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Medical imaging tasks, such as segmentation, 3D modeling, and registration of medical images, involve complex geometric
problems, usually solved by standard linear algebra and matrix calculations. In the last few decades, conformal geometric
algebra (CGA) has emerged as a new approach to geometric computing that offers a simple and efficient representation of
geometric objects and transformations. However, the practical use of CGA-based methods for big data image processing
in medical imaging requires fast and efficient implementations of CGA operations to meet both real-time processing con-
straints and accuracy requirements. The purpose of this study is to present a novel implementation of CGA-based medical
imaging techniques that makes them effective and practically usable. The paper exploits a new simplified formulation of
CGA operators that allows significantly reduced execution times while maintaining the needed result precision. We have
exploited this novel CGA formulation to re-design a suite of medical imaging automatic methods, including image seg-
mentation, 3D reconstruction and registration. Experimental tests show that the re-formulated CGA-based methods lead
to both higher precision results and reduced computation times, which makes them suitable for big data image processing
applications. The segmentation algorithm provides the Dice index, sensitivity and specificity values of 98.14%, 98.05%
and 97.73%, respectively, while the order of magnitude of the errors measured for the registration methods is 10−5.

Keywords: medical image segmentation, medical image registration, computational geometry, Clifford algebra, conformal
geometric algebra.

1. Introduction

Modern medical imaging techniques involve massive
volumes of medical data and require innovative
solutions to efficiently handle big data image processing
(Stefanowski et al., 2017). Geometry plays an important
role in several aspects of medical imaging. Efficient
geometric tools are required to solve different problems
arising in medical image analysis and processing,
such as image segmentation, shape approximation, 3D
rendering, and registration of medical data (Fabijańska
et al., 2014; Hrebień et al., 2008). To address these tasks,
classical methods use standard geometric techniques
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based on linear algebra and matrix operations. A novel
approach to geometric modeling is provided by conformal
geometric algebra (CGA), namely, five-dimensional
(5D) geometric algebra (GA) or Clifford algebra
(CA) (Clifford, 1882), which is attracting a growing
attention in many research fields, such as computer
graphics, computer vision, and image processing
(Hestenes, 1986; Hestenes and Sobczyk, 1987; Dorst
et al., 2007). CGA is a 5D representation of the 3D space
that allows for simple and intuitive modeling of complex
geometric constructions. Using the mathematical
framework of CGA, geometric objects such as spheres,
circles, lines, and planes, become simply elements
of algebra and can be easily transformed by algebra
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operators. Geometric transformations, such as rotations,
translations, and dilations, can all be obtained by simple
universal operations in the 5D space.

1.1. Related works. Several applications of GA have
been proposed in the last few years. Software and
integrated software/hardware tools have been developed
to efficiently implement GA objects and operators
(Fontijne, 2006; Ashdown, 2018; Hitzer and Sangwine,
2018; Hildenbrand, 2018). Different dedicated hardware
architectures have been also designed to natively support
GA operations (Mishra et al., 2015; Gentile et al., 2005;
Franchini et al., 2008; 2011; 2012; 2013; 2015). GA has
been successfully applied in different research fields, such
as computer vision (Sommer, 2001; Lasenby et al., 1998)
and image processing (Batard et al., 2010; Ebling and
Scheuermann, 2005; Menneson et al., 2011).

Recent studies have proposed the use of geometric
methods based on CGA to solve different medical
imaging tasks, including image segmentation, 3D surface
modeling, and volume registration (Rivera-Rovelo and
Bayro-Corrochano, 2006; 2007; Bayro-Corrochano and
Rivera-Rovelo, 2009). A fully automatic segmentation
method that exploits the generalized gradient vector flow
(GGVF) and a self-organizing neural network with CGA
translators as weights is used by Rivera-Rovelo and
Bayro-Corrochano (2006; 2007) to extract the shape of
objects of interest within medical images. The proposed
algorithm has been validated by experiments on computer
tomography (CT) and magnetic resonance (MR) medical
images.

A CGA-based 3D rendering method, which allows
reconstructing a 3D shape of anatomical areas of interest
(organs, tumors, etc.) starting from a sequence of 2D
images and their boundary points, has been presented
by Bayro-Corrochano and Rivera-Rovelo (2009). While
traditional rendering techniques provide 3D models
composed of a collection of polygons, such as triangles,
this rendering method, named Marching Spheres,
integrates the ideas of the Marching Cubes (Newman and
Yi, 2006) and Union of Spheres (Ranjan and Fournier,
1995) algorithms to obtain a 3D model composed of
CGA spheres. The Marching Spheres technique uses a
reduced number of primitives allowing for a reduction
in the computational complexity with respect to the
state-of-the-art methods. A CGA-based registration
technique that allows for aligning two misaligned 3D
models derived from two misaligned 2D medical image
sequences is also presented by Bayro-Corrochano and
Rivera-Rovelo (2009). The authors have adapted the
thin-plate spline robust point matching (TPS-RPM)
registration algorithm, usually used to align two models,
each composed of a cloud of 2D/3D points, to align two
3D models based on CGA spheres. However, the paper
does not provide performance comparison with traditional

methods.

1.2. Our contribution. The above cited works
introduce some ideas on the use of CGA in the medical
imaging area and present some preliminary results.
However, the practical use of the CGA-based techniques
is hindered by the high dimensionality and the consequent
relevant computational complexity of CGA operations so
that fast and efficient implementations are needed to meet
real-time processing constraints as well as accuracy and
robustness requirements in medical imaging applications.

This paper proposes a novel simplified formulation
of CGA operations, properly conceived to reduce the
computational complexity of the 5D operators. This
new formulation has been exploited to re-design the suite
of CGA-based medical imaging algorithms introduced
by Rivera-Rovelo and Bayro-Corrochano (2007) and
Bayro-Corrochano and Rivera-Rovelo (2009). Our work
proposes a medical image processing chain based on
the re-formulated CGA algorithms, which includes three
successive stages: segmentation of the 2D image sequence
(CT or MR), 3D model extraction, and registration of two
misaligned 3D models. The re-formulated CGA operators
are used in each step to perform geometric calculations
(rotations, translations, dilations) required to process
medical images. This work also presents a reformulation
of the iterative closest point (ICP) registration algorithm
(Besl and McKay, 1992) in the CGA framework.
An application programming interface (API), named
ConformalAPI, has been designed and implemented to
interface the CGA-based medical algorithms with the
new fast CGA operators. Experimental results show
that the new implementation of the CGA-based medical
imaging algorithms leads to higher accuracy and shorter
computation times compared with both the standard
CGA techniques and traditional medical image processing
methods, making CGA methods usable in real-time
medical imaging applications. A detailed comparison
between the proposed methods and the state-of-the-art
approaches is reported in Table 1. We can observe that the
new algebraic approach proposed in this paper improves
the accuracy, speed, and robustness of the medical image
processing algorithms and makes the proposed methods
practically usable for big data image processing and
analysis.

