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We consider a mathematical model which describes the contact between a linearly elastic body and an obstacle, the so-called
foundation. The process is static and the contact is bilateral, i.e., there is no loss of contact. The friction is modeled with
a nonmotonone law. The purpose of this work is to provide an error estimate for the Galerkin method as well as to present
and compare two numerical methods for solving the resulting nonsmooth and nonconvex frictional contact problem. The
first approach is based on the nonconvex proximal bundle method, whereas the second one deals with the approximation
of a nonconvex problem by a sequence of nonsmooth convex programming problems. Some numerical experiments are
realized to compare the two numerical approaches.
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1. Introduction

This paper deals with numerical solution for frictional
contact problems governed by nonmonotone friction
laws. Two independent approaches inspired by the finite
element method are applied and numerical results are
presented for a simple two-dimensional model problem.
The first approach is based on minimization of the energy
functional by means of the Proximal Bundle Method
(PBM) (see the works of Mäkelä (1990; 2001) for a survey
of bundle methods for nonsmooth optimization), while
the second one relies on approximation of a nonconvex
problem by a sequence of convex ones. The main
theoretical result of the paper is Theorem 3, which
provides the error estimate between the Galerkin solution
and the exact one. This result is stronger than those
previously obtained in the literature. It provides the
strong convergence of subsequence of Galerkin solutions
(see Haslinger et al., 1999, Theorem 3.12) and it is a
generalization of the classical Cea lemma. The estimate is
possible due to the one sided Lipschitz condition imposed
on the friction bound, which is the natural assumption in
frictional problems. Analogous results for the convex case

are available in the works of Hild and Renard (2007) as
well as Han and Sofonea (2002).

In one approach to numerical approximation of
the solution based on the PBM, the Galerkin problem
is converted into the form of minimization of a not
necessarily convex energy functional. In each iteration
step a piecewise linear approximation of the objective
functional is constructed and it is regularized by adding
a quadratic term. Bundle methods have already been
used to solve the elastic contact problem with friction
and a normal response given by a nonmonotone law by
Miettinen (1995), while the delamination problem for
laminated composite with nonmonotone adhesive force
between laminae is solved with bundle methods by
Mäkelä et al. (1999). The review of these results can be
found in the monograph of Haslinger et al. (1999).

Another approach to the numerical solution
of a nonconvex frictional problem consists in
solving a sequence of auxiliary convex problems
which approximate the original one. Each convex
problem is solved by a numerical strategy based on a
quasi-Lagrangean formulation combined with a Newton

barboteu@univ-perp.fr
{bartosz,kalita}@ii.uj.edu.pl


264 M. Barboteu et al.

method. The approach based on the sequence of
convex problems was used to solve the contact problem
with nonmonotone softening behavior of the binding
material in the normal direction by Tzaferopoulos
et al. (1995), while the elastic contact problem with
nonmonotone friction was solved by Mistakidis and
Panagiotopulos (1997; 1998). To the best of our
knowledge, the literature concerning the numerical
solution of nonmonotone friction problems is very
limited. The bundle Newton approach was used for
unilateral problems by Baniotopoulos et al. (2005).

The paper is organized as follows. In Section 2 we
introduce some notations and preliminaries. In Section
3 we present the frictional contact problem together with
its variational formulation. Existence and uniqueness
results are also briefly presented. Section 4 is devoted
to the presentation of the Galerkin problem which is
the basis for the numerical schemes used to approximate
the solution. The theorem on the error estimate is
provided. In Section 5 we present the nonconvex PBM
for the solution of the bilateral contact problem with
nonmonotone friction. Section 6 concerns the solution
of the nonsmooth and nonconvex problem by using
a numerical strategy based on a sequence of convex
programming problems. In the last section we present
some numerical examples to compare the two preceding
numerical methods for the solution of bilateral contact
problems with a nonmonotone friction law.

2. Notation and preliminaries

In this section we present the notation we shall use along
with some preliminary material. For further details we
refer the reader to the works of Duvaut and Lions (1976),
Ionescu and Sofonea (1993), as well as Panagiotopoulos
(1985).

We denote by S
d the space of second order

symmetric tensors on R
d (d ≤ 3 in applications), while

“ · ” and | · | will represent the inner product and the
Euclidean norm on S

d and R
d, respectively, i.e.,

u · v = uivi, |v| = (v · v)
1
2 , ∀u, v ∈ R

d,

σ · ε = σijεij , |ε| = (ε · ε)
1
2 , ∀σ, ε ∈ S

d.

Here and below the indices i and j run between 1 and
d, and the summation convention over repeated indices is
adopted.

Let Ω ⊂ R
d be a bounded domain with a Lipschitz

boundary Γ, and let n denote the unit outer normal on
Γ and τ the associated tangent vector. We shall use the
notation

H = L2(Ω)d = {u = (ui) | ui ∈ L2(Ω) },

Q = {σ = (σij) | σij = σji ∈ L2(Ω) },
H1 = {u = (ui) | ε(u) ∈ Q },
Q1 = {σ ∈ Q | Div σ ∈ H }.

Here ε : H1 −→ Q and Div : Q1 −→ H are the de-
formation and divergence operators, respectively, defined
by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i),

Div σ = (σij,j),

where the index that follows a comma indicates a partial
derivative with respect to the corresponding component of
the independent variable. The spaces H , Q, H1 and Q1

are real Hilbert spaces endowed with the canonical inner
products given by

(u, v)H =
∫

Ω

uivi dx,

(σ, ε)Q =
∫

Ω

σijεij dx,

(u, v)H1 = (u, v)H + (ε(u), ε(v))Q,

(σ, ε)Q1 = (σ, ε)Q + (Div σ, Div ε)H .

The associated norms on these spaces are further denoted
by ‖ · ‖H , ‖ · ‖Q, ‖ · ‖H1 and ‖ · ‖Q1 , respectively.

