S, the same as previously. So, we obtain
V = S X |S. V |S is a normal random vector which also
follows ∼ Nk(0, SΣST ). We define the new Hotelling
statistic for projected data as follows:

T 2
S = (SX)T C−1

S SX |S ∼ kN

N − k + 1
F (k, N − k + 1),

where F is the Snedecor distribution with k and N −k+1
(numerator and denominator) degrees of freedom. Note
that we have assumed that E[X ] = 0. Otherwise, one
should replace X in the formula for T 2

S by the zero mean
random vector X − E[X ].

When E[X ] (or E[V ] = SE[X ]) is not known and
should be estimated, V − 1

N

∑N
i=1 Vi follows the normal

distribution Nk(0, N+1
N SΣST ) and the corrected statistic

T 2
S follows the Snedecor distribution with k and N − k.

More precisely,

T 2
S ∼ kN

N − k
F (k, N − k),

since V − 1
N

∑N
i=1 Vi follows the normal distribution

Nk(0, (1+ 1
N )SΣST ) and the distribution of a covariance

matrix estimate follows the Wishart distribution
1
N Wk(N − 1, S Σ ST ). Notice that the distribution
of T 2

S in the in–control state does not depend on a
projection matrix S, but it depends on k and N , i.e., on
the dimensionality of the data after projection and on a
number of historical data, respectively.

It is well known (see, e.g., Srivastava, 2009) that the
Hotelling statistic is invariant under transformations by an
element of the general linear group of the degree k, i.e.,
the set of k × k invertible matrices. Thus, if CS is a full
rank matrix, then for any nonsingular matrix B ∈ R

k×k

we have

(BV )T

(
∑

i

(BVi)(BVi)T

)−1

BV

= V T BT

(
B(
∑

i

ViV
T
i )BT

)−1

BV

= V T BT (BT )−1

(
∑

i

ViV
T
i

)−1

B−1BV

= V T

(
∑

i

ViV
T
i

)−1

V.

In the out-of-control state, when a change in the
mean occurred, i.e., E(X) = m, we have V = SX |S ∼
Nk(Sm, SΣST ) and

T 2
S ∼ kN

N − k + 1
F (k, N−k+1, (Sm)T (SΣST )−1Sm),

(11)
i.e., it follows a noncentral F-Snedecor distribution with
non-centrality parameter λ2 = (Sm)T (SΣST )−1Sm
and with the degrees of freedom k and N − k + 1,
respectively. Properties of the T 2

S in the out-of-control
state are examined in greater detail in the next section.

If T 2
S < hα, where α is a significance level,

we decide that the process is not faulty (in-control).
Otherwise, a value of the T 2

S statistic larger than hα

indicates that the new observation does not follow
the assumed distribution and some undesirable changes
may occur. The appropriate hα value is equal to

kN
N−k+1G(k,N−k+1)(1 − α), where G(k,N−k+1)(1 − α)
is the inverse of the Snedecor probability distribution
function (quantiles) at probability level 1 − α.

Since aF (a, b) tends to the chi-squared variate χ2
a

as b tends to infinity, we can use 1 − α quantiles of the
chi-squared distribution to obtain hα for projections of the
dimensionality greater than 50.

Here α is equal to the probability of Type I errors. It
controls the false alarm rate when the monitored process
is in the normal state (in-control) and no changes occur in
the distribution of observation X and consequently, in the
distribution of V .

Summarizing, we propose the following simple
procedure:

• Phase I (Design)

1. Collect historical data Xi, 1, . . . , N . 2. Select
k and choose the projection matrix S at random,
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i.e., each entry sij , i = 1, . . . , k, j = 1, . . . , d,
of the matrix S is drawn (independently) from the
standard normal distribution N (0, 1) (or according
to (6)). Once generated, the projection matrix S is
kept fixed. Select α and hα using the Snedecor or χ2

k

distribution tables.