The rest of the paper is organized as follows:
Section 2 presents CGA basic concepts, while the
novel formulation of CGA operators used to improve
the performance of the CGA-based medical imaging
algorithms is presented in Section 3. The medical imaging
techniques based on re-formulated CGA are described
in Section 4, while Section 5 outlines experimental
results and presents the performance comparison with the
standard methods. Finally, Section 6 contains discussion
and conclusions.
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Table 1. Comparison between the proposed methods and the state-of-the-art methods.
State-of-the-art methods Proposed methods

Rivera-Rovelo and Bayro-Corrochano and
Bayro-Corrochano (2006; 2007) Rivera-Rovelo (2009)

Algorithms Segmentation 3D modeling Complete medical
and image processing chain:

registration segmentation, 3D modeling,
and registration

Algebra used Standard Standard New simplified
CGA CGA CGA formulation

formulation formulation to reduce computational
complexity of 5D operators

New proposed – CGA-based CGA-based ICP and
registration methods TPS-RPM new CGA-based TPS-RPM

Experimental validation Preliminary tests Preliminary tests Experimental tests on
Experimental setup on a limited set on a limited set 8080 real medical images

of medical images of synthetic and (CT abdominal, CT brain,
real medical images and MR brain)

Performance No No Comparison with both
comparison with standard CGA techniques
standard methods and traditional medical

imaging methods
Comparison results – – Better performance

in terms of both
precision and

computation times
Quantitative No Registration error Segmentation

analysis minimum 0.72 Dice index 98.14%
Sensitivity 98.05 %
Specificity 97.73%

Registration error ≈ 10−5

Statistical analysis No No Yes (Wilcoxon
signed-rank test)

2. Conformal geometric algebra

A detailed introduction to Clifford algebra (CA) and
conformal geometric algebra (CGA) can be found in
(Hestenes and Sobczyk, 1987; Hestenes, 1986; Dorst
et al., 2007). In this section, we introduce some basic
CGA concepts. CGA is based on 5D geometric (or
Clifford) algebra and provides a 5D representation of the
3D space. Increasing the space dimension, CGA offers
a more intuitive and compact representation of the 3D
geometry, since geometric objects and transformations all
can be represented by algebra elements and operators,
respectively. Two extra basis vectors e+ and e− are
added to the three basis vectors e1, e2, and e3 of the
3D Euclidean space. In general, given two generic basic
vectors ei and ej , the following axioms are introduced:

e2i = ±1, (1)

eiej = −ejei, (2)

e+ and e− square to 1 and −1, respectively. The two null
vectors e0 and e∞, which represent the point at the origin
and the point at infinity, respectively, are derived from e+
and e− and they are defined as

e0 =
1

2
(e− − e+), e∞ = e− + e+. (3)

From (3), it follows that e20 = e2∞ = 0, while e0e∞ = −1.
In CGA, a point P is represented as a 5D vector

P = p+
1

2
p2e∞ + e0, (4)

where p is a vector in the 3D space: p = p1e1 + p2e2 +
p3e3. Equation (4) is used to map a point p of the 3D
Euclidean space to a point P of the 5D conformal space.

The basic entities in CGA are spheres. A sphere S
with center c and radius r is represented as a 5D vector

S = c+
1

2
(c2 − r2)e∞ + e0. (5)
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Table 2. Classical formulation of CGA operators.
Reflection S′ = −mSm m = reflection plane
Rotation S′ = RSR̃ R = ebθ

b = rotation plane
2θ = rotation angle

Translation S′ = TST̃ T = e−te∞/2

t = 3D translation vector
Dilation S′ = DSD̃ D = e−E log(l)/2

l = scale factor
E = e∞ ∧ e0

1

Other geometric objects are derived from the spheres.
A point is a sphere of radius zero (see Eqns. (4) and
(5)), a circle is the intersection of two spheres, a plane
is a sphere that passes through the infinity and a line is a
circle with infinite radius. A plane Π with normal vector
n = n1e1 + n2e2 + n3e3 and d as the distance from the
origin is expressed as a 5D vector

Π = n+ de∞. (6)

Since a sphere is a 5D vector and geometric
objects can be derived from spheres, we can say that,
in the CGA framework, geometric objects can be
reduced to 5D conformal vectors. The suite of medical
imaging algorithms presented in this paper is based on
the massive use of conformal (i.e., angle-preserving)
geometric transformations (reflections, rotations,
translations, dilations). CGA provides a universal
and compact representation of conformal geometric
transformations. In CGA, all these transformations are
obtained by operators called versors that pre-multiply
and post-multiply the object to be transformed. A versor
V is the product of non-null vectors: V = v1v2 . . . vk.
Conformal transformations are all expressed in the
following compact form (known as the “sandwich”
product):

X ′ = (−1)kV XṼ , (7)

where X is the object to be transformed, V = v1v2 . . . vk
is the versor that represents the geometric transformation,
Ṽ = vk . . . v2v1 is the reverse of V and X ′ is the
transformed object. The classical CGA formulation of
conformal transformations for a specific sphere S is
reported in Table 2, where the operator V of Eqn. (7)
takes a different form according to the specific geometric
transformation, while the sphere S is a 5D vector, as
defined in Eqn. (5), and S′ is the transformed sphere.

1The symbol ∧ represents the outer product. E is the so-called
Minkowski plane.

3. Novel formulation of conformal
geometric algebra operations

Equation (7) and Table 2 show the classical formulation
of CGA operators. The low symbolic complexity of this
formulation is accompanied, however, by its high numeric
complexity. Since CGA operates in the 5D space, we have
to deal with multiplications and sums of elements with
a high number of coefficients. This numeric complexity
hinders the practical use of CGA in real-time applications,
such as medical image processing algorithms. To face
this problem, Franchini et al. (2015) have introduced
a new, simplified formulation of CGA with the aim to
reduce the computational complexity of the 5D operators.
According to this new formulation: (i) each conformal
transformation (rotation, translation, dilation) is split in
two consecutive reflections, and (ii) each reflection is
obtained using a fast and compact formula based on a
simple dot product instead of the standard “sandwich”
product of Table 2.

The novel formulation of translation, dilation,
and rotation operations is described in more detail in
Sections 4.1.1, 4.2.1, and 4.3.3, respectively.

3.1. Computational complexity analysis. The new
formulation results in a significant reduction in the
computational complexity of CGA operations with
respect to the standard formula of Eqn. (7). Figure 1
compares the number of primitive arithmetic operations
required by the standard formulation of CGA operators
with the number required by the new formulation. The
reported values are related to CGA operations on vectors
and therefore on points or spheres that are the objects used
in the medical imaging algorithms presented in the paper.
The new CGA formulation has allowed us to reduce the
computational load of the algebra operators (the number
of basic arithmetic operations per CGA operator) by
about one order of magnitude and, therefore, to improve
the performance of the medical imaging algorithms that
exploit CGA operators in terms of both execution times
and result precision (see Section 5 for experimental
results).