Let HΓ = H1/2(Γ)d and let γ : H1 −→ HΓ be the
trace map. For every element v ∈ H1 we still write v
to denote the trace γv of v on Γ, and we denote by vn

and vτ the normal and tangential components of v on the
boundary Γ given by

vn = v · n, vτ = v − vnn. (1)

Let H∗
Γ be the dual of HΓ and let (·, ·) denote the

duality pairing between H∗
Γ and HΓ. For every σ ∈ Q1

there exists an element σn ∈ H∗
Γ such that

(σ, ε(v))Q + (Div σ, v)H = (σn, γv), ∀v ∈ H1.
(2)

Moreover, if σ is a smooth (say C1) function, then

(σn, γv) =
∫

Γ

σn · v d Γ, ∀v ∈ H1. (3)

We also denote by σn and στ the normal and tangential
traces of σ and we recall that, when σ is smooth enough,
then

σn = (σn) · n, στ = σn − σnn. (4)

Finally, we recall definitions of the generalized
derivative and gradient (see Clarke, 1983). Let X be
a reflexive Banach space and X∗ its dual. The Clarke
generalized directional derivative of a locally Lipschitz
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function h : X → R at the point x ∈ X in the direction
v ∈ X , denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x,λ↓0

h(y + λv) − h(y)
λ

.

The Clarke subdifferential of h at x denoted by ∂h(x) is
a subset of X∗ given by ∂h(x) = {ζ ∈ X∗ : h0(x; v) ≥
〈ζ, v〉X∗×X for all v ∈ X}.

3. Mechanical problem and variational
formulation

In this section we describe the model for the nonmonotone
frictional bilateral contact, present the variational
formulation well suited for the numerical treatment
used in the sequel, and finally recall an existence and
uniqueness result.

The physical setting is as follows. A linearly elastic
body occupies an open bounded connected set Ω ⊂ R

d

(d ≤ 3 in applications) with a Lipschitz boundary Γ that
is partitioned into three disjoint parts Γ1, Γ2 and Γ3 with
Γ1, Γ2 and Γ3 being relatively open, and meas (Γ1) > 0.
The body is clamped on Γ1 and thus the displacement
field vanishes there. A volume force of density f0 acts
in Ω and a surface traction of density f2 acts on Γ2.
The body is in frictional contact with an obstacle on Γ3.
We assume that there is no loss of contact during the
process, i.e., the contact is bilateral. Thus, the normal
displacement un vanishes on Γ3. We model the friction
by a nonmonotone friction law. The material is linearly
elastic and the process is assumed to be static.

In the study of the frictional contact problem we need
the following assumptions on its data:

• H(E): the elasticity operator E : Ω × S
d → S

d is
a bounded symmetric positive definite fourth order
tensor, i.e.,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) Eijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d;

(b) Eσ · τ = σ · Eτ , ∀σ, τ ∈ S
d, a.e. in Ω;

(c) Eτ · τ ≥ m|τ |2, ∀ τ ∈ S
d, a.e. in Ω

with m > 0.
(5)

• H(f): the force and the traction densities satisfy

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)d. (6)

• H(μ): the friction bound satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) μ : [0,∞) → R is measurable;

(b) μ(0) = limx→0+ μ(x) > 0;

(c) − c2 ≤ μ(t) ≤ c1(1 + t), ∀t ≥ 0,

with c1, c2 > 0;

(d) μ(t1) − μ(t2) ≥ −λ(t1 − t2), ∀t1 > t2 ≥ 0,

with λ > 0.
(7)

Remark 1. The hypothesis H(μ) (c) implies that

|μ(t)| ≤ c(1 + t), ∀t ≥ 0, with c > 0,

and

μ(t) ≥ −d(1 +
1
t
), ∀t > 0, with d > 0,

Remark 2. In a particular case, since μ corresponds to
the coefficient of friction, it is nonnegative, so the lower
bound in (c) obviously holds. The condition (d) is the
so-called one-side Lipschitz condition, which allows the
function to decrease with a rate not faster than λ.

The classical formulation of the mechanical problem
is the following.

Problem 1. (PM ) Find a displacement field u : Ω → R
d

and a stress field σ : Ω → S
d such that

Div σ + f0 = 0 in Ω, (8)

σ = Eε(u) in Ω, (9)

u = 0 on Γ1, (10)

σn = f2 on Γ2, (11)

un = 0 on Γ3, (12)

|στ | ≤ μ(|uτ |)S if uτ = 0,
−στ = μ(|uτ |)S uτ

|uτ | if uτ �= 0,

}
on Γ3.

(13)

In (13) μ(|uτ |)S represents the magnitude of the
limiting friction traction at which slip begins. Here,
S ≥ 0 is a given value. The friction bound and,
more precisely, the friction coefficient μ depend on the
tangential displacement |uτ |. The strict inequality in
(13) holds in the stick zone and the equality holds in the
slip zone. This physical model of slip-dependent friction
was introduced by Rabinowicz (1951) for the geophysical
context of earthquake modeling, and was also studied
by Ionescu and Paumier (1996), Ionescu and Nguyen
(2002), Ionescu et al. (2003), Shillor et al. (2004), as
well as Migórski and Ochal (2005). Due to the basic
properties of the Clarke subdifferential (cf. Clarke, 1983),
the right-hand side of the friction conditions (13) can
be written as a subdifferential of a locally Lipshitz,
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possibly nonconvex superpotential js which depends on
the tangential displacement uτ . In fact, if the function
js : R

d → R is defined by

js(ξ) = S

∫ |ξ|

0

μ(t) dt, (14)

then we can prove that under assumptions H(μ)(a)–(c)
the conditions (13) are equivalent to the following
subdifferential inclusion:

− στ ∈ ∂js(uτ ) on Γ3, (15)

where ∂js(ξ) denotes the Clarke subdifferential of js.
By means of basic calculations, one can easily prove the
following lemma on the properties of the function js,

Lemma 1. If the assumptions H(μ)(a)–(c) hold, then the
function js defined by (14) has the following properties:

• H(js):⎧⎪⎪⎨
⎪⎪⎩

(a) js is locally Lipschitz;

(b) |η| ≤ Sc(1 + |ξ|), ∀ξ ∈ R
d, η ∈ ∂js(ξ);

(c) j0
s (ξ;−ξ) ≤ Sd(1 + |ξ|), ∀ξ ∈ R

d.