3. Estimate CS matrix according to (8).

• Phase II (Detection)

When a new observation X appears, evaluate the T 2
S

statistic and then decide about an alarm if T 2
S > hα.

Remark 1. Notice that the T 2
S statistic is scalar invariant

with respect to the projection matrix S, i.e., T 2
S = T 2

aS for
any scalar constant a.

5. Diagnostic properties of the Hoteling
chart after data projection

In this section we examine diagnostic properties of the
Hotelling control chart applied to data projected onto
random subspace of R

d.
The main question is whether we can detect on the

basis of T 2
S a change in the mean of the multivariate

normal distribution, i.e., the detect that a new observation
X follows the normal distribution Nd(m, Σ), where m
is a change in the mean. In this case, V = SX |S ∼
Nk(Sm, SΣST ) and

T 2
S ∼ kN

N − k + 1
F (k, N−k+1, (Sm)T (SΣST )−1Sm)

i.e., noncentral F-Snedecor distribution with degrees of
freedom k and N − k + 1, respectively.

Since S defines a singular linear transformation, a
Type II error (no alarm despite the fact that a change
occurred) depends on the new vector Sm, but not on m
directly.

Remark 2. The matrix ST (SΣST )−1S is a d× d matrix
of rank k, i.e., it is always rank deficient. The matrix
SΣST is symmetric and positive definite (assuming that
N > k and the rank of Σ is ≥ k), since it is a full rank
k×k matrix with probability one (similarly, the matrix CS

is also nonsingular with probability one, see Eqns. (8) and
(9)). Thus, the quadratic form (Sm)T (SΣST )−1(Sm) =
0 if and only if Sm = 0. This means that, for m �= 0,
Sm = 0 iff m is orthogonal to all k row vectors of S, but
this event has zero probability.

Moreover, Σ is not known and CS , which estimates
SΣST , contains only information about the total variance
of the multivariate normal distribution, i.e., the trace of Σ.
If k < d, then ST (SΣST )−1S �= Σ−1, because S is a
k × d matrix.

Observe that

EX1,...,XN [CS ] = SΣST . (12)

The expectation of a k × k matrix SΣST over the space
of projections S equals

Mk = ES[SΣST ] = [E{sT
i Σsj}]i, j=1,...,k, (13)

and since all entries of S are zero mean, unit variance i.d.d.
random variables and S ∈ R

k×d, we get

Mk =
[
E{

d∑

r=1

d∑

l=1

silσlσrsjr}
]

ij
= trace[Σ] Ik. (14)

This means that random projections lead to eccentricity
reduction of the distribution under consideration.

Note that the expected value of T 2
S = V T C−1

S V with
respect to X , conditioned on data X1, . . . , XN and the
projection matrix S, is given by

EX{V T C−1
S V |S, X1, . . . , XN}

= EX{XT ST C−1
S SX |S, X1, . . . , XN}. (15)

Thus, XT ST C−1
S SX is a random quadratic form with

the symmetric matrix B = ST C−1
S S which depends

only on S and historical data X1, . . . , XN . Using the
moment generation functions method (see, e.g., Mathai
and Provost, 1992), we can obtain E{XT BX |B} =
mT Bm + trace[B Σ]. The full form formula

mT (ST C−1
S S)m + trace[ST C−1

S S Σ] (16)

consists of two parts. The first one, a quadratic
form mT (ST C−1

S S)m, points out the mean changes.
Furthermore, we can also detect some changes in the
covariance matrix Σ, because the last part of the summand
is of the form trace[ST C−1

S S Σ].
We can use known properties of quadratic forms in

multivariate normal variables (Mathai and Provost, 1992)
and obtain the variance of T 2

S for X ∼ Nd(m, Σ):

varX{XT ST ASX |S}
= 2Trace[ST ASΣST ASΣ]

+ 4mT ST ASΣST ASm, (17)

where A = C−1
S is a symmetric, positive definite k × k

matrix.
We shall discuss properties mT (ST C−1

S S)m and the
eccentricity parameter of the Snedecor distribution of T 2

S

in an out of control state, i.e., (Sm)T (ST ΣS)−1(Sm),
because of their influence on the probability of detection
of a change of the mean.