4. Medical imaging techniques based on
conformal geometric algebra

This section outlines a suite of techniques based on
CGA for segmentation, 3D modeling and registration
of medical images, which have been developed
starting from the guidelines contained in the works
of Rivera-Rovelo and Bayro-Corrochano (2006; 2007)
as well as Bayro-Corrochano and Rivera-Rovelo (2009)
and re-designed according to the novel CGA formulation
described in Section 3. The proposed system is a medical
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Fig. 1. Comparison between the standard CGA formulation
and the new CGA formulation in terms of the num-
ber of basic arithmetic operations (multiplications and
sums/subtractions) required to execute a conformal geo-
metric transformation (rotation, translation, or dilation).
Note that all conformal geometric transformations re-
quire the same number of basic arithmetic operations
since they are obtained by the same formula (the “sand-
wich" geometric product in the standard formulation and
double reflection in the new formulation used in this pa-
per).

image processing chain whose block diagram is depicted
in Fig. 2.

The goal of the whole system is to register (align)
two different medical datasets (the initial dataset DSI

and the expected dataset DSE of Fig. 2). Each dataset
consists of a sequence of MR or CT images derived
by successive scans. First, the reformulated CGA-based
segmentation method, based on the GGVF technique and
a growing neural gas (GNG) network (Rivera-Rovelo and
Bayro-Corrochano, 2006; 2007), is used to extract the
area of interest from each image. Then, for each input
dataset, a 3D model is reconstructed starting from the
sequence of the segmented 2D slices. The 3D rendering
technique, named marching spheres (Bayro-Corrochano
and Rivera-Rovelo, 2009), gives as output a 3D model
composed of spheres defined in the CGA framework.
Finally, the two sphere-based 3D models are aligned using
one of the following well-known registration methods,
iterative closest point (ICP) and thin-plate spline robust
point matching (TPS-RPM), reformulated to operate in
the CGA context and align two 3D models composed
of CGA spheres. The above cited medical algorithms
require millions of geometric transformations, such as
translations, rotations and dilations. In our advanced
implementation, all these transformations are executed
using the novel fast CGA operators described in Section
3 and, in more detail, in Sections 4.1.1, 4.2.1, and
4.3.3. We have designed and implemented an application
programming interface (API), named ConformalAPI, for
high-level applications to interface with our new CGA
operators. The main functions of the ConformalAPI

Fig. 2. 3D dataset registration: block diagram of the medical
image processing chain. The registration (or alignment)
task has many important applications in clinical prac-
tice including (i) aligning temporal sequences of images
to compensate for motion of the patient between scans,
(ii) combining images of the same subject from different
imaging modalities (the multi-modality fusion facilitates
diagnosis by integrating information acquired by diverse
imaging devices, as CT and MR), (iii) image guidance
during interventions, (iv) aligning images from the same
subject or from multiple patients in longitudinal studies,
which investigate temporal changes in anatomical struc-
tures (regions of interest, organs, cancers, etc.).

library are reported in Table 3 and described in the
following subsections.

Sections 4.1, 4.2, and 4.3 describe the new enhanced
formulation of the CGA-based segmentation, 3D
modeling and volume registration methods, respectively.

4.1. Medical image segmentation. The segmentation
algorithm consists of two steps. In the first step, a set of
contour points of the area to be segmented are extracted
by using an automatic technique based on the generalized
gradient vector flow (GGVF). In the second step, the
initial contour points derived in the first step are used as
the training set of a GNG network, which has translators
defined in the CGA framework as weights. Once the
training stage is completed, GNG neurons will contain the
proper translators, which, applied to a given initial point
(the centroid of the contour points), will translate it to the
object contour and will define object shape. Figure 3(b)
shows the segmented object obtained after the two steps
of the algorithm for the test image in Fig. 3(a) (CT
liver lesion). The profiling of the segmentation algorithm
(Fig. 4(a)) shows that the most computationally expensive
functions are the translation operations and the distance
calculations between the translated points and the initial
contour points, which consume more than 70% of the
execution time. In our implementation, all CGA-based
geometric operations used in the GNG algorithm exploit
the fast CGA operators introduced in Section 3 instead of
the standard formulation of Table 2.

4.1.1. New formulation of translations. A translation
in the direction given by the vector n is executed as
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Table 3. Main functions of ConformalAPI.
Function rotation
Syntax float* rotation(float a1, float a2, float a3, float alpha, float* x)
Description Starting from the rotation plane with normal vector a and from the rotation angle alpha,

calculates the rotated 5D object
Arguments a1, a2, a3: coefficients of the normal vector to the rotation plane;

alpha: rotation angle; x: 5D object to be rotated
Function from_rot_axis_and_angle_to_refl_vecs
Syntax float* from_rot_axis_and_angle_to_refl_vecs(float* a, float alpha)
Description Starting from the rotation axis and rotation angle, calculates the two planes (5D vectors)

with respect to which the two successive reflections have to be executed
Arguments a: rotation axis; alpha: rotation angle
Function orthonormal_ref
Syntax float* orthonormal_ref(float* a)
Description Starting from the rotation axis a, calculates the orthonormal basis B = (u, v, w) with w = a
Arguments a: rotation axis
Function translation
Syntax float* translation(float t1, float t2, float t3, float* x)
Description Starting from the 3D translation vector, calculates the translated 5D object
Arguments t1, t2, t3: coefficients of the 3D translation vector; x: 5D object to be translated
Function from_transl_vec_to_refl_vecs
Syntax float* from_transl_vec_to_refl_vecs(float t1, float t2, float t3)
Description Starting from the 3D translation vector, calculates the two planes (5D vectors)

with respect to which the two successive reflections have to be executed
Arguments t1, t2, t3: coefficients of the 3D translation vector
Function dilation
Syntax float* dilation(float l, float* x)
Description Starting from the scaling factor l, calculates the dilated 5D object
Arguments l: scaling factor; x: 5D object to be dilated
Function from_scaling_factor_to_refl_vecs
Syntax float* from_scaling_factor_to_refl_vecs(float l)
Description Starting from the scaling factor l, calculates the two spheres (5D vectors)

with respect to which the two successive reflections have to be executed
Arguments l: scaling factor
Function reflection
Syntax float* reflection(float* m, float* x)
Description Starting from the 5D object x, calculates the reflected 5D object with respect to the plane m
Arguments m: reflection plane; x: 5D object to be reflected
Function distance
Syntax float distance(float* P1, float* P2)
Description Calculates the Euclidean distance between two conformal points P1 and P2

according to the formula given in equation (28)
Arguments P1: first 5D point; P2: second 5D point
Function CGA_sphere
Syntax float* CGA_sphere(float c1, float c2, float c3, float r)
Description Maps a sphere with center c and radius r in a 5D vector
Arguments c1, c2, c3: coefficients of the center point c; r: radius
Function CGA_plane
Syntax float* CGA_plane(float n1, float n2, float n3, float d)
Description Maps a plane with normal vector n and distance d from the origin in a 5D vector
Arguments n1, n2, n3: coefficients of the normal vector n; d: distance from the origin
Function CGA_point
Syntax float* CGA_point(float p1, float p2, float p3)
Description Maps a 3D point p in a 5D vector
Arguments p1, p2, p3: coordinates of the 3D point p



