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DECOMPOSITION OF THE FUZZY INFERENCE SYSTEM FOR
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The paper presents the design and implementation of a digital rule-relational fuzzy logic controller. Classical and decompo-
sed logical structures of fuzzy systems are discussed. The second allows a decrease in the hardware cost of the fuzzy system
and in the computing time of the final result (fuzzy or crisp), especially when referring to relational systems. The physical
architecture consists of IP modules implemented in an FPGA structure. The modules can be inserted into or removed from
the project to get a desirable fuzzy logic controller configuration. The fuzzy inference system implemented in FPGA can
operate with a much higher performance than software implementations on standard microcontrollers.
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1. Introduction

The general architecture of the Multiple Inputs Single
Output (MISO) Fuzzy logic Inference System (FIS) is
shown in Fig. 1. It consists of the following components:
a fuzzification block, a knowledge base, an inference
block and a defuzzification block (Chojcan and Łęski,
2001; Czogała and Pedrycz, 1985; Rutkowska et al., 1997;
Kovačić and Bogdan, 2006; Passino and Yurkovich, 1998;
Piegat, 2006).
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Fig. 1. General architecture of the fuzzy logic inference system.

The knowledge base KB[XK , . . . , X1, Y ] contains
a collection of linguistic rules and a definition of linguistic
variables. The fuzzy system is characterized by the
linguistic description in the form of fuzzy rules,

If XK is AKiK and, . . . , and X2 is A2i2

and X1 is A1i1 then Y is BiK ...i2i1 , (1)

where XK , . . . , X2, X1 are input variables, Y is an output
variable, AKiK , . . . , A2i2 , A1i1 , BiK ...i2i1 are linguistic
values defined by fuzzy sets (Piegat, 2005) on the
corresponding universes of discourse XK , . . . , X2, X1 and
Y , respectively (iK = 1, . . . , NK , . . . , i2 = 1, . . . , N2,
i1 = 1, . . . , N1, where Nk (k = 1, . . . , K) denotes the
number of the linguistic values for the k-th input variable).

The general inference process usually proceeds in
four (or three for a system with only a fuzzy output) steps
(Czogała and Pedrycz, 1985; Rutkowska et al., 1997;
Sulaiman et al., 2009):

1. Fuzzification: the membership functions defined
on the input variables x = [xK , . . . , x2, x1] are
applied to their actual values x′ = [x′

K , . . . , x′
2, x

′
1]

to determine the degree of truth for each rule
premise (the if-parts of the rules). An operation
is superfluous if the input variables are fuzzy
(A′ = [A′

K , . . . , A′
2, A

′
1]). The most popular method

is singleton fuzzification (systems with no fuzzy
inputs).
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2. Inference: the truth value for the premise of each rule
is computed and applied to the conclusion part of
each rule (the then-parts of the rules).

3. Aggregation: all of the fuzzy subsets obtained in the
previous step are combined together to form a single
fuzzy set B for output variable Y (fuzzy output).

4. Defuzzification: converts the fuzzy output set B to
a crisp number y (this operation is superfluous if the
fuzzy logic inference system has only fuzzy output).

2. Rule and relational fuzzy systems

The output fuzzy set BiK ...i1 for rule RiK ...i1 can be
expressed by means of the formula (Czogała and Pedrycz,
1985; Rutkowska et al., 1997)

B′
iK ...i1 = A′ ◦ �iK ...i1 , (2)

where the symbol ◦ denotes the compositional rule
of inference operators (e.g., sup-min, sup-prod), and
�iK ...i1 represents the relation between the premise and
antecedent of RiK ...i1 rule. The single output fuzzy set B
for collection of rules can be computed on the basis of two
approximate reasoning methods:

Method 1. The fuzzy sets B′
iK ...i1 are combined together

to get a single fuzzy set by using aggregate operator,
denoted as ∨̇:

B′ =
NK∨̇

iK=1

. . .

N1∨̇

i1=1

B′
iK ...i1 . (3)

Method 2. A global relation � for all rules is appointed
as

� =
NK∨̇

iK=1

. . .