The classical Hotelling control chart (i.e., without
projections) in an out-of-control state is usually
investigated by simulation (Montgomery, 1996), as
it is impossible to approximate with sufficient accuracy
the distribution of non-central F-Snedecor statistics. The
non-centrality parameter mΣ−1m varies as follows:

||m||2
emin(Σ)

≥ mT Σ−1m ≥ ||m||2
emax(Σ)

,
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where emax(Σ) and emin(Σ) stand for the largest and the
smallest eigenvalue of matrix Σ, respectively (see, for
example, Mathai and Provost, 1992). This means that
the detectability of a change in the mean depends not
only on the magnitude of the change, but also on the
eigenstructure of the covariance matrix.

A similar effect is obtained for T 2
S . It is important to

note that the covariance matrix SCST is the same in the
in-control and in the out-of-control state. This matrix is
very regular, since all its diagonal elements have the same
distribution with the mean equal to trace[Σ]. Similarly, all
the out off-diagonal elements have the same zero-mean,
finite variance distribution (see the also (13) and (14)).
Thus, the largest eigenvalue of the covariance matrix
slowly grows with its size k and the smallest eigenvalue
of the covariance matrix slowly decreases with k (see
appropriate Gumbel distributions (Forbes et al., 2011)).
Furthermore, for k � d, only a very small part of the
true covariance structure Σ can be recovered from ST ΣS.
Summarizing, although the influence of ST ΣS on λ2 =
(Sm)T (ST ΣS)−1(Sm), exists, it cannot be controlled by
increasing k, unless k is close to d.

The greater ||Sm|| (or ||Sm||2 = mT ST Sm), the
more “visible” the change of a mean represented by vector
m after projections. Thus, the most important component
affecting the loss in the accuracy is ||Sm||. Notice
that ||Sm|| depends only on inner products between the
projection vectors and m (see (2)). If Sm is very small,
then the change in the mean m is very hard to detect, even
if ||m|| is large.

Recall that we have

ES [mT ST Sm] = kmT m = k||m||2.

Estimating the norm of a vector using random projections
we have to use the factor 1/k (see (2)). So it is critical to
guarantee that projection S does not reduce 1/

√
k ||Sm||

too much in comparison with ‖m‖.
How large should the dimension k of the projection

defined by S be? Obviously, k should be smaller than the
number of learning samples N . Of course, it is impossible
to use the Johnson–Lindenstrauss lemma to assure the
low distortion of norms for every possible observation,
but we can try to bound k with respect to the estimate
‖m‖2. If our aim is to obtain the general detectability of
the mean change, we can only expect that the norm of a
projection of vector m would not be too small, as has been
previously explained in detail. By (2) it is only guaranteed
that the norm of m will be approximately preserved after
projection in the mean sense.

Using chi-squared tail Chernoff bounds (see (3)
for comparisons), one can obtain the bound on
k, which guarantees that the distortion, defined as
1
k ||Sm||2k/||m||2d, will be smaller than (1 − ε) with a
prescribed probability δ > 0, where ε > 0 determines

the acceptable level of distortion. Namely, from

Pr
{

1
k
||Sm||2k < (1 − ε) ||m||2d

}

≤ exp
(
−k

4
ε2 +

k

6
ε3

)
(18)

one can conclude that, if

k >
−4 ln δ

ε2 − 2ε3/3
, (19)

then Pr[ 1
k ||Sm||2 < (1 − ε)||m||2d] is smaller than δ > 0.

Note that this probability does not depend on vector m.
Alternatively, one can obtain the bound on the accuracy
level ε for a given k, i.e., ε2(1 − 2/3ε) > −4 ln δ/k.

For example, assuming that the acceptable distortion
of ||Sm||2 is ε = 0.2 and the probability of distortion
δ = 0.1, we obtain that the number of projections k should
be greater than 265.