Implementation and evaluation of medical imaging techniques . . . 421

(a) (b)

Fig. 3. Segmentation of a test image: original image (a), seg-
mented object (b).

two successive reflections in two parallel planes Π1 and
Π2 with unit normal vector n and distance d from each
other. The translation will be twice the distance d between
the two planes. A proper function in our API library
(the functionfrom_transl_vec_to_refl_vecs in
Table 3) calculates the two planes (or 5D vectors) with
respect to which the two successive reflections have to
be executed. Starting from the 3D translation vector
t = t1e1 + t2e2 + t3e3, the API function calculates the
two 5D vectors Π1 and Π2, as described below. In our
method, since the first reflection is executed in the plane
Π1 = n + d1e∞ with normal vector n and d1 as the
distance from the origin, while the second reflection is
executed in the parallel plane Π2 = n+d2e∞ with normal
vector n and d2 as the distance from the origin and with
d = d2 − d1, the translator can be written as the product
of the two parallel planes:

T = (n+ d2e∞)(n+ d1e∞)

= nn+ d1ne∞ − d2ne∞,
(8)

from which

T = 1− (d2 − d1)ne∞. (9)

On the other hand, according to the formula in Table
2, the translator is expressed as

T = e−
t
2 e∞ . (10)

Taking into account the Taylor series expansion, (10) can
be written as

T ≈ 1− 1

2
te∞. (11)

Starting from (9) and (11), we can write

1− (d2 − d1)ne∞ = 1− 1

2
te∞, (12)

from which

t = 2(d2 − d1)n = 2dn. (13)

Since
t = ‖t‖n, (14)

we can write
‖t‖n = 2dn, (15)

from which

d =
‖t‖
2

, (16)

while n can be calculated as

n =
t

‖t‖ . (17)

Finally, since the transformation depends on the
offset d = d2 − d1, the two reflection planes Π1 and Π2

can be expressed as

Π1 = n = n1e1 + n2e2 + n3e3, (18)

Π2 = n+ de∞
= n1e1 + n2e2 + n3e3 + de+ + de−, (19)

where n and d are expressed by (17) and (16),
respectively.

Another API function (the function translation
in Table 3) executes the translation operation. This
function receives the 3D translation vector t as
the argument and returns the translated 5D object.
The function translation uses the function
from_transl_vec_to_refl_vecs to calculate the
two 5D reflection planes starting from the 3D translation
vector and then executes the translation using twice
the fast reflection operator. The latter operator uses
the compact formula based on the dot product and is
implemented in the API function reflection reported
in Table 3. According to this compact formula, given
a vector a, the vector a′, reflected in a plane with
unit-normal m, can be obtained as

a′ = a− 2(a ·m)m. (20)

For the component of a collinear with m (a‖) and the
component of a orthogonal to m (a⊥), the reflected vector
a′ can be expressed as

a′ = a⊥ − a‖. (21)

Adding and subtracting a‖, we obtain

a′ = a⊥ + a‖ − a‖ − a‖. (22)

Since
a = a⊥ + a‖, (23)

we can write

a′ = a− 2a‖ = a− 2|a‖|m (24)

= a− 2(a ·m)m.

Regarding the distance calculations, we can observe
that in CGA the Euclidean distance between two points
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(a) (b) (c)

Fig. 4. Profiling: segmentation algorithm (a), ICP registration algorithm (b), TPS-RPM registration algorithm (c).

is proportional to the inner product or dot product of the
two related 5D vectors. Given two points pA and pB , their
Euclidean distance can be expressed as:

dist2pApB
= (pA − pB)

2

= p2A + p2B − 2pA · pB.
(25)

On the other hand, starting from (4), the inner product of
two 5D vectors PA and PB can be expressed as

PA ·PB = (pA+
1

2
p2Ae∞+e0)(pB+

1

2
p2Be∞+e0), (26)

from which

PA · PB = −1

2
p2A − 1

2
p2B + pA · pB (27)

so that, comparing (25) and (27), we can express the
Euclidean distance as

dist2pApB
= −2PA · PB . (28)

The inner product in the representation space is
proportional to the squared Euclidean distance. Therefore,
to measure the Euclidean distance of two points, we
have used the dot product of the two 5D vectors. The
function distance of the ConformalAPI library (see
Table 3) has been used for the distance calculations.
The API functions CGA_point, CGA_sphere, and
CGA_plane are used to map a point, a sphere, and
a plane, respectively, from the 3D space into a 5D
vector. To have an idea of the computational load
reduction achieved by our method, we can observe that the
segmentation of the medical image shown in Fig. 6, which
requires 10,236 translations, needs 255,900 products and
327,552 sums/differences, whereas the standard CGA
method would require 2,303,100 products and 2,026,728
sums/differences.

4.2. 3D modeling. In our implementation of the
Marching Spheres algorithm, the spheres that will
constitute the 3D model are generated by CGA dilation
and translation operators, which are applied to a basic
sphere with the center in the origin and unitary radius.

The algorithm first calculates the centers and radii of
all spheres and then executes the proper dilation and
translation operations to generate the spheres of the
final model. The needed translations and dilations are
executed using the formulation presented in Section 3.
The translations are executed using the API functions
presented in Section 4.1.1.