N1∨̇

i1=1

�iK ...i1 , (4)

and then the output fuzzy set is computed according
to the formula

B′ = A′ ◦ �. (5)

In Method 1, Steps 2 and 3 of the algorithm described
in Section 1 are always performed when the input values
are changed while in Method 2 they are executed when
aggregating all rules to get the global relation. Fuzzy
systems using the first method are called rule fuzzy
systems or FITA (First Inference Then Aggregate), those
applying the second one—relational fuzzy systems or
FATI (First Aggregate Then Inference) (Czogała and
Łęski, 1998).

3. Hardware models of the FITA and FATI
systems

In the discussion presented below, it has been assumed
that the fuzzy reasoning method is based on Mamdani’s
composition (conjunctive interpretation of if-then rules).
In this case, the relation � is of the general form

� = A ∧ B, (6)

where ∧ denotes the MIN operator (Czogała and Łęski,
1998; Rutkowska et al., 1997).

The membership function for Method 1 (singleton
fuzzification method) can be expressed as

μB′(y) =
NK∨

iK=1

. . .

N1∨

i1=1

[
τiK ...i1 ∧ μBiK ...i1

(y)
]
, (7)

where τiK ...i1 is a degree of truth for the iK . . . i1-th rule,

τiK ...i1 =
K∧

j=1

μAjij
(x′

j). (8)

The formula (7) can be computed in the structure
presented in Fig. 2 (Hrynkiewicz and Wyrwoł, 2000). It
consists of the following components:

• AKiK , BiK ...i1 : memory modules, store values of
membership functions of linguistic values in the
if- and then-part of rules, respectively, as a binary
matrix,

• ∧: MIN components, obtain truth values of the
premises for each rule (second level) or compute
a fuzzy subset B′

iK ...i1
for each rule (third level),

• ∨: MAX component, makes an aggregation of fuzzy
subsets B′

iK ...i1
to get the output result B′.

It can be noticed that, using the classical Mamdani
inference technique, the FITA inference system, presented
in Fig. 2, triggers all rules in every calculation of the
output result (Sakthivel et al., 2010; Uppalapati and Kaur,
2009; Al-Aubidy, 2010).

The membership function for Method 2 (Czogała
and Łęski, 1998; Rutkowska et al., 1997; Yager and
Filev, 1994) can be expressed as

μB′(y) = sup
x∈X

[(
K∧

k=1

μA′
k
(xk)

)

∧ μ�(xK , . . . , x1, y)

]
, (9)
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Fig. 2. Hardware model of the FITA fuzzy inference system.

where the membership function of the global fuzzy
relation is

μ�(xK , . . . , x1, y)

=
NK∨

iK=1

. . .

N1∨

i1=1

[ (
K∧

k=1

μAkik
(xk)

)
∧ μBiK ...i1

(y)

]
.

(10)

The formula (9) can be evaluated in the structure
presented in Fig. 3. The membership function of the
global fuzzy relation (4) is computed (before the inference
process for input values x′ has been started) and stored
in cells of the memory � (as a fuzzy look-up table).
The fuzzy operations ‘min’ and ‘max’ are performed by
decoders and the output buffer of the memory (during the
inference process).
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Fig. 3. Hardware model of the FATI fuzzy inference system.

4. Decomposition technique

A decomposition technique based on a projection of the
global fuzzy relation has been proposed by Gupta et al.
(1986). It allows the global relation � to be converted into
subrelations �i (i = 1, . . . , K), and thus can be used only
in relation type inference systems (FATI)

�i = proj
xi

(�), (11)

where projection is defined as

proj
xn,...,x1

(�)

= max
yn,...,y1

[�(xn, . . . , x1, yn, . . . , y1)]. (12)

This technique requires calculating the global fuzzy
relation � based on information stored in the knowledge
base KB[XK , . . . , X1, Y ] of the fuzzy system (Fig. 4).
A lot of time is required to compute it and considerable
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Fig. 4. Flow diagram of creating subrelations (FATI subsys-
tems) based on decomposing the global fuzzy relation.

memory is needed to store it. These disadvantages can
be eliminated if decomposition is used for the knowledge
base (Walichiewicz, 1984; Martins and Carvalho, 2001;
Wyrwoł, 2004a). In this case, Gupta’s decomposition
method can be extended into FITA systems (Fig. 5).