The bound provided by (19) should be considered
the bound for the worst case scenario, i.e., it is only an
upper bound on the smallest lower bound kmin which
is not known. As follows from other applications of
random projections (see, e.g., Li et al., 2006a; 2006a;
Skubalska-Rafajłowicz, 2008), it usually suffices to use a
smaller number of projections than suggested by (19). Our
experiments, as presented in the next section, also validate
such conclusions.

6. Computational examples

In this section we want to show that the method proposed
in this paper can be used in practice even if the
data dimensionality is really large. Although we do
not concentrate on image processing problems, we can
examine the random projection method using an artificial
noisy image sequence as an example, when changes
in the data are easy to be controlled visually and the
dimensionality of the observed images, treated as vectors,
can be huge. Three images I0, I1 and I2, of size
100 × 100 each (i.e., of dimensionality d = 10000),
correspond to the in-control state and two different
out-of-control states, respectively. A correlated Gaussian
vector sequence was generated as a spatial autoregression
process, without writing down explicitly and memorizing
the corresponding covariance matrix, which would be
too large to be processed efficiently by a computer. We
have used normal random projections and sparse random
projections, according to (6) with parameter c = 3.

6.1. Detection of changes in images with non-
correlated noise. Assume that we observe a sequence
of noise images with a cross in the center of an image. The
normal image I0 consists of 10000 pixels, and each image
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pixel is corrupted independently by a zero mean normal
noise N (0, 0.1). I0 (the mean) and a random example of
the noisy I0 rearranged as 100 × 100 arrays are depicted
in Fig. 1.

Fig. 1. Image I0, i.e., a 10000 dimensional vector rearranged
as a 100 × 100 array and image I0 corrupted by an un-
correlated normal noise.

Fig. 2. Noise faulty images: I1 (left panel) and I2 (right panel).

Figure 2 shows two faulty images. Namely, in the
first image I1 the left cross arm is two pixels longer; the
second faulty image I2 contains the same cross as in the
I0, but moved two pixels to the right.

Notice that for the non-correlated image noise ni ∼
N (0, 0.1), i = 1, . . . , 10000, i.e., the noise with the
individual variance 0.01 and a common covariance matrix
0.01I , the sum N2

noise =
∑

n2
i ∼ 0.01χ2

10000. Thus, the
expected value of the squared vector noise length N2

noise

is 0.01d = 0.01 · 10000 = 100 and its variance equals
(0.01)22d = (0.01)220000 = 2 (see Forbes et al., 2011).
The total variance of the image noise is 100 in this case.
Furthermore, the squared distance between I0 and I1
treated as vectors is equal to 100 and the squared distance
between I0 and I2 (treated as vectors) equals 600. Note
that for “in-control” data we have assumed that the true
mean equals a zero vector. Thus, all observations are
translated adequately.

We can approximate the distribution of the random
variable N2

noise by the normal distribution N (100,
√

2).
Thus, with the significance level 0.01 we can assume that
the value of the squared vector image length is less than
103.352. So, if we know that the noise is non-correlated

(white Gaussian noise), it is very easy to distinguish
between the images. In our experiments based on 1000
independent trials, every noisy image I1 and I2 produces
the squared vector length greater than the limit 103.352.
Thus, the change in the vector image mean (with respect to
I0 treated as zero) was immediately detected. Notice that
very similar results are obtained for random projections of
dimensionality 100 (see Table 3), without any knowledge
of the correlation matrix.

This means that the problem of detection is easy in
this case, provide that the covariance matrix of the image
noise is known. However, we can treat the problem as a
test problem and assume that the noise covariance matrix
is not known. So, we will examine the diagnostic power of
the proposed projection method inferring about changes in
the mean (changes of images) on the basis of projected
noisy observations only, i.e., using the T 2

S statistic for
projections of dimension k = 5, 10, and k = 100.