4.2.1. New formulation of dilations. A dilation of a
scaling factor l is obtained as two successive reflections
in two spheres with the center in the origin and radii 1
and

√
l, respectively, represented by the two following 5D

vectors:

S1 = −1

2
e∞ + e0, (29)

S√
l = −1

2
le∞ + e0. (30)

The dilator D can be obtained starting from the product of
these two vectors:

D =
1√
l

(
− 1

2
le∞ + e0

)(
− 1

2
e∞ + e0

)
(31)

=
1√
l

( l + 1

2
− l − 1

2
e∞ ∧ e0

)

=
l
1
2 + l−

1
2

2
− l

1
2 − l−

1
2

2
E.

Since

cosh(x) =
ex + e−x

2
, (32)

sinh(x) =
ex − e−x

2
,

the dilator D can be expressed as

D = cosh
( log(l)

2

)
− sinh

( log(l)
2

)
E, (33)

from which
D = e−

1
2E log(l), (34)

that is the standard formulation of the dilation as reported
in Table 2.
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The API function dilation (Table 3) is used
to execute a dilation according to the proposed
formulation. This function uses the API function
from_scaling_factor_to_refl_vecs (Table 3)
to calculate the two reflection vectors starting from the
scaling factor, while the API function reflection is
called twice to execute the two consecutive reflections.
Figure 5 shows the result of the proposed rendering
method for a sample dataset composed of 175 MR brain
slices. One of the MR slices is shown in Fig. 6 along
with its binarized version obtained after the segmentation
process described in Section 4.1. It has to be observed
that the number of spheres of the 3D model depends on the
distance d between two adjacent slices. A smaller value of
d leads to a higher number of spheres and, therefore, to a
higher number of CGA translations and dilations, but at
the same time allows us to obtain a more precise model.

4.3. Volume registration. In this work, we have
redesigned both the TPS-RPM and ICP algorithms to
align two 3D models composed of spheres defined in the
CGA context (where each sphere is represented by a point
in a 5D space or a 5D vector) and exploit the re-formulated
5D operators introduced in Section 3. The following
notation will be used: I = {SI

i }, i = 1, 2, . . . ,m is
the set of spheres of the first model (initial set), E =
{SE

j }, j = 1, 2, . . . , n is the set of spheres of the second
model (expected model), A = {SA

k }, k = 1, 2, . . . , n is
the set of spheres resulting after the algorithm has been
executed (estimated or approximated set).

4.3.1. CGA-based iterative closest point (ICP). In
this section, we propose a novel CGA-based version of
the ICP algorithm. Several variants of the ICP algorithm
have been proposed over the years. We have adapted
to the CGA framework the version proposed by Zhang
(1994). He introduces a statistical method based on the
distance distribution to reject outliers (points of either
set that have no correspondences in the other) during the
matching process. The goal of the registration process
is to find the proper geometric transformation that aligns
the initial model I with the expected model E. In the
ICP algorithm, this transformation is assumed to be linear
and composed of a rotation R and a translation T . The
algorithm searches the optimal transformation (R, T ) that
minimizes the following error function:

E(R, T ) =
1

n

n∑
i=1

(TRSI
i R̃T̃ − SE

i )2 (35)

which represents a measure of the “distance" between the
set of spheres of the initial model and the set of spheres
of the expected model. R and T are respectively, the
CGA rotator and translator expressed according to the new

formulation introduced in Section 3. The ICP algorithm
consists of the following steps that are iteratively repeated:

1. Find the correspondences between the spheres of the
two sets, namely, compute the pairs of spheres with
minimum distances (closest spheres) of the two sets.

2. Compute the transformation (R, T ) that minimizes
the error function E(R, T ).

3. Apply the transformation to the initial set of spheres
I = {SI

i } (the radii of the corresponding spheres are
also compared and, if necessary, a dilation operator
is applied to correctly overlap the two spheres).

Steps 1–3 are repeated until |Ek(R, T ) − Ek−1(R, T )|
becomes less than a certain threshold ε, where Ek(R, T )
and Ek−1(R, T ) are the errors measured at steps k and
k − 1, respectively.

4.3.2. CGA-based thin-plate spline robust point
matching (TPS-RPM). The ICP algorithm converges
to the closest local minimum; therefore, it works well
when the transformation is small and approximately
known, while it is not appropriate for solving large
motion problems since, in these cases, it may lead to
false matching. Another registration method that solves
the problem of the local minima and works even in the
presence of a high number of outliers is the TPS-RPM.
The TPS-RPM algorithm treats non-rigid transformations
and can therefore be useful to solve the deformable
matching problems frequently arising in medical imaging.
The TPS-RPM adaptation for the non-rigid registration of
two 3D models based on CGA spheres has been proposed
by Bayro-Corrochano and Rivera-Rovelo (2009). The
transformation between the two models takes the form of
the thin-plate spline (TPS), which is a non-rigid extension
of the affine map and is split in two parts: the affine
transformation and the non-rigid deformation (warping),
which are applied to the centers of the spheres. In
our implementation of the CGA-based TPS-RPM, the
affine mapping is implemented by using the conformal
geometric operations (rotations, translations and dilations)
defined in CGA framework. Dilation operators are used to
update the radii of the spheres.

The profiling of the registration algorithms
(Figs. 4(b) and (c)) shows that the most computationally
expensive functions are the rotation, translation, and
dilation operations as well as the distance calculations
between the centers of the spheres. To reduce the
computational load of the most time-consuming
functions, in our implementation, the rotation, translation
and dilation operators are executed according to the
formulation introduced in Section 3 instead of the
standard formulation of Table 2. The new formulations
of translations and dilations and their related functions in
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(a) (b) (c)

Fig. 5. 3D model derived from a MR brain sequence composed of 175 slices: original slices (a), slices obtained after the segmentation
and binarization process (b), 3D model obtained for d = 2, where d is the distance between two adjacent slices (c).

(a) (b) (c)

Fig. 6. Brain MR slice: original MR brain slice (a), segmented image (b), binarized image after the segmentation process (c).

the ConformalAPI library have been already presented in
Sections 4.1.1 and 4.2.1.

4.3.3. New formulation of rotations. Regarding the
rotations, in our algorithm, a rotation by an angleα around
the axis a is executed as two consecutive reflections in two
planes with unit-normals m and n, where m∧n (the plane
in which m and n lie) represents the rotation plane, while
the angle between m and n is half the rotation angle α.
The rotor R can be written as the geometric product of
these two vectors:

R = nm. (36)

Since the geometric product is the sum of the inner
product and the outer product, we can write

R = n ·m+ n ∧m (37)

= cos
α

2
+

n ∧m

||n ∧m|| sin
α

2
(38)

Since n ∧m/||n ∧m|| is the bivector b dual to the
rotation axis (that is the rotation plane), the rotor R can
be expressed as

R = cos
α

2
+ b sin

α

2
= eb

α
2 (39)

that is the standard formulation of the rotations
as reported in Table 2. A specific function
in the ConformalAPI library (the function

from_rot_axis_and_angle_to_refl_vecs in
Table 3) calculates the two planes or 5D vectors m and
n with respect to which the two reflections have to be
executed starting from the 3D rotation axis a and the
rotation angle α.