5. Hierarchical model of the FITA and FATI
systems

The general structure of the decomposed fuzzy system
is shown in Fig. 6 (for Gupta’s primary decomposition
method p = 1; to avoid the decomposition error (Di Nola
et al., 1984; 1985; Lee et al., 1995), using a modified
decomposition technique, e.g., based on partitioning the
knowledge base KB[XK , . . . , X1, Y ] (Wyrwoł, 2004a;
2008; 2011), the number of subsystems p in general cases
can be greater than 1). It consists of p subsystems, each
of them made of K SISO (Single Input Single Output)
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on a decomposition of the global knowledge base.

systems (in Fig. 6 marked as FISpk (k = 1, . . . , K);
p depends on the decomposition method). They can be
implemented as rule (FITA) or relational (FATI) fuzzy
inference engines.
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Fig. 6. General architecture of the hierarchical fuzzy inference
system.

6. Comparison of the primary and the
decomposed model of fuzzy inference
systems

The estimated hardware cost of the fuzzy inference system
can be expressed as

HC ≈ HCPmem + HCLconn + HCLcom , (13)

where HCPmem , HCLconn and HCLcomp denote the
hardware cost of the memory modules, connections and
components used in the system, respectively (Wyrwoł,

2004a). The hardware cost can be calculated for primary
(HFIS ) and hierarchical (HHFIS ) structures of the models
described in Sections 3 and 5. To compare the two
structures, a hardware cost reduction coefficient has been
defined as

υHC [%] =
HFIS − HHFIS

HFIS
· 100. (14)

Theoretically, the computed hardware cost reduction
coefficient is presented graphically in Fig. 7 for relational
systems and Fig. 8 for rule systems. For reasonable
parameters n or N (p = 1), the decomposition method
leads to the lowering of hardware costs (Hung-Ping and
Parug, 1996).
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Fig. 7. Hardware cost reduction coefficient vs. the number of
bits of input and output values and the number of inputs
for relational fuzzy systems (FATI).
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Fig. 8. Hardware cost reduction coefficient vs. the number of
linguistic values and the number of inputs for each lin-
guistic variable for rule fuzzy systems (FITA).

The practically created fuzzy inference systems, in
the aspect of the hierarchic structure, do not always permit
reducing hardware costs, especially if the parameter p is
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greater than 1. The hardware cost reduction coefficient
for some fuzzy inference systems (used as benchmarks) is
presented in Table 1. The knowledge bases of the systems
describe respectively fuzzy controllers (denominated as 1,
3, 4) (Baturone et al., 1997; Kim and Cho, 1999; Yager
and Filev, 1994), an ENOR gate (denominated as 2)
(Lee et al., 1995), a truck park controller (denominated
as 5) (Rutkowska et al., 1997; Kim, 2000), a temperature
controller of a heated air-stream (denominated as 6)
(Ollero and Garcia-Cerezo, 1989), a fuzzy controller for
stabilization of an inverted pendulum (denominated as 7)
(Yamakawa, 1989), a fan controller (denominated as 8)
(Hurdon, 1993) and a fuzzy system for identification of
nonlinear systems (denominated as 9) (Rovatti et al.,
1995). For the primary decomposition technique (p =
1), the hardware cost is lower if the system is built as
a hierarchical structure, and it is the highest for FATI
systems. The number of subsystems should be increased
in some cases (p > 1) to avoid the inference error (Lee
et al., 1995, Wyrwoł, 2004a; 2008; 2011), and then the
hardware cost of the system may increase. This problem
is not critical for most FATI systems.

Summarizing, the hierarchical structure of the fuzzy
inference analytical model (Section 5) offers major
advantages over the flat structure (Section 3):

• lower hardware cost;

• hardware cost (of the FITA system) does not depend
strongly on the number of linguistic values of the
input variables Ni (i = 1, . . . , K , the formula (1)),
e.g., does not depend strongly on the number of rules
N = N1 · N2 · . . . · NK ;

• system consists of the same simple and compact
structure components (SISO subsystems and fuzzy
arithmetic logic units).