Figures 3–5 show T 2
S statistic values using normal

or sparse (Fig. 5) random projections of dimensionality
k = 5 for 1000 independent observations of in-control
data (I0) and out of control data (I1 and I2) corrupted
by a Gaussian white noise, respectively. The mean for T 2

S

statistic in Fig. 3, i.e., for in-control data, is approximately
equal to 5. The graphs for T 2

S statistic in other dimensions
look similar to the graph presented in Fig. 3, but their
scale depends on k. Figure 6 illustrates the T 2

S statistic
for “out-of-control” data (I1) with a Gaussian white noise
and sparse random projections of dimensionality k = 100.

200 400 600 800 1000

5

10

15

Fig. 3. T 2
S statistic for in-control data (I0 corrupted by a Gaus-

sian white noise) with normal random projections of di-
mensionality k = 5; 1000 independent observations.

Tables 1–3 show false alarm rates and the probability
of changes detection for separate observations of an
average of over 1000 test samples for images corrupted
by Gaussian white noise with variance σ2 = 0.01 and 10
different normal random projections and sparse random
projections of dimensionality k = 5, k = 10 and k = 100,
respectively. The average total variance of projected data,
i.e., the averaged trace of estimated covariance matrices
was 98.87 with standard deviation 2.44 and 99.67 with
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Fig. 4. T 2
S statistic for out-of-control data (faulty image I1 cor-

rupted by a Gaussian white noise) with normal random
projections of dimensionality k = 5; 1000 independent
observations.
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Fig. 5. T 2
S statistic for out-of-control data (faulty image I2 cor-

rupted by a Gaussian white noise) with sparse random
projections of dimensionality k = 5; 1000 independent
observations.
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Fig. 6. T 2
S statistic for out-of-control data (faulty image I1)

with a Gaussian white noise and sparse random projec-
tions of dimensionality k = 100; 1000 independent ob-
servations.

standard deviation 1.69 for sparse and normal projections
of dimensionality k = 5, respectively, 99.76 with standard
deviation 0.322 and 100.03 with standard deviation 0.535
for sparse and normal projections of dimensionality k =
100, respectively.

The last rows of the average simulation results of
the tables are also presented. Threshold values for T 2

S

statistic are chosen according to kN
d−k+1G(k,N−k+1)(1 −

α) with α = 0.01. Thus, we have assumed that
the theoretical false alarm rate is equal to 0.01. The
alarm level (upper control limit) for projection dimension
k = 100 was selected as h0.01 = 138.0. This
value is closer to the threshold obtained from χ2

100

distribution than that from the Snedecor one, because,
due to numerical round-off errors, the variability of
the practically estimated covariance matrix was smaller
than the variability of the theoretical covariance estimate
following the Wishart distribution. Table 3 demonstrates
that even now the attained false alarm rate was about twice
as small as the assumed probability 0.01. The probability
of detection of faulty images using random projections of
dimensionality k = 100 was close to 1.0 with the range
from 0.982 to 1.000. But even when one uses only several
projections, namely, for k = 5 or k = 10, the probability
of mean change detection was relatively high. Detailed
results are summarized in Tables 1–3.

6.2. Detection of changes in images corrupted by
a correlated noise. The reference image is also I0, but
the image noise is generated by a random dynamic process
independently not only for each observation, but also for
each image row, i.e.,

ni = εi ∼ N (0, 1), i = 1mod(100),

ni = 0.8εi−1 + εi,

εi ∼ N (0, 0.1), i = 2, . . . , 100mod(100).

In such a case the noise covariance matrix is a
tridiagonal matrix and consists of 100 identical segments
(same for every image row) with variances equalling 1,
0.65 and 0.0164 (98 times in each diagonal segment).
Thus, the total variance of the noise is 325.72 and is 3.25
times greater than in the non-correlated noise case. The
image defects are as previously defined by I1 and I2,
respectively.