The two vectors m and n have to lie in the
plane orthogonal to the rotation axis a, while the angle
between m and n has to be α/2. The API function
orthonormal_ref (Table 3) is first used to calculate
an orthonormal basis B = (u, v, w), where w has the
same direction of a. Then, the two vectors mB =
(1, 0, 0) and nB = (cos(α/2), sin(α/2), 0) with respect
to the basis B are considered. These two vectors
are converted into the global coordinate system by the
following formulas:

m = ATmT
B, (40)

n = ATnT
B, (41)

where A = [u, v, w]. Finally, these two 3D
vectors are extended to two 5D vectors setting
to zero the two remaining coordinates. Another
API function (the function rotation in Table
3) executes the rotation operation. This function
receives the 3D rotation axis a and the rotation
angle α as arguments and returns the rotated 5D
object. The function rotation uses the function
from_rot_axis_and_angle_to_refl_vecs
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to calculate the two 5D reflection planes starting from
the 3D rotation axis a and the rotation angle α and
then executes the rotation using twice the fast reflection
operator. The latter operator is implemented in the API
function reflection reported in Table 3.

The distance calculations between the centers of the
spheres are executed by exploiting the formula introduced
in Section 4.1 (see Eqn. (28)) and implemented in the
API function distance (Table 3). To have an idea
of the computational load reduction achieved by our
method, we can observe that the registration of the
two models shown in Fig. 10, which requires 55,860
roto-translations and 24,464 dilations, needs 3,002,980
products and 4,036,592 sums/differences, whereas the
standard CGA method would require 30,239,780 products
and 26,241,516 sums/differences.

5. Experimental results

The proposed methods have been validated by several
experimental tests executed on both MR and CT images.
Several medical datasets collected at the University of
Palermo, Policlinico Hospital, have been used in the
experiments, including 15 CT abdominal datasets each
composed of a number of slices (between 226 and 573);
15 CT brain datasets each composed of a number of
slices (between 30 and 248); 20 MR brain datasets each
composed of a number of slices (between 24 and 248).
The total number of medical images processed in the
experimental tests was 8080 (3600 MR images and 4480
CT images).

5.1. Performance comparison with standard
methods. The proposed algorithms based on the
new formulation of CGA have been also validated
by accurate comparisons with state-of-the-art medical
imaging methods, including the standard CGA-based
methods. Tests have been executed on a 2.9 GHz Intel
Core i7 CPU.

5.1.1. CGA-based segmentation method. The
segmentation technique introduced in Section 4.1 has
been compared with a standard region growing method
as well as with the GGVF-snake method. Test medical
images have been segmented by using both the standard
techniques and the new proposed method. Figure 7
shows the results obtained by applying the CGA-based
segmentation technique as well as the standard methods
to a CT abdominal image with a liver lesion. Figure 8
shows the case of an object with very blurred contours
in a CT liver image. The figure shows that the standard
GGVF-snake algorithm is not able to correctly extract the
shape of the object, neither when the initial snake is given
outside the object contour (Fig. 8(d)), nor when the initial
snake is given over the object contour (Fig. 8(f)); the

CGA-based method gives, conversely, a well-segmented
shape as output (Fig. 8(h)).

A further quantitative comparison has been
performed between the proposed method and the
standard techniques. The following metrics have been
used for quantitative validation of the segmentation
results:

DiceIndex(NM , NA) =
2|NM ∩NA|
|NM |+ |NA| , (42)

Sensitivity =
NTP

|NM | , (43)

Specificity = 1− NFP

|NA| , (44)

where NM is the manual segmented area, NA is
the automatic segmented area, NTP is the number
of automatic true positive pixels, and NFP is the
number of automatic false positive pixels. The manual
segmented area was obtained starting from the manual
delineation performed by agreement between three
different radiologists. Table 4 lists the calculated metrics
for the image of Fig. 7 as well as the average values
for all the medical images used in the experiments.
It can be observed that the reformulated CGA-based
segmentation method shows a better performance than
the standard algorithms in terms of all the metrics
considered. Furthermore, our method is faster than the
traditional techniques, as shown in Fig. 9 that reports
a comparison of the different segmentation methods in
terms of computational times.

5.1.2. Statistical analysis. In order to validate the
proposed segmentation method, a statistical analysis
was performed using the Wilcoxon signed-rank
non-parametric test to detect significant statistical
differences between the results of the segmentation
methods based on the standard CGA and on the
reformulated CGA, respectively. The Wilcoxon test
was applied on the Dice index values related to the two
above-mentioned segmentation methods for a dataset
composed of 200 test images (50 CT abdominal images,
50 CT brain images, and 100 MR brain images). The
statistical analysis was performed using the IBM SPSS
software, while the significance level used was 5%.
Statistical analysis results are listed in Tables 5 and
6. Table 5 shows results in terms of ranks, while
Table 6 reports the test statistics (z-score and p-value).
As reported in Table 6, the very low value of the
statistical probability p (p < 0.001) indicates that the null
hypothesis (that is, there are no significant differences
among the results of the two compared methods) has to
be rejected. The statistical analysis shows a significant
advantage of the reformulated CGA method against the
standard CGA method. From the statistical analysis
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(a) (c)

(b) (d) (e)

(f) (g) (h) (i)

Fig. 7. Comparison between the proposed segmentation method and the standard methods for a CT abdominal image with a liver
lesion: original image and ROI (a), zoom of (a) (b); CGA-based method (c)–(d): segmented object (c), zoom of (c) (d);
region growing method (e); GGVF-snake method (f)–(i): initialization of the snake outside the object contour (f), segmented
object with the initialization given in (f) (g), initialization of the snake over the object contour (h), segmented object with the
initialization given in (h) (i).

results, it is evident that the proposed method not
only produces higher quality segmented images, but
also verifies its superior performance in a statistically
meaningful way.

5.1.3. CGA-based registration methods. Once the
2D slices of the test medical datasets were segmented
using the CGA-based segmentation technique, the 3D
rendering method proposed in Section 4.2 was applied to
the segmented images to obtain the related sphere-based
3D models. The obtained 3D surfaces were then used to
test and validate the two registration methods proposed
in Section 4.3. Several experiments were performed
on different misaligned datasets with different degrees
of deformation. In each experiment, the segmented 2D
slices of the original CT or MR sequence and misaligned
sequence, respectively, were first processed to obtain
the two misaligned 3D models based on CGA spheres.
Hereafter, the original model will be referred to as the
expected model, while the misaligned model will be
referred to as the initial model. The registration methods
were then used to align the initial 3D model with the

expected 3D model. For the quantitative validation of
the registration methods, the following metric was used
to measure the final error between the estimated model
obtained after the algorithm execution and the expected
model:

e =

√√√√ 1

n

n∑
j,k=1

zjk(SE
j − SA

k )
2, (45)

where {SE
j } and {SA

k } are the expected sphere-set and
the approximated or estimated sphere-set, respectively, n
is the number of pairs of the corresponding spheres of the
two sphere-sets, and zjk = 1 if SA

k corresponds to SE
j ,

and 0 otherwise.
With regard to the ICP algorithm, which treats rigid

transformations, different linear transformations, each
composed of a translation and a rotation, were applied
to the 2D slices of the original set to obtain different
misaligned sets with different degrees of misalignment
to be registered with the original one. As remarked
in Section 4.3, the ICP algorithm gives good results
when small and approximately known transformations are
considered.
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(a) (c) (e)

(b) (d) (f)

(g) (h)

Fig. 8. Comparison between the standard GGVF-snake method (c)–(f) and the CGA-based segmentation method (g)–(h) for a CT liver
image containing an object with very blurred contours: original image (a), original image with the object of interest marked
by hand (b), initialization of the snake outside the object contour (c), result of the GGVF-snake method with the initialization
given in (c) (d), initialization of the snake over the object contour (e), result of the GGVF-snake method with the initialization
given in (e) (f), segmented object using the CGA-based method (g), zoom of (g) (h). The CGA-based method gives as result a
well segmented object, while the standard GGVF-snake fails to segment the object whether the initialization is given outside or
over the object contour.