Table 1. Hardware cost reduction υ[%] for practically built fuz-
zy inference systems.

System
Benchmark FATI FITA

p = 1 p > 1 p = 1 p > 1

1 98 91 55 16
2 98 94 -4 -38
3 98 86 51 -27
4 98 91 23 -38
5 98 86 47 -21
6 98 91 34 -25
7 98 91 22 -9
8 98 94 23 -6
9 98 91 49 16

7. Hardware structure of the modular fuzzy
rule/relational system

From the comparison of the FATI and FITA systems, one
can conclude the following:

• hardware cost of the FATI does not depend on the
number of rules;

• FATI systems calculate the result of inference in the
shortest time;

• FITA systems allow the parameters of the knowledge
base to be changed during the inference process
(adaptive control systems);

• FITA systems require complex fuzzy logic arithmetic
units to be implemented (their hardware cost depends
on the format of the membership functions);

• FATI systems require bigger memory to store fuzzy
relations (global or subrelations in the case of a
hierarchical structure).

Hardware implementation of the rule-relational,
modular fuzzy inference system allows high performance
(FATI approximate reasoning method), flexibility
(altering parameters of the knowledge base, the
system architecture, etc.), and additionally, low cost
(a hierarchical structure, smaller size of memory required
to store fuzzy relations). The general architecture of
the digital 8-bit fuzzy inference system FPGA-FIS is
shown in Fig. 9 (Wyrwoł, 2004a). It consists of two main
components: a memory module and an FPGA chip. The
first is connected to the FPGA via an 8-bit bidirectional
data bus, 20-bit address bus and 6-bit control bus. The
external RAM module is generally used to store the
knowledge base of the system (or subsystems) and fuzzy
subrelations (as a form of fuzzy look-up tables).

In the FPGA chip module of the fuzzy inference
system two interfaces are implemented: Memory Interface
and Control/Configuration Interface. The first provides
communication between the modules contained in FPGA
and external RAM. The second allows an external device
(e.g., a microprocessor) to configure the fuzzy system and
then to control the inference process.

The modules, implemented in the FPGA chip,
perform various tasks: fuzzy operations control the
inference process, system configuration, etc. They are
provided communication (control signals and data) via an
internal bus, but at the same time only one of them is the
master (control unit) and has direct access to the RAM
buses to control the system behavior.

All of the main designed modules are briefly
described below:

MMU (Memory Management Unit): It allows access
to RAM memory and supports write and read
configuration data of the fuzzy system.
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Fig. 9. General architecture of the digital fuzzy logic inference
system.

FAcc (Fuzzy Accumulator): It executes a basic operation
on fuzzy arguments (membership functions in the
binary matrix form).

IMU (Inference Management Unit): It performs and
controls an inference process.

DFU (DeFuzzification Unit): It converts a fuzzy
inference result into a crisp value using one of the
following methods: COG, COA, FOM, LOM and
MOM (the module is not required for a system with
fuzzy output only).

RMU (Relation Management Unit): It converts
information from the knowledge base of the
SISO system into the corresponding fuzzy relation.

DMU (Decomposition Management Unit): It allows
the decomposing of the knowledge base of the
primary system into a knowledge base of the SISO
subsystems.

MCMU (Membership Conversion Management Unit):
It converts a parametric membership function into
a look-up table.

Listing 1. Example description of Memory Management Unit
in Verilog HDL.

// ports list
module MMU(// Ready signal (output)

Ready,
// Strobe signal (input)

Stb,
// Data direction (Read/notWrite) (input)

RW,
// Module initialization (input)

Init,
// Memory write and reas signals (outputs)

MemWE, MemRE,
// Address buses (outputs)

AddrX, AddrY, AddrS,
// Number of subsystems (p) (outputs)

NSubS,
// RAM module selection bus (inputs)

SelM);

// parameters declaration
parameter DataMBF = 8, DataIO = 8;

// input ports declaration
input Stb;
input RW;
input Init;
input [3:0]SelM;