Furthermore if the assumption H(μ)(d) holds, then we
have

(d) (η1 − η2) · (ξ1 − ξ2) ≥ −Sλ|ξ1 − ξ2|2,

∀ξ1, ξ2 ∈ R
d, ηi ∈ ∂js(ξi), i = 1, 2.

Corollary 1. If the functional js : R
d → R satisfies

H(js)(a)–(c), then

j0
s (ξ;−ξ) ≤ S(c + d)|ξ|, ∀ξ ∈ R

d. (16)

Proof. If |ξ| ≤ d/c, then we have

j0
s (ξ;−ξ) = max

v∈∂js(ξ)
v · (−ξ)

≤ max
v∈∂js(ξ)

|v||ξ|

≤ Sc(1 + |ξ|)|ξ| ≤ S(c + d)|ξ|.
If |ξ| ≥ d/c, then we have 1 ≤ c/d|ξ|, so

j0
s (ξ;−ξ) ≤ Sd(1 + |ξ|) ≤ S(c + d)|ξ|.

�
We now turn to the variational formulation for the

mechanical problem PM . To this end, we introduce the
closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1, vn = 0 on Γ3}.

Since meas (Γ1) > 0, Korn’s inequality holds, and thus
there exists CK > 0 which depends only on Ω and Γ1

such that

‖ε(v)‖Q ≥ CK‖v‖H1 ∀v ∈ V. (17)

A proof of Korn’s inequality may be found in the
work of Nečas and Hlavaček (1981, p. 79). On V , we
consider the inner product given by

(u, v)V = (ε(u), ε(v))Q, ∀u, v ∈ V. (18)

Let ‖ · ‖ be the associated norm, i.e.,

‖v‖ = ‖ε(v)‖Q, ∀v ∈ V. (19)

It follows from (17) and (19) that ‖ · ‖H1 and ‖ · ‖ are
equivalent norms on V and therefore (V, ‖ · ‖) is a real
Hilbert space. The duality pairing between V and V ∗ is
denoted by 〈·, ·〉. Moreover, by the Sobolev trace theorem
and (17) we have a constant C0 depending only on the
domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ C0‖v‖, ∀v ∈ V. (20)

Next we define the operator B : V → V ∗ and the
bilinear form a : V × V → R by

〈Bu, v〉 = a(u, v) = (Eε(u), ε(v))Q, (21)

and the functional Js : V → R by

Js(v) =
∫

Γ3

js(vτ (x)) d Γ. (22)

We also denote by f the element of V ∗ given by

〈f , v〉 =
∫

Ω

f0 · v dx +
∫

Γ2

f2 · v d Γ (23)

for all v ∈ V . From (6), it follows that the integrals in
(23) are well defined.

Proceeding in a standard way, we obtain the
following variational formulation of the frictional
Problem PM .

Problem 2. (P1
V ) Find a displacement field u ∈ V and

the friction density ξτ ∈ L2(Γ3)d such that

〈Bu − f , v〉 =
∫

Γ3

ξτ · vτ d Γ, ∀v ∈ V (24)

with

− ξτ ∈ ∂js(uτ ) a.e. on Γ3.

The above problem is called a boundary
HemiVariational Inequality (HVI). Now we define
an auxiliary problem.

Problem 3. (P2
V ) Find a displacement field u ∈ V such

that
f − Bu ∈ ∂Js(u) in V ∗. (25)
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Remark 3. Basic properties of the Clarke subdifferential
(see Clarke, 1983, Theorem 2.7.2) guarantee that each
solution to Problem P2

V also solves Problem P1
V .

Now we formulate the existence theorem for
Problem P1

V .

Theorem 1. If the assumptions H(E)(a)–(c), H(μ)(a)–
(c) and H(f) hold, then Problem P1

V has a solution.

Remark 4. Due to the growth condition H(js) (b) we
have that ξτ ∈ L2(Γ3)d. This regularity is stronger than
the typical regularity ξτ ∈ X∗

τ , where Xτ = {v|Γ3 , v ∈
V } obtained by Khenous et al. (2006a; 2006b).

Since the proof of Theorem 1 is based on the standard
technique (cf. Naniewicz and Panagiotopoulos, 1995), we
present only a short outline. First, we formulate the
following lemmas, which can be easily proved.

Lemma 2. If the assumptions H(E)(a)–(c) hold, then
the operator B ∈ L(V, V ∗) is symmetric (∀u, v ∈
V 〈Bu, v〉 = 〈Bv, u〉) and coercive ( ∀u ∈
V 〈Bu, u〉 ≥ m‖u‖2 with m > 0).

Lemma 3. If the assumptions H(μ)(a)–(c) hold, then the
functional Js defined by (22) satisfies the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) Js is well defined and locally Lipschitz;

(b) ‖η‖V ∗ ≤ C(1 + ‖u‖), ∀u ∈ V, η ∈ ∂Js(u)

with a constant C > 0;

(c) J0
s (u;−u) ≤ D(1 + ‖u‖), ∀u ∈ V

with a constant D > 0.

We now turn to the proof of Theorem 1.

Proof. Due to Remark 3 it is enough to prove the
existence of a solution to Problem P2

V . To this end, we
formulate it in the equivalent way: Find v ∈ V such that

Tu  f, (26)

where T : V → 2V ∗
is a multivalued operator defined by

T (·) = B + ∂Js(·). (27)

We need to verify that the operator T is coercive
and pseudomonotone and exploit the surjectivity
result of Brezis (see, e.g., Denkowski et al., 2003,
Theorem 1.3.70). The coercivity of T follows from
the condition (c) of Lemma 3 and the coercivity of B.
We observe that ∂Js is generalized pseudomonotone
(see Clarke, 1983, Proposition 2.1.5(b); Denkowski et
al., 2003, Definition 1.3.63). Furthermore, ∂Js has
nonempty, convex and closed values (see Clarke, 1983,
Proposition 2.1.2(a)) and, by the condition (b) in Lemma
3, it is bounded. By Theorem 1.3.66 of Denkowski et al.
(2003), ∂Js is pseudomonotone. Linearity, continuity and
coercivity of B imply its pseudomonotonicity. Thus T is
pseudomonotone, which completes the proof. �

Now we pass to the uniqueness result for
Problem P1

V .