Detailed simulation results are summarized in Tables
4, 5, 7, 8 and 6, 9 for sparse random projections and
normal random projections, respectively. For correlated
normal data and random projections of dimensionality
100, the probability of detecting the change from I0 to
I1 was between 0.63 to 0.91, depending on a randomly
chosen projection (see Tables 8 and 9). This means that
(in the case of a permanent mean shift) the average time
to change detection (average run length of the ARL chart)
is smaller than 2. The average total variance of projected
data, in comparison with the true total variance 325.72,
equals 329.29 with a standard deviation of 18.04 for
sparse projections of dimensionality k = 5, and 324.46
with standard deviation 2.87 for sparse projections of
dimensionality k = 100, respectively.
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Table 1. False alarm probability and probability of mean change detection averaged over 1000 test samples for images corrupted by
white Gaussian noise with variance σ2 = 0.01 and 10 different normal random projections and sparse random projections of
dimensionality k = 5. The alarm level (upper control limit) h0.01 = 15.16.

Projection Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

normal 0.004 0.308 0.970
sparse 0.006 0.392 1.000
normal 0.009 0.075 0.899
sparse 0.010 0.085 0.817
normal 0.009 0.016 1.000
sparse 0.011 0.067 0.333
normal 0.011 0.137 0.995
sparse 0.007 0.068 0.885
normal 0.009 0.125 0.987
sparse 0.006 0.358 0.553
normal 0.007 0.310 0.938
sparse 0.010 0.336 0.909
normal 0.007 0.141 0.436
sparse 0.015 0.104 0.996
normal 0.010 0.103 1.000
sparse 0.012 0.271 0.903
normal 0.012 0.029 0.952
sparse 0.010 0.519 0.228
normal 0.012 0.063 0.649
sparse 0.005 0.111 0.786

avg. normal 0.0090 0.1307 0.6826
avg. sparse 0.0092 0.2311 0.6410

Table 2. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
white Gaussian noise with variance σ2 = 0.01 and 10 different normal random projections and sparse random projections of
dimensionality k = 10. The alarm level h0.01 = 23.21.

Projection Correct I0 Probability of detection Probability of detection
false alarm rate for I2 for I3

normal 0.010 0.589 1.000
sparse 0.014 0.369 0.997
normal 0.015 0.131 1.000
sparse 0.007 0.492 0.681
normal 0.009 0.500 0.902
sparse 0.011 0.188 0.999
normal 0.008 0.408 1.000
sparse 0.007 0.060 1.000
normal 0.012 0.713 0.999
sparse 0.013 0.084 0.998
normal 0.009 0.111 0.996
sparse 0.008 0.225 0.982
normal 0.007 0.073 0.991
sparse 0.008 0.455 0.915
normal 0.013 0.115 1.000
sparse 0.007 0.246 1.000
normal 0.008 0.062 1.000
sparse 0.003 0.468 1.000
normal 0.011 0.604 1.000
sparse 0.010 0.321 1.000

avg. normal 0.0102 0.2818 0.9968
avg. sparse 0.0087 0.2908 0.9572
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Table 3. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
white Gaussian noise with variance σ2 = 0.01 and 10 different normal random projections and sparse random projections of
dimensionality k = 100, respectively. The alarm level h0.01 = 138.0.

Projection Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

normal 0.002 1.000 1.000
sparse 0.008 0.999 1.000
normal 0.006 0.999 1.000
sparse 0.004 1.000 1.000
normal 0.005 1.000 1.000
sparse 0.006 0.982 1.000
normal 0.004 1.000 1.000
sparse 0.007 1.000 1.000
normal 0.005 1.000 1.000
sparse 0.001 1.000 1.000
normal 0.003 1.000 1.000
sparse 0.008 1.000 1.000
normal 0.004 0.997 1.000
sparse 0.002 0.999 1.000
normal 0.002 0.999 1.000
sparse 0.007 0.997 1.000
normal 0.007 1.000 1.000
sparse 0.006 0.998 1.000
normal 0.002 0.998 1.000
sparse 0.005 1.000 1.000

avg. normal 0.0040 0.9993 1.000
avg. sparse 0.0054 0.9971 1.000

Table 4. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
correlated Gaussian noise and 10 different sparse random projections of dimensionality k = 5.

Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

0.01 0.073 0.374
0.008 0.027 0.193
0.009 0.026 0.266
0.006 0.050 0.661
0.008 0.038 0.146
0.006 0.037 0.206
0.010 0.026 0.462
0.013 0.021 0.320
0.011 0.062 0.435
0.010 0.033 0.806

avg. 0.0091 avg. 0.0387 avg. 0.3867

6.3. Additional comments. It should be mentioned
that one can easily calculate the moments of T 2

S in the
in-control state (m = 0 no change in the mean) and in
the out-of-control state, as moments of a central and a
non-central Snedecor distribution, respectively. The first
moment of

kN

N − k + 1
F (k, N − k + 1)

equals
k

1 − 1/N − k/N

and the first moment of

kN

N − k + 1
F (k, N − k + 1, (Sm)T (SΣST )−1Sm)

equals
k + (Sm)T (SΣST )−1Sm

1 − 1/N − k/N
.

In all simulations we have performed, the averaged values
of the T 2

S statistics were very close to the theoretical
means.
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Table 5. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
correlated Gaussian noise and 10 different sparse random projections of dimensionality k = 10.

Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

0.010 0.012 0.312
0.006 0.091 0.967
0.008 0.027 0.193
0.007 0.104 0.899
0.010 0.075 0.363
0.010 0.059 0.661
0.014 0.028 0.668
0.010 0.066 0.918
0.011 0.066 0.977
0.007 0.146 0.673

avg. 0.0097 avg. 0.0674 avg. 0.6651

Table 6. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
correlated Gaussian noise and 10 different normal random projections of dimensionality k = 10.

Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

0.009 0.218 0.511
0.013 0.025 0.780
0.009 0.037 0.824
0.008 0.033 0.617
0.009 0.023 0.840
0.010 0.023 0.730
0.004 0.057 0.565
0.010 0.057 0.672
0.005 0.040 0.509
0.004 0.041 0.653

avg. 0.0081 avg. 0.0554 avg. 0.6601

Table 7. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
correlated Gaussian noise and 10 different sparse random projections of dimensionality k = 50

Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

0.001 0.151 1.000
0.004 0.187 1.000
0.001 0.235 0.998
0.003 0.119 1.000
0.002 0.329 1.000
0.005 0.410 1.000
0.018 0.458 0.999
0.005 0.246 1.000
0.005 0.254 0.999
0.008 0.306 1.000

avg. 0.0052 avg. 0.2595 avg. 0.9996

7. Concluding remarks

We have proposed a new approach to fault analysis
of high dimensional multi-variate and inter-correlated
measurements based on dimensionality reduction via
random projections. We assumed the normality of the data
but, as in the practice of the statistical quality control area,

this assumption can be weakened.

Random projections may be treated as weighted
averages of multivariate observations. This approach is
very simple, in contrast to a laborious, or even impossible
in higher dimensions, analysis of data structures using
PCA or ICA.
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Table 8. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
correlated Gaussian noise and 10 different sparse random projections of dimensionality k = 100.

Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

0.005 0.810 1.000
0.005 0.862 1.000
0.007 0.806 1.000
0.005 0.886 1.000
0.009 0.914 1.000
0.004 0.797 1.000
0.005 0.654 1.000
0.006 0.696 1.000
0.003 0.717 1.000
0.006 0.889 1.000

avg. 0.0055 avg. 0.8031 avg. 1.000

Table 9. False alarm probability and probability of a mean change detection averaged over 1000 test samples for images corrupted by
correlated Gaussian noise and 10 different normal random projections of dimensionality k = 100.