As expected, the experimental tests have shown that
the ICP algorithm is able to align two 3D models that
differ by up to about 25 degrees in rotation and 25 mm
in translation. Figure 10 shows the results obtained by
applying the CGA-based ICP algorithm to register two
3D models related to a MR brain sequence composed of
175 slices that differ by 20 degrees in rotation and 20 mm
in translation. The two 3D models have been obtained
for d = 8, where d is the distance between two adjacent
slices, which represents the resolution parameter of the
rendered 3D model. The final error between the expected
model and the approximated model after the algorithm
execution, measured using Eqn. (45), is e = 1.25 · 10−5.

Figure 11 shows test results on the convergence of
CGA-based ICP algorithm in the case of the same MR
dataset. Each curve is related to a different value of d
and shows the error e, calculated using Eqn. (45), against
the number of iterations of the algorithm. It can be
observed that, when d decreases, a higher number of
iterations is required until the algorithm converges to the

right matching. In all cases, the order of magnitude of the
measured final error e is 10−5.

Table 7 lists the number of spheres of the 3D models,
the number of iterations of the CGA-based ICP algorithm,
the error e, the number of CGA conformal operations
required to align the two models, and the average
execution time per iteration, for different values of the
resolution parameter d. As expected, when d decreases,
the number of spheres of the rendered model increases as
well as the number of CGA conformal operations required
to align the two models, and, consequently, the average
time per iteration results to be higher.

Observing the experimental results reported in
Fig. 11 and Table 7, we can conclude that a resolution
parameter d = 8 is a good compromise between
the rendering and alignment quality and the workload
required by the algorithm, respectively.

The reformulated CGA-based ICP registration
method shows better performance compared with the
standard CGA-based ICP algorithm as well as with the
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Table 4. Comparison between the reformulated CGA-based segmentation method and the standard algorithms (region growing, GGVF-
snake, and the standard CGA-based method) in terms of the following statistics: Dice index, sensitivity, and specificity. The
table lists the statistics for the test image in Fig. 7 (CT liver lesion) as well as average values for all test images.

Region growing GGVF-snake Standard CGA Reformulated CGA

CT liver lesion
Dice index 95.63% 96.04% 96.64% 97.79%
sensitivity 97.20% 97.68% 97.51% 98.36%
specificity 94.12% 95.19% 96.77% 97.23%

Average values for all test
datasets

Dice index 95.54% 96.48% 97.10% 98.14%
sensitivity 94.47% 95.89% 96.92% 98.05%
specificity 96.98% 97.23% 97.41% 97.73%

Fig. 9. Comparison between the reformulated CGA-based seg-
mentation method and the conventional methods in
terms of execution times. The graph reports the com-
putation times related to three specific images as well as
the average values over all the test medical images.

classical version of the ICP algorithm that uses linear
algebra and matrix calculations for the execution of
the geometric operations required during the registration
process. The results of this comparison, in terms of
both measured error and execution times, are summarized
in Figs. 12(a) and (b), respectively, for three different
MR and CT datasets. The same experiments have been
repeated for all the test medical datasets showing in all
cases that the reformulated CGA-based ICP algorithm
allows for a reduction of about one order of magnitude
of the error and a reduction of about 30% of the execution
times with respect to the standard ICP method.

With regard to the TPS-RPM algorithm, it can be
considered a non-rigid extension of the ICP algorithm.
The CGA-based version of the TPS-RPM can be applied
to align medical datasets that present different degrees of
non-rigid deformation. Figure 13 shows the registration
of two 3D models related to a liver lesion present in 15
slices within a CT abdomen scan using the CGA-based
TPS-RPM method. The two 3D models have been
obtained for d = 1. The final error between the expected
model and the approximated model after the algorithm

Table 5. Wilcoxon signed-rank test. Comparison between the
standard CGA-based segmentation method and the re-
formulated CGA-based segmentation method: ranks.

N Mean rank Sum of ranks

Negative ranks 15a 74.67 1120.00
Positive ranks 185b 102.59 18,980.00
Ties 0c

Total 200
a Reformulated CGA < Standard CGA
b Reformulated CGA > Standard CGA
c Reformulated CGA = Standard CGA

Table 6. Wilcoxon signed-rank test. Comparison between the
standard CGA-based segmentation method and refor-
mulated CGA-based segmentation method: test statis-
tics.

z-value – 10.896a

Exact p-value (2-tailed) < 0.001

a Based on negative ranks

execution, measured using Eqn. (45), is e = 2.07 · 10−5.
To evaluate the CGA-based TPS-RPM performance,

several experiments were performed on medical datasets
with different degrees of warping. To generate the
deformed datasets, we applied to each original dataset
different randomly generated transformations using the
Gaussian radial basis functions (RBF), instead of TPS,
as non-rigid mapping. A Gaussian distribution with
zero mean and standard deviation s was used to obtain
the RBF coefficients. The value of s was gradually
increased to generate larger deformations. The errors
between the estimated model found by the algorithm and
the expected model, measured for different degrees of
warping, are reported in Figs. 14(a) and (b) for the MR
brain dataset and the CT abdomen dataset (Figs. 10 and
13, respectively).

The same figures also show a comparison between
the standard methods and our CGA-based methods:
standard ICP, CGA-based ICP, standard TPS-RPM, and
CGA-based TPS-RPM.
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Table 7. Measured statistics on the CGA-based ICP algorithm for different values of the resolution parameter d.
d No. of spheres No. of iterations Error (e) No. of CGA roto-translations Average time per iteration (s)

2 29,328 73 1.16 · 10−5 2,140,944 359
5 5,102 44 1.20 · 10−5 224,488 7.99
8 1,862 30 1.25 · 10−5 55,860 1.19
10 1,134 29 1.48 · 10−5 32,886 0.48
15 483 16 1.79 · 10−5 7,728 0.11
20 279 9 1.91 · 10−5 2,511 0.03

(a) (b) (c)

Fig. 10. Registration of two 3D models related to a MR brain sequence composed of 175 slices using the CGA-based ICP algorithm:
initial model (a), expected model (b), approximated model (c). The 3D models have been obtained for d = 8, where d is
the distance between two adjacent slices. The initial and expected models differ by 20 degrees in rotation and 20 mm in
translation. The measured final error between the expected model and the estimated model after the algorithm execution is
e = 1.25 · 10−5.