Theorem 2. If the assumptions H(E)(a)–(c), H(μ)(a)–
(d), H(f) hold and

m > SλC2
0 , (28)

then the solution to Problem P1
V is unique and Problems

P1
V and P2

V are equivalent.

Proof. Let (u1, ξ1
τ ), (u2, ξ2

τ ) solve Problem P1
V .

We consider Eqn. (24) for both solutions separately.
Subtracting the equations from each other we get

〈B(u1−u2), v〉 =
∫

Γ3

(ξ1
τ−ξ2

τ )·vτ d Γ, ∀v ∈ V. (29)

Let us take v = u1 − u2 in (29). By the condition
H(E)(c), Lemma 2 and Lemma 1(d) as well as (20), we
obtain

m‖u1 − u2‖2 ≤ SλC2
0‖u1 − u2‖2, (30)

which implies that ‖u1 − u2‖ = 0 if (28) holds. From
(29) it follows that

∫
Γ3

(ξ1
τ − ξ2

τ ) · vτ d Γ = 0. The

equality ξ1
τ = ξ2

τ comes from the density of the traces
of the elements of V in the space Xτ . �

Let now u ∈ V be the solution to ProblemP1
V and let

σ be the stress field given by (9). By a standard procedure,
it can be shown that

Div σ + f0 = 0 a.e. in Ω. (31)

Thus, σ ∈ Q1. A pair of functions (u, σ) which satisfies
(24) and (9) is called a weak solution of the bilateral
contact problem with nonmonotone friction law (9)–(13).
Thus Problem PM has a unique weak solution. Note that
under the assumption

σn ∈ L2(Γ)d (32)

it can be further shown that

σn = f2 a.e. on Γ2 (33a)

and

−στ ∈ ∂js(uτ ) a.e. on Γ3. (33b)

4. Galerkin approximation and the error
estimate

In this section we present the numerical scheme for
Problem P1

V based on the Galerkin method as well as the
estimates for the error of this scheme.

Let V h be a finite dimensional linear subspace of
V equipped with the norm of V , where h > 0 denotes
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the spatial discretization parameter. In the numerical
simulations presented in the next sections, V h consists of
continuous and piecewise affine functions, that is,

V h = {vh ∈ [C(Ω)]d : ∀Tr ∈ T h vh
|T r

∈ [P1(Tr)]d,

vh = 0 on Γ1, vh
n = 0 on Γ3},

where Ω is assumed to be a polygonal domain, T h denotes
a finite element triangulation of Ω, and P1(Tr) represents
the space of polynomials of global degree less or equal to
one in Tr. The discrete approximation of Problem P1

V

takes the following form

Problem 4. (Ph
V ) Find a displacement field uh ∈ V h and

the friction density ξh
τ ∈ L2(Γ3)d such that

〈Buh − f , vh〉 =
∫

Γ3

ξh
τ · vh

τ d Γ, ∀vh ∈ V h (34)

with

− ξh
τ ∈ ∂js(uh

τ ) a.e. on Γ3.

The existence and uniqueness of solutions to this
problem can be proved analogously to those for Problem
P1

V . We now formulate a result which estimates the error
between the solutions to Problems P1

V and Ph
V .

Theorem 3. Let u ∈ V and uh ∈ V h solve Problems
P1

V and Ph
V , respectively. If the assumptions H(E)(a)–

(c), H(μ)(a)–(d), H(f) and (28) hold, then there exists a
constant C1 > 0, depending only on the given data, such
that

‖u − uh‖ ≤ C1

√
r, (35)

where r = infvh∈V h ‖u − vh‖.

Proof. Let u ∈ V and uh ∈ V h solve P1
V and Ph

V ,
respectively. Let us take ξτ and ξh

τ for which the pairs
(u, ξτ ) and (uh, ξh

τ ) satisfy the relations (24) and (34),
respectively. First we estimate the norm of the solution
u. To this end, we take v = u in (24) and by Lemma
2, the definition of the Clarke subdifferential, Corollary 1
and the Hölder inequality we obtain

m‖u‖2 ≤ 〈Bu, u〉 = 〈f, u〉 +
∫

Γ3

−ξτ · (−uτ ) d Γ

≤ ‖f‖V ∗‖u‖ + S(c + d)
∫

Γ3

|uτ | d Γ

≤ ‖u‖
(
‖f‖V ∗ + S(c + d)C0

√
meas(Γ3)

)
,

(36)

where meas(Γ3) denotes the Lebesgue measure of the set
Γ3. From (36) we get

‖u‖ ≤ α :=
‖f‖V ∗ + S(c + d)C0

√
meas(Γ3)

m
. (37)

Now we estimate the norm of ξτ by means of ‖u‖.
Integrating the inequality H(js)(b) over Γ3 we obtain by
simple calculations

‖ξτ‖L2(Γ3)d

≤ Sc
√

2meas(Γ3) +
√

2ScC0‖u‖ := β + δ‖u‖. (38)

We can obtain an analogous estimate for uh and ξh
τ :

‖uh‖ ≤ α, ‖ξh
τ‖L2(Γ3)d ≤ β + δ‖uh‖. (39)

Since V h ⊂ V , we observe that for each vh ∈ V h both
(24) and (34) hold. We obtain

〈B(u − uh), vh〉 −
∫

Γ3

(ξτ (x)

− ξh
τ (x)) · vh

τ (x) d Γ = 0, ∀vh ∈ V h. (40)

By Lemma 2 we have

m‖u − uh‖2 ≤ 〈B(u − uh), u − uh〉, (41)

and by the condition H(js)(d) and (20), after integration
over Γ3 we get

−SλC2
0‖u − uh‖2 (42)

≤ −
∫

Γ3

(ξτ (x) − ξh
τ (x)) · (uτ (x) − uh

τ (x)) d Γ.