// output ports declaration
output MemWE;
output MemRE;
output [DataMBF-1:0]AddrX; reg [DataMBF-1:0]AddrX;
output [DataMBF-1:0]AddrY; reg [DataMBF-1:0]AddrY;
output [3:0]AddrS; reg [3:0]AddrS;
output Ready; reg Ready;
output [3:0]NSubS; reg [3:0]NSubS;

// continuous assignment
assign MemRE = ~RW;
assign MemWE = RW | Stb;

// structural module
always @(posedge Stb or posedge Init) begin

if (Init==1)
// MMU initialization
begin

// address bus
AddrX = 8’b00000000;
AddrY = 8’b00000000;
AddrS = SelM;
Ready = 1;

end
else

// MMU run
begin

// increment address
{AddrS[3:0], AddrX[7:0], AddrY[7:0]} =
{AddrS[3:0], AddrX[7:0], AddrY[7:0]} + 1;

// signal Ready
Ready = ~({AddrX[7:0], AddrY[7:0]}==0);
// number of used RAM modules
if ((Ready==0) && (RW==0)) NSubS = AddrS;

end
end

endmodule

The modules can be implemented in an FPGA chip
to create a desirable rule (FITA), relational (FATI) or
rule-relational (FITA-FATI) fuzzy system (Table 2: ‘∗’
denotes that the module is not required for a system with
fuzzy output only, ‘•’ means that the module is always
required in the system, ‘◦’ means that the module can be
used in the system, but if not implemented, the appropriate
task has to be executed by an external device, e.g., in
a microprocessor system). If any optional component is
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not implemented in the fuzzy system, the appropriate
task (for example, calculating a fuzzy relation) should be
executed by an external device (and the final results, for
example, a fuzzy relation, are then stored in the RAM of
the system). The library of modules has been described
in Verilog HDL (Accellera, 2002; Xilinx, 2009; Bhasker,
1998; Palnitkar, 1996; Minns and Elliott, 2008). This
allows implementing it in any FPGA chip easily (the
modules can be used in design entry phase of the system).
An example of the description of one of the modules,
Memory Management Unit, is depicted in Listing 1.

8. Example implementation of the fuzzy
relational system

As an example, possible implementation of the fuzzy
relational system (FATI) with 8-bit resolution is described.
For clarity the system, has been divided into two separate
parts. They are illustrated in Figs. 10 and 12.

The first shows part of a fuzzy system which is active
during the configuration process, the second—during the
inference process. The master module in the configuration
mode is Memory Management Unit (Listing 1). It
provides all the necessary signals and an address to
write (or read) information from an external device to
the RAM modules. The external device, e.g., a PC
with a dedicated program, prepares fuzzy subrelations,
according to Eqn. (11) and Fig. 5, and it sends to the
memory the modules of the FPGA-FIS system (the fuzzy
subrelations can be also created in the system using
additional modules gathered in Table 2). Configuration
data (subrelations) are sent to the inference system via an
RS232 interface. Therefore, an additional microcontroller
has been used. It converts serial data into parallel data,
accepted by the Control/Configuration Interface.

The data to be sent to the system are organized in
blocks of 64 kB. Each data block represents a subrelation
for subsystem FISpk (k = 1, . . . , K; p depends on the
decomposition method, in some cases p is equal to 1),
as depicted in Fig. 6. For a SISO system, the subrelation

Table 2. Modules required for realization of the specific fuzzy
inference system.

Module
System

FITA FATI MIX

MMU • • •
FAcc • • •
IMU • • •
DFU ∗ ∗ ∗
RMU ◦ ◦
DMU ◦ ◦

MCMU ◦ ◦ ◦
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Fig. 10. One of the possible hardware configurations of the fuz-
zy inference system (initialization mode).

requires

CRAM[bits] = mbf_res · 2(x_res+y_res) (15)

of memory, where mbf_res, x_res and y_res
are membership, input and output data resolutions,
respectively.

The master module in the inference mode is the
Inference Management Unit (Fig. 12). It provides an
address to the RAM modules (the memory is in read
mode) and necessary signals to Fuzzy Accumulator FAcc
and Defuzzification Unit DFU.