Fig. 11. CGA-based ICP algorithm: error vs. number of iter-
ations for different values of the resolution parameter
d.

It can be observed that the ICP performance
deteriorates much faster than that for the TPS-RPM
when the degree of warping increases. However,
we can observe that the CGA-based ICP performance
deteriorates slower than that for the standard ICP. A
difference of about one order of magnitude is observed
between the errors of the CGA-based TPS-RPM and the
standard TPS-RPM, respectively. The same result can
be observed comparing the CGA-based ICP with the
standard ICP. Moreover, experimental tests show that the
reformulated CGA-based TPS-RPM algorithm achieves
better performance compared with both the standard

CGA-based TPS-RPM and the conventional TPS-RPM.
Figures 15(a) and (b) show the comparison in terms of
both error and execution times. Results are reported for
three different medical datasets. The same experiments
were repeated for all the test medical datasets showing
in all cases that the reformulated CGA-based TPS-RPM
algorithm allows for a reduction of about one order of
magnitude of the error and a reduction of about 20% of
the execution times with respect to the standard TPS-RPM
method.

Regarding the comparison between TPS-RPM and
ICP, since the CGA-based ICP method presents shorter
computation times than the CGA-based TPS-RPM
method, it can be useful in time-critical applications when
misalignments of the two datasets are small.

6. Discussion and conclusions

The comparative evaluation reported in the previous
section shows that the reformulated CGA-based methods
outperform the traditional techniques in terms of both
precision and computation times. Regarding the
segmentation, it has to be observed that, unlike the
standard methods used for the comparative evaluation,
the CGA-based segmentation method is based on fully
automatic processes for both the selection of input contour
points using the GGVF technique and the extraction of the
object shape using a CGA-based GNG network. The only
input to the algorithm is the image to be segmented and
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(a) (b)

Fig. 12. Comparison between standard ICP, standard CGA-based ICP and new CGA-based ICP in terms of error (a) and execution
times (b) for three different datasets (D1: MR brain with d = 8, D2: CT brain tumor with d = 2, D3: CT liver lesion with
d = 1). Reported values are related to transformations composed of a rotation of 20 degrees and a translation of 20 mm.

(a) (b) (c)

Fig. 13. Registration of two 3D models related to a liver lesion present in 15 slices within a CT abdomen sequence using the CGA-
based TPS-RPM algorithm. The two models have been derived from two CT sequences of the same patient captured in
different moments: initial model (at time t1) (a), expected model (at time t2) (b), estimated model (c). The measured final
error between the expected model and the estimated model after the algorithm execution is e = 2.07 · 10−5.

no other prior information is needed.

To experimentally validate the proposed
segmentation method, we have used a large set of medical
images with different features in terms of imaging
modality (TC and RM), image quality and resolution (in
the test set, image resolution ranges from 128×128 to
512×512 pixels). We have studied the influence of the
image quality and resolution on the segmentation results,
in terms of both segmentation precision and computation
times. Starting from the experimental results, we have
observed that, when the image resolution is higher, the
computation time increases, but the segmentation quality,
in terms of measured parameters (Dice index, sensitivity,
and specificity) increases as well. Furthermore, the
segmentation time is also affected by the particular shape
to be extracted from the medical image.

Regarding the influence of the image quality on
the segmentation results, we found that our CGA-based
segmentation algorithm gives good results even in the
presence of noisy or blurred images, as the image reported
in Fig. 8, whereas the classical GGVF-snake method in
most cases failed to extract the correct shape of the object
of interest. Analyzing the Dice index, sensitivity and
specificity values listed in Table 4, it can be observed
that the reformulated CGA-based algorithm achieves an
improvement also with respect to the method based on

the standard CGA formulation. This result derives from
the significant reduction of the number of basic arithmetic
operations required to execute geometric transformations
(see the computational complexity analysis reported in
Fig. 1) that results in reduced propagation of rounding
errors. Thanks to this higher precision, a lower number of
iterations of the algorithm is required that leads to better
results of the reformulated CGA technique with respect
to the standard CGA method also in terms of execution
times.

As expected and as reported in Fig. 9, the lower
computational load of the reformulated CGA method
leads to reduced computation times with respect to the
standard CGA method, as well as with respect to the
other conventional algorithms. Regarding the registration
algorithms, we found that our new formulation of the ICP
and TPS-RPM methods leads to better results compared
with the standard CGA formulation as well as with the
classical version based on the conventional linear algebra
and matrix calculations.

Analyzing the results reported in Fig. 12, it can be
also observed that the standard CGA ICP algorithm allows
for a better precision, but requires longer computation
times with respect to the conventional ICP, whereas the
reformulated CGA ICP method shows better performance
in terms of both precision and execution times. A similar
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(a) (b)

Fig. 14. Error for different degrees of warping measured using different methods: standard ICP, CGA-based ICP, standard TPS-RPM,
and CGA-based TPS-RPM: test results on the MR brain sequence (a), test results on the CT abdomen sequence (b).

(a) (b)

Fig. 15. Comparison between standard TPS-RPM, standard CGA-based TPS-RPM and new CGA-based TPS-RPM in terms of error
(a) and execution times (b) for three different datasets (D1: MR brain with d = 8, D2: CT brain tumor with d = 2, D3: CT
liver lesion with d = 1). Reported values are related to a medium degree of warping.

result has been observed also for the new formulation of
the TPS-RPM algorithm. Also in this case, the standard
CGA TPS-RPM is more precise, but slower than the
conventional TPS-RPM, while the reformulated CGA
TPS-RPM shows better results than the traditional method
in terms of both precision and computation speed (see
Fig. 15). We can therefore conclude that our new fast
formulation of CGA operations makes the CGA-based
medical imaging methods effective and practically usable
in real applications.

Our experimental results demonstrate that it is
possible to implement a medical image processing
chain based on CGA algorithms that outperforms the
conventional medical imaging approaches. The proposed
methods are therefore well suited to big data analysis
and processing in medical imaging. Furthermore, the
ConformalAPI presented in the paper is actually a
general-purpose software library that exploits the new
CGA operators to offer a fast execution of the main
Euclidean geometric transformations. The use of the
ConformalAPI can be therefore easily extended to other
geometry-based medical applications, including medical
robotics, computer-assisted surgery and other medical
imaging methods.
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