From (41) and (42) we obtain for all vh ∈ V h

(m − SλC2
0 )‖u − uh‖2 (43)

≤ 〈B(u − uh), u − uh〉

−
∫

Γ3

(ξτ (x) − ξh
τ (x)) · (uτ (x) − uh

τ (x)) d Γ

= 〈B(u − uh), u − vh〉

−
∫

Γ3

(ξτ (x) − ξh
τ (x)) · (uτ (x) − vh

τ (x)) d Γ

≤ ‖B‖L(V,V ∗)(‖u‖ + ‖uh‖)‖u − vh‖
+(‖ξτ‖L2(Γ3)d + ‖ξh

τ‖L2(Γ3)d)C0‖u − vh‖.

The equality in (43) is a consequence of the
application of (40) with vh = uh. Combining (37)–(39)
and (43), we obtain for all vh ∈ V h

(m − SλC2
0 )‖u − uh‖2 (44)

≤ ‖B‖L(V,V ∗)2α‖u − vh‖ + κ‖u − vh‖,

where the constant κ > 0 depends only on the data of
the problem. Rearranging the last inequality and using the
fact that vh ∈ V h is arbitrary, we conclude the proof. �

Remark 5. Theorem 3 means that the
error of the Galerkin method has the order
O(

√
infvh∈V h ‖u − vh‖).
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Remark 6. In the above case an estimation of the error
between ξ and ξh is an open problem. To obtain such
estimates, a discrete Babuska–Brezzi inf-sup condition is
used. Such a condition requires the discretization of the
contact boundary stress (cf. Hild and Renard, 2007).

5. Nonconvex proximal bundle method

In this section we use a numerical strategy of nonconvex
and nonsmooth optimization known as the proximal
bundle method to solve the Galerkin problem Ph

V . To
that end, we first need to reformulate it as a minimization
problem in R

n.
Let us consider a basis B = {vh

1 , . . . , vh
N} ⊂ V h

of the space V h, where N = dim V h, and define the
function h : R

N → R by

h(α) =
∫

Γ3

js

⎛
⎝ N∑

j=1

αjv
h
j (x)

⎞
⎠ d Γ, ∀α ∈ R

N . (45)

We observe (cf. Clarke, 1983, Theorems 2.3.10 and 2.7.2)
that if η ∈ ∂h(α) then there exists ξh

τ ∈ L2(Γ3)d such

that −ξh
τ (x) ∈ ∂js

(∑N
j=1 αjv

h
j (x)

)
a.e. on Γ3 and

〈η, ζ〉RN×RN

=
∫

Γ3

−ξh
τ (x) ·

⎛
⎝ N∑

j=1

ζjv
h
j (x)

⎞
⎠ d Γ, ∀ζ ∈ R

N .

(46)

From this observation we conclude that Problem Ph
V can

be replaced by the following.

Problem 5. (Ph
RN ) Find α ∈ R

N such that

F − αTB ∈ ∂h(α), (47)

where

F = [Fi]Ni=1, Fi = 〈f, vh
i 〉,

B = [Bij ]Nij=1, Bij = 〈Bvh
i , vh

j 〉.

In fact, if ᾱ ∈ R
N satisfies (47), then ū =

∑N
j=1 ᾱjv

h
j

solves Problem Ph
V . By Proposition 2.3.3 of Clarke

(1983), the inclusion (47) is equivalent to the following:

0 ∈ ∂H(α),
where

H(α) =
1
2
αTBα −FT α + h(α). (48)

In the sequel we will use the fact that if α ∈ R
N is a

local minimizer (or maximizer) of the functional H then
it satisfies (48) (cf. Clarke, 1983, Proposition 2.3.2).

Remark 7. If the assumptions H(E)(a)–(c), H(f),
H(μ)(a)–(d) as well as (28) hold, then the functional H
is convex and convex programming algorithms can be
used for its minimization. If we omit H(μ)(d) and (28),
then the solution is not necessarily unique and there is
no error estimate provided by Theorem 3, only the strong
convergence of a subsequence of Galerkin solutions to the
exact solution can be proved (see Haslinger et al., 1999,
Theorem 3.4). The nonconvex PBM, however, remains
still valid in such a case.

Now we formulate the lemma on the existence of a
global minimizer of H .

Lemma 4. Under the assumptions H(E)(a)–(c), H(f)
and H(μ)(a)–(c), the functional H defined in (48) attains
a global minimum.

Proof. It is enough to verify that the functional H
is proper, lower semicontinuous and coercive. The fact
that H is proper is obvious and the lower semi-continuity
follows from the fact that h is locally Lipschitz. For
coercivity we need to estimate H(α) from below. Let α ∈
R

N and v =
∑N

i=1 αiv
h
i . Then by means of Lemma 2

and the Lebourg mean-value Theorem (see Clarke, 1983,
Theorem 2.3.7) we obtain

H(α) =
1
2
〈Bv, v〉 − 〈f , v〉 +

∫
Γ3

js(vτ (x)) − js(0) d Γ

+
∫

Γ3

js(0) d Γ (49)

≥ 1
2
m‖v‖2 − ‖f‖V ∗‖v‖

−
∫

Γ3

η(x) · (−vτ (x))d Γ + js(0)meas(Γ3),

where η(x) ∈ ∂js(θ(x)v(x)) a.e. on Γ3 with θ(x) ∈
(0, 1). Furthermore, using the conditions H(j)(b)–(c),
Corollary 1 and the Cauchy formula with ε, we get

∫
Γ3

η(x) · (−vτ (x)) d Γ (50)

=
∫

Γ3

1
θ(x)

η(x) · (−θ(x)vτ (x)) d Γ

≤
∫

Γ3

1
θ(x)

j0
s (θ(x)vτ (x);

− θ(x)vτ (x)) d Γ

≤
∫

Γ3

S(c + d)|vτ (x)| d Γ

≤ S2(c + d)2m(Γ3)
2ε

− ε

2
C2

0‖v‖2, ∀ε > 0.

Using (49), (50) with ε < m/C2
0 and the fact that the

expression ρ(α) = ‖
∑N

i=1 αiv
h
i ‖ is a well defined norm

on R
N , we conclude that H is coercive. �
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Now we turn to the formulation of the proximal
bundle algorithm for nonconvex optimization used to
minimize the function H . Its scheme is given as
Algorithm 1. We refer to the works of Mäkelä (1990;
2001), Mäkelä et al. (1999) as well as Haslinger et al.
(1999) and the references therein for details.