The main function of the FAcc module is to find
the fuzzy output set B′ by computing the fuzzy AND
operation of the fuzzy sets B′

1, . . . , B
′
K (results of the

composition actual fuzzified input values x1, . . . , x
′
K and

fuzzy relations stored in RAM, as expressed by Eqn. (9)).
As an example, the description of a simplified version
of the two-input Fuzzy Accumulator FAcc2 is depicted
in Listing 2. It has been assumed that the membership
functions of the fuzzy sets (as well as functions of fuzzy
relations) have the form of a look-up table as presented in
Fig. 13 (Patyra et al., 1996).

Defuzzification Unit transfers the fuzzy inference
result B′ to the external device via Control/Configuration
Interface or converts it first into a crisp value. The



480 B. Wyrwoł and E. Hrynkiewicz

...

.
.
.

11FIS

12FIS

1KFIS

SRAM (module 1)

1pFIS

2pFIS

pKFIS

Fuzzy subrelation for 

subsystem

Fuzzy subrelation for 

subsystem

Fuzzy subrelation for 

subsystem

.
.
.

SRAM (module K)

Fuzzy subrelation for 

subsystem

Fuzzy subrelation for 

subsystem

Fuzzy subrelation for 

subsystem

Fig. 11. Memory map of the relational fuzzy inference system.

inference and defuzzification tasks can be executed
simultaneously (Wyrwoł, 2004b).

Listing 2. Simplified description of the FAcc unit in Verilog
HDL (for a two-input fuzzy inference system).

// ports list
module FAcc2(// input data D0 (input)

DataD0,
// input data D1 (input)

DataD1,
// output data DO (output)

DataO,
// clock signal (input)

Clk,
// reset signal (input)

Reset);

// parameters declaration
parameter DataMBF = 8;

// input ports declaration
input Clk;
input Reset;
input [DataMBF-1:0] DataD0;
input [DataMBF-1:0] DataD1;

// output ports declaration
output [DataMBF-1:0] DataO; reg [DataMBF-1:0] DataO;

// temporary registers
reg [DataMBF-1:0] DataMin;

// structural module
always @(posedge Clk or posedge Reset) begin

if (Clk)
begin

// AND operation on inputs data
DataMin = (DataD0>DataD1) ? DataD1 : DataD0;
if (DataMin>DataO) DataO = DataMin;

end
// reset output
else DataO=0;

end

endmodule

9. Conclusion

The fuzzy inference system presented in the paper has
been tested on a prototype board. It consists of an FPGA
Xilinx Spartan II XC2S200 chip (Xilinx, 2008), an Atmel
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Fig. 12. One of the possible hardware configurations of the fuz-
zy inference system (inference mode).

AVR ATMega family ATMega32 microcontroller (Atmel,
2007) with an RS232 interface and 1 MB of external
SRAM on the board (2 modules K6T4008C1B, (Samsung
Electronics, 1998)). The microcontroller is connected to
Control/Configuration Interface of the FPGA. It operates
only as an RS232 monitor. It receives commands or data
from a host computer (FPGA-FIS software, not described
in the paper, allows the configuration data of the fuzzy
system to be prepared, controlled and tested) and sends
it to the FPGA. Additionally, the development system
has an on-board DLC5 ISP programmer (Zbysiński and
Pasierbiński, 1992), which allows loading the bitstream of
a design as generated by the Xilinx development software
WebPack ISE (ver. 8) into the internal configuration
memory of the FPGA.

All of the modules presented in Table 2 have been
implemented and tested using the XC2S200 prototype
board. The hardware resources of the FPGA chip required
for implementation of the modules are presented in
Table 3.
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Fig. 13. Membership function format of the example fuzzy set
B (8-bit resolution).

Table 3. Hardware resources required of implementation of fuz-
zy system modules.

Module
Number of Total equivalent

gate countSlices F-Fs LUTs

MMU 38 27 43 567
FAcc 25 8 33 310
IMU 26 20 40 427
DFU1 240 74 457 4205
RMU 85 56 137 1372
DMU 112 65 207 1831

MCMU2 156 88 259 2597
1 The module executes the COG, COA, FOM, LOM or MOM

defuzzification method.
2 The module converts the parametric membership function

Gamma, L, T type, into a look-up table.