Correct I0 Probability of detection Probability of detection
false alarm rate for I1 for I2

0.002 0.717 1.000
0.009 0.686 1.000
0.008 0.630 1.000
0.011 0.698 1.000
0.006 0.675 1.000
0.005 0.844 1.000
0.001 0.780 1.000
0.005 0.678 1.000
0.005 0.670 1.000
0.003 0.764 1.000

avg. 0.0055 avg. 0.7142 avg. 1.000

Concentration properties used in the inequality (18)
(see also the proof of the Johnson–Lindenstrauss lemma
(Dasgupta and Gupta, 2003)) favor high-dimensional data
being “the blessing of dimensionality” (Donoho, 2000).

Using random projections can be considered
an implication of the Cramer-Wold theorem
(Cuesta-Albertos et al., 2007; Cramer and Wold, 1936).
The theorem states that a Borel probability measure
on R

d, where d ≥ 2, is uniquely determined by its
one-dimensional projections.

This paper addresses the problem of how many
projections are really needed to determine changes in
the mean of the probability distribution, when only
projections of observations are available.

Note that the method proposed here can be also
used for a total variance change detection; however,
the covariance change detection problem is even more
complicated (also in low dimensions) (Montgomery,
1996) and is beyond the scope of this paper.

It should be mentioned that a different approach
to projections of multivariate data is presented in the
works by Runger (1996), Runger et al. (2007) as well as

Bodnar and Schmid (2005), where projections are given
in advance (latent variable model of the process) and
simultaneously the dimensionality of the observation is
relatively small.

Since Shewhart-type charts, including the
multivariate Hotellings T 2 chart, are more sensitive
to large shifts than to small shifts, in the case of
small changes the T 2

S chart should be combined with
MEWMA or MCUSUM control charts (Sullivan and
Woodall, 2000).
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256–260.

Srivastava, M.S. (2009). A review of multivariate theory for high
dimensional data with fewer observations, in A. SenGupta
(Ed.), Advances in Multivariate Statistical Methods, Vol.
9, World Scientific, Singapore, pp. 25–52.

Sulliva, J.H. and Woodall, W.H. (2000). Change-point
detection of mean vector or covariance matrix shifts using
multivariate individual observations, IIE Transactions
32(6): 537–549.

Tsung F. and Wang K. (2010). Adaptive charting techniques:
Literature review and extensions, in H.-J. Lenz, P.-T.
Wilrich and W. Schmid (Eds.), Frontiers in Sta-
tistical Quality Control, Vol. 9, Springer-Verlag,
Berlin/Heidelberg, pp. 19–35.

Vempala, S. (2004). The Random Projection Method, American
Mathematical Society, Providence, RI.

Wang, K. and Jiang, W. (2009). High-dimensional process
monitoring and fault isolation via variable selection, Jour-
nal of Quality Technology 41(3): 247–258.

Wang, J. (2012). Geometric Structure of High-Dimensional
Data and Dimensionality Reduction, Higher Education
Press, Beijing/Springer-Verlag, Berlin/Heidelberg.

Wold, H. (1966). Estimation of principal components and related
models by iterative least squares in P. Krishnaiaah (Ed.),
Multivariate Analysis, Academic Press, New York, NY,
pp. 391–420.

Zorriassatine, F., Tannock, J.D.T. and O‘Brien, C. (2003). Using
novelty detection to identify abnormalities caused by mean
shifts in bivariate processes, Computers and Industrial En-
gineering 44(3): 385–408.

Ewa Skubalska-Rafajłowicz, Ph.D. in 1981 and
D.Sc. in 2001 from the Wrocław University of
Technology. Her fields of research include neu-
ral networks, pattern and image recognition and
control charts, and use of space-filling curves and
random projections for the dimensionality reduc-
tion. She has published almost 100 research pa-
pers on the above topics of expertise including
those in IEEE Transactions on Neural Networks,
IEEE Transactions on Evolutionary Computing,

and the International Journal of Applied and Mathematics and Computer
Science. She is also a member of the editorial board of ISRN Applied
Mathematics. She has been invited as a visiting professor to Concordia
University and Manitoba University in Canada as well as to Free Uni-
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