Algorithm 1. Proximal bundle algorithm.

Let ε > 0 and x1 = y1 ∈ R
N be given.

Let g1 ∈ ∂H(y1), k = 1, v1 = −∞.
While vk < −ε, do

Step 1. DIRECTION FINDING.
Find direction and descent ratio vk .
Step 2. LINE SEARCH.
Find xk+1 and yk+1.
Step 3. Take gk+1 ∈ ∂H(yk+1), k = k + 1.

End do

The algorithm constructs sequences (xk) and (yk).
The starting point x1 is obtained as a solution to a
frictionless problem, although it can be chosen arbitrarily.
The sequence (xk) is supposed to converge to a local
minimum of H , while the auxiliary sequence (yk) is used
to construct the function Ĥk, being a piecewise linear
approximation of H . The search direction dk is obtained
as a solution to the problem

minimize Ĥk(xk + d) +
1
2
ukdT d, over d ∈ R

N ,

(51)
where the function Ĥk is defined as in the formulas (4),
(5), (7), (8) by Mäkelä et al. (1999) and uk is an arbitrarily
chosen weight. The problem (51) is a smooth quadratic
programming problem with linear inequality constraints,
which can be solved by standard quadratic optimization
techniques. The value vk is the predicted amount of
descent given by

vk = Ĥk(xk + dk) − H(xk).

The point xk+1 is obtained in the line search
procedure as xk + tkLdk, where tkL ∈ [0, 1] is the largest
number such that H(xk+1) ≤ H(xk) + mLtkLvk with
mL ∈ (0, 1/2) being an arbitrary parameter. Depending
on the fact whether tkL is greater or less than the arbitrary
parameter t̄ ∈ (0, 1], either yk+1 = xk+1 (the so-called
long step) or yk+1 = xk + tkRdk with tkR > tkL is given
according to the formula (12) by Mäkelä et al. (1999)
(the so-called short step). The idea of the short step is
that, since we are in the vicinity of the nonsmoothness
of H , its value is not decreasing significantly in the
descent direction dk. Then we enrich the piecewise linear
approximation by taking yk+1 on the other side of the
nonsmoothness.

The Schur complement method is used for the
compression of unknowns (see Haslinger et al., 1999,

Chapter 6.1), while for the solution of the problem (51) we
use the LIBQP library (see Franc, 2011). For calculation
of values of h(α) and an element of ∂h(α), the trapezoidal
quadrature rule was used.

6. Solution based on a sequence of convex
programming problems

The numerical strategy presented in this section is
based on a sequence of convex programming problems;
more details can be found in the works of Mistakidis
and Panagiotopulos (1997; 1998). This approach is
implemented by using an iterative procedure in which
for each iteration the friction coefficient μ is fixed to a
given function depending on the tangential displacement
solution uτ found in the previous iteration. Then, the
nonsmooth convex problems arising during the iterative
process can be solved by classical numerical methods.
In the following, we consider the discrete space Y h

τ ⊂
L2(Γ3)d related to the discretization of the friction density
στ . We also consider the boundary interpolation operator
Πh : Vh → Y h

τ (see the works of Khenous et al. (2006a;
2006b) for more details about the discretization spaces).
The numerical solution of the nonsmooth nonconvex
variational problem Ph

V is based on the iterative scheme
given as Algorithm 2.

Algorithm 2. Numerical solution of Problem Ph
V .

Let ε > 0 and u(0) be given.
Then for k = 0, 1 . . . ,
Problem Ph

VC
. Find a displacement field uh,(k+1) ∈ V h

and a friction stress field σ
h,(k+1)
τ ∈ Y h

τ such that

〈Buh,(k+1) − f , vh〉

=
∫

Γ3

σh,(k+1)
τ · vh

τ d Γ, ∀vh ∈ V h

(52)

with

−σh,(k+1)
τ ∈ μ(|Πhuh,(k)

τ |)S∂|Πhuh,(k+1)
τ | on Γ3

(53)

until ‖uh,(k+1) − uh,(k)‖ ≤ ε‖uh,(k)‖
and ‖σh,(k+1)

τ − σ
h,(k)
τ ‖L2(Γ3)d ≤ ε‖σh,(k)

τ ‖L2(Γ3)d

Here, k represents the index of the iterative procedure
and (53) is derived from (15) using (14). This numerical
strategy leads to the solution of a nonsmooth convex
problemPh

VC
at each iteration k. See Fig. 1 for a graphical

representation of the iterative algorithm at a contact node.

In the rest of the section, to simplify the readability,
we skip the dependence on the iteration index k. In
Problem Ph

VC
the discrete stress σh

τ on the contact
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στ

τuτu τu τu τu

k=0

k=1

k=2
k=3

(1) (2) (3) (4)

Fig. 1. Graphical description of the iterative algorithm at a con-
tact node.

boundary Γ3 can be viewed as a Lagrange stress
multiplier.

The unique solvability of Problem Ph
VC

follows from
arguments of variational inequalities and a fixed point
theorem, similar to those used by Barboteu et al. (2002) as
well as Han and Sofonea (2002). Moreover, the numerical
analysis of this problem (including error estimates and
convergence results) can be provided by extending the
arguments already used by Barboteu et al. (2002) as well
as Han and Sofonea (2002). Nevertheless, to keep this
paper at a reasonable length, we skip this analysis and we
pass in what follows to a brief description of the numerical
algorithm used to solve Problem Ph

VC
.