The hardware fuzzy inference system can be
characterized by hardware cost and performance. The
first parameter was discussed in Section 6. The system
based on an FPGA chip has 1 MB of external SRAM.
It is sufficient to store the subrelations of the system
depicted in Fig. 6, knowledge bases of the primary system
and decomposed SISO subsystems. As an example, the
fuzzy relational system has two-input, single-output and
8-bit data resolution. The classical implementation of the
system requires up to 16 MB of RAM. Considering the
system to be designed as a hierarchical architecture, the
memory amount has been reduced to 2×64 kB=128 kB
(according to Eqn. (15)).

Performance can be characterized by the input to
output time tIOdt (Patyra et al., 1996; Chmiel and
Hrynkiewicz, 2008). This is defined as the time from the
moment of providing the input variables to the system
until computing the output result (crisp or fuzzy) at the
output. The performance of some digital fuzzy inference
systems (PLC Simatic S7 CPU416 and CPU314 (Siemens
AG, 1996), FPGA XC4006 (Hollstein et al., 1996),
ASIC FC110 (Togai InfraLogic, Inc., 1991; Hollstein
et al., 1996), DDS Fuzzy Logic (Patyra et al., 1996)) is
presented in Table 4.

It can be noted that in SimaticS7 (CPU416 and

CPU314) a fuzzy inference system is implemented in
PLC hardware in a program way (as an FB30, FC30 or
FC31 modules). Hence, the data are processed serially
and the performance of the system is the lowest. The
other systems are implemented in hardware and the
performance is higher. The DDS Fuzzy Logic System is
characterized by the highest performance, but its hardware
cost depends strongly on input and output variables’
resolution. Thus the variables are 4-bit in length and are
not enough for most practically realized applications. The
other systems, gathered in Table 4, operate on 8-bit length
data and the fuzzy engine is implemented as a rule system
(FITA).

It should also be noted that FPGA-FIS (for relational
and rule-relational version of the system) performance is
constant, does not depend on configuration parameters of
the fuzzy system (e.g., number of if-then rules) and it is
limited only by the external memory access time (55 ns,
(Samsung Electronics, 1998)). Theoretically, the input to
output delay can be decreased to 15 ns by increasing the
frequency of the system clock (maximum frequency for
the FIS project implemented in an FPGA chip is equal to
36 MHz).

In conclusion, the presented digital, modular,
hierarchical fuzzy inference system offers these major
advantages:

• Modular architecture allows an appropriate
rule (FITA), relational (FATI) or rule-relational
(FITA-FATI) fuzzy system to be designed.

• Easy configuration of the system (the design entry
phase by coding the system in an HDL or by
a schematic representation) using fuzzy components
from an IP library (Table 2).

• Architecture of the system can easily be changed
through downloading the project data stream into
the internal configuration SRAM of the FPGA (the

Table 4. Performance of various fuzzy inference systems.
FIS tIOdt[μs] Remarks

Simatic S7 700– for FB30, FC30,
CPU416 –3000 FC31 fuzzy modules

Simatic S7 3000– for FB30, FC30,
CPU314 –13000 FC31 fuzzy modules
FPGA

42 4-bit system
XC4006

ASIC
32

8-bit fuzzy processor,
FC110 for a 20 MHz system clock
DDS

0.05
4-bit system, parallel

Fuzzy architecture implemented
Logic in ASIC chip

FPGA–
21

for a 24 MHz
–FIS system clock
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reconfiguration property of an FPGA chip is not
allowed for the current version of the proposed fuzzy
inference system),

• High performance (Table 4).

• Performance does not depend on the kind of output
result (crisp or fuzzy) and the number of rules in the
knowledge base (only for a configuration relational
(FATI) or rule-relational system (FITA-FATI)).

• Parameters of the knowledge base can easily be
changed, also for relational (FATI) or rule-relational
(FITA-FATI) system configuration.

• Low cost, size of the memory to store fuzzy relations
is the smallest.

For future research, the system will be implemented
as a PSOC (Programmable System On Chip) device, the
library will be expanded with new modules and the
reconfigurable property of the FPGA chip will be used to
dynamically change the configuration of the system in the
configuration and inference modes.
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