For the numerical treatment of the nonsmooth
convex Problem Ph

VC
we use the augmented Lagrangean

approach. To this end we consider additional fictitious
nodes for the Lagrange multiplier in the initial mesh.
The construction of these nodes depends on the contact
element used for the geometrical discretization of the
interface Γ3. In the case of the numerical example
presented in Section 7, the discretization is based on the
“node-to-rigid” contact element, which is composed by
one node of Γ3 and one Lagrange multiplier node. This
contact interface discretization is characterized by a finite
dimensional subspace Hh

Γ3
⊂ Y h

τ . Let Ntot be the total
number of nodes and denote by αi the basis functions of
the spaces V h for i = 1, . . . , Ntot. Moreover, let NΓ3

represent the number of nodes on the interface Γ3 and let
μi be the shape functions of the finite element space Hh

Γ3
,

for i = 1, . . . , NΓ3 ; thus,

Hh
Γ3

= {γh ∈ Y h
τ : γh =

NΓ3∑
i=1

γiμi}.

Usually, if a P1 finite element method is used for
the displacement, then a P0 finite element method is
considered for the multipliers (see Khenous et al., 2006a;
2006b). Then, the expression of functions vh ∈ V h and

γh ∈ Hh
Γ3

is given by

vh =
Ntot∑
i=1

wiαi, ∀vh ∈ V h,

γh =
NΓ3∑
i=1

γiμi, ∀γh ∈ Hh
Γ3

,

where vi represent the values of the corresponding
functions vh at the i-th node of T h. Also, γi denotes
the values of the function γh at the i-th node of the
contact element discretization of the contact interface.
More details about this discretization step can be found
in the works of Alart and Curnier (1991), Khenous et al.
(2006b), as well as Wriggers (2002).

The augmented Lagrangean approach we use shows
that Problem Ph

Vc
can be governed by a system of

nonlinear equations of the following form.

Problem 6. (PL) Find a displacement field u ∈ R
d·Ntot ,

a stress multiplier field λ ∈ R
d·NΓ3 such that

R(u, λ) = G̃(u) + F(u, λ) = 0, (54)

where G̃ and F are defined below.

A brief description of the notation used in this
problem is the following.

First, the vectors, u and λ represent the displacement
and the generalized Lagrange multiplier, respectively.
They are defined by

u = {ui}Ntot

i=1 , λ = {λi}NΓ3
i=1 , (55)

where ui represents the value of the corresponding
function uh at the i-th node of T h. Also, λi denotes the
value of the corresponding function λh at the i-th node of
the contact element of the discretized contact interface.

In addition, the generalized elastic term G̃(u) ∈
R

d·Ntot × R
d·NΓ3 is defined by G̃(u) = (G(u),0d·NΓ3

).
Here 0d·NΓ3

is the zero element of R
d·NΓ3 ; also, G(u) ∈

R
d·Ntot denotes the elastic term, respectively, given by

(G(u)·(v))Rd×Ntot = 〈Buh−f , vh〉, ∀uh, vh ∈ V h.

Above, u and v represent the generalized vectors of
coordinates ui and vi for i = 1, . . . , Ntot, respectively,
and note that the volume and surface efforts are contained
in the term G(u).

The contact operator F(u, λ), which allows dealing
with the friction law, is given by

(F(u, λ) · (v, γ))
Rd·Ntot×R

d·NΓ3

=
∫

Γ3

∇ulrτ (uh, λh) · vh d Γ

+
∫

Γ3

∇λlrτ (uh, λh) · γh d Γ,

∀u, v ∈ R
d·Ntot , ∀λ, γ ∈ R

d·NΓ3 ,

∀uh, vh ∈ V h, ∀λh, γh ∈ Hh
Γ3

.
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Here the Lagrangean multiplier λ and its virtual variable
γ represent the friction forces. Moreover, lrτ denotes the
augmented Lagrangean functional given by

lrτ (uh, λh) = uh
τ · λh +

r

2
|uh

τ |2

− 1
2r

(distC[−μS]

{
λh + ruh

τ

}
)2, (56)

where r is a positive penalty coefficient and the Coulomb
convex set C[−μS] denotes the convex disk of radius
−μS. For more details about the “quasi”-Lagrangean
method, we refer the reader to the works of Alart and
Curnier (1991) as well as Wriggers (2002).

The solution of the nonlinear system (54) is based
on a linear iterative technique similar to that used in the
Newton method. The latter permits to treat both variables
(u, λ) simultaneously. Then, we consider the pair ũ =
(u, λ) and the iterative scheme can be summarized as
Algorithm 3.

Algorithm 3. Linear scheme based on the Newton
algorithm.
Let ε > 0 and ũ0 be given.
For i = 0, . . . compute

ũi+1 = (Ki + Ti)
−1 ·R(ũi) (57)

until ‖ũi+1 − ũi‖
R

d·Ntot+d·NΓ3
≤ ε‖ũi‖

R
d·Ntot+d·NΓ3

and ‖R(ũi+1) − R(ũi)‖
R

d·Ntot+d·NΓ3

≤ ε‖R(ũi)‖
R

d·Ntot+d·NΓ3

Here i represents the Newton iteration index, Ki =
DũG(u) denotes the usual elastic stiffness matrix and
Ti ∈ ∂ũF(ũi) is the frictional tangent matrix. DũG
represents the differential of the functions G with respect
to the variable ũ. ∂ũF(ũi) represents the generalized
Jacobian of F at ũi. Usually ũi is in a region of linearity
since the point set of nondifferentiability of the functionF
has null measure. Then Ti is reduced to a single classical
Jacobian matrix. Each region of differentiability of the
operator F corresponds to a friction state of each contact
node of the discretization.

It is easy to see that (57) is equivalent to an algebraic
linear system which can be solved by a conjugate
gradient method with efficient preconditioners, used here
to overcome the poor conditioning of the matrix due to
the contact terms, see for instance, Alart et al. (1997).
Details on computational contact mechanics, including
algorithms similar to that described above, can be found in
the monographs of Laursen (2002) and Wriggers (2002).
Finally, recall that a similar numerical approach, in the
study of contact problems with piezoelectric materials, is
presented by Barboteu and Sofonea (2009). Details on

these the classical algorithms can be found in the work of
Alart and Curnier (1991), as well as Wriggers (2002).

7. Numerical examples

The main purpose of this section is to validate the
numerical solution based on the PBM presented in
Section 5 in comparison with the more standard method
presented in Section 6. In order to do that, we consider
an academic two-dimensional example of Problem PM

whose physical setting is depicted in Fig. 2.

Fig. 2. Initial configuration of the two-dimensional example.

Let Ω = (0, L1) × (0, L2) ⊂ R
d, L1, L2 > 0

be a rectangle with boundary Γ. We divide Γ into three
regions:

Γ3 = [0, L1] × {0},
Γ1 = {0} × [0, L2],
Γ2 = Γ \ (Γ1 ∪ Γ3).

There, we consider the domain Ω as the cross section
of a three-dimensional linearly elastic body subjected to
the action of tractions in such a way that a plane stress
hypothesis is assumed. On the part Γ1 = {0} × [0, L2]
the body is clamped and therefore the displacement field
vanishes there. Vertical tractions act on the part [0, L1] ×
{L2} of the boundary, and the part {L1} × [0, L2] is
traction free. Thus, Γ2 = ({L1} × [0, L2]) ∪ ([0, L1] ×
{L2}). No body forces are assumed to act on the
elastic body during the process. The body is in bilateral
frictional contact with a rigid obstacle on the part Γ3 =
[0, L1] × {0} of the boundary. The friction is modeled
by a nonmonotone law in which the friction coefficient
μ depends on the tangential displacement |uτ |. Let us
consider the following friction bound function μ : R

d →
R:

μ(|uτ |) = (a − b) · e−α|uτ | + b, (58)

with a, b, α > 0, a ≥ b. See Fig. 3 for a representation of
the friction bound function μ with the values a = 0.004,
b = 0.002 and α = 100 used in the simulations.
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Fig. 3. Graph of the friction bound function µ.

The elasticity tensor E satisfies

(Eτ )αβ =
Eκ

1 − κ2
(τ11 + τ22)δαβ +

E

1 + κ
ταβ , (59)

with 1 ≤ α, β ≤ 2. E is the Young modulus, κ
the Poisson ratio of the material and δαβ denotes the
Kronecker symbol.

Fig. 4. Deformed mesh and contact interface forces on Γ3.

For computation we used the following data:

L1 = 2 m, L2 = 1 m, E = 1 N/ m2, κ = 0.3,

f0 = (0, 0)N/ m2,

f2 =
{

(0, 0) N/ m on {2} × [0, 1],
(0,−0.3) N/ m on [0, 2] × {1},

a = 0.004, b = 0.002, α = 100, S = 1 N,

stopping criterion: ε = 10−6.

We used a structural mesh of triangles generated by taking
the equidistant lines parallel to both axes and taking two
diagonals in each of the obtained rectangles. In Fig. 4
the deformed configuration as well as the contact interface
forces on Γ3 are plotted.

Now, for both numerical approaches presented
in Sections 5 and 6, the tangential stresses and the
tangential displacements on Γ3 are plotted respectively
in Fig. 5–8. In each of these figures, we plotted three
curves corresponding to different values of the coefficients

a and b. The case a = 0.004 and b = 0.002 reflects the
non-monotonicity of the friction law while the cases a =
b = 0.004 and a = b = 0.002 correspond to the classical
monotone Coulomb law of dry friction. According to
Figs. 5–8, we can see that the results obtained by the two
numerical approaches are very similar with respect to the
tangential stresses and the tangential displacements on the
contact boundary Γ3.
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Fig. 5. Tangential stresses on Γ3 for the PBM presented in Sec-
tion 5.
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Fig. 6. Tangential stresses on Γ3 for the algorithm presented in
Section 6.

In Fig. 9, we plotted the tangential stresses with
respect to tangential displacements at the node of
coordinates (2.0,0.0) on Γ3 during the iterations of the
algorithm presented in Section 6. According to Fig. 9,
we can find a nonmonotone behavior of the friction law
characterized by the coefficients a = 0.004 and b =
0.002. For a = b = 0.004 and a = b = 0.002, we
recover a monotone friction behavior.

The details of the computations are the following.
The problem is discretized in 2048 elastic finite elements
and 32 contact elements. The total number of degrees of
freedom is equal to 2210. For the algorithm presented
in Section 6, the simulation needs 17 “convex” iterations
to solve the nonconvex problems. The total number of
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Fig. 7. Tangential displacements on Γ3 for the PBM presented
in Section 5.
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Fig. 8. Tangential displacements on Γ3 for the algorithm pre-
sented in Section 6.
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Fig. 9. Tangential stresses vs. tangential displacements at the
node of coordinates (2.0,0.0) on Γ3 during the iterations
of the algorithm presented in Section 6.

Newton iterations for the solution of the nonsmooth and
nonconvex problem is equal to 42, whereas the number of
iterations is equal to 8 for a nonsmooth convex problem
characterized by a = b = 0.004 or a = b = 0.002. For
the algorithm presented in Section 5, 541 iterations of the
PBM loop were run for the case a = b = 0.002, 598

iterations for the case a = b = 0.004 and 433 iterations
for the case a = 0.004, b = 0.002. The parameters of
the PBM used in computations (see Mäkelä et al., 1999)
are the following: γ = 0.7, t̄ = 0.2, mL = 0.2,
mR = 0.6, uk = 0.01. The trapezoidal formula for the
numeric quadrature of the functional h defined by (45)
was used, where each boundary edge was divided into
5000 equidistant intervals. For the bisection in the PBM,
400 steps were used.

We can note that the number of the PBM iterations is
almost constant for both convex and nonconvex problems.
This is in contrast to the algorithm presented in Section 6,
where the number of iterations strongly depends on the
convexity of the problem. We also underline that for
convex subproblems solved by means of the augmented
Lagrangian method the friction condition is considered
a constraint, and in consequence it is fixed in each step
of the method. In contrast, the PBM does not force the
friction condition to be satisfied in each iteration step since
the friction term is a part of the objective functional. We
do not make comparisons in terms of CPU time because
the algorithmic steps of the two methods are very different
and for some of these steps the performance can be
optimized. However, we note that the method presented
in Section 5 is faster than the PBM since the conditions of
friction are exactly satisfied in each step of iteration.

As prospects, we plan to refine the comparison of
these methods by considering, for instance, less academic
numerical examples and problems with other tangential
and normal contact laws.
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