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STABILITY OF A CLASS OF ADAPTIVE NONLINEAR SYSTEMS∗
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This paper presents a research effort focused on the problem of robust stability of the closed-loop adaptive system. It is aimed
at providing a general framework for the investigation of continuous-time, state-space systems required to track a (stable)
reference model. This is motivated by the model reference adaptive control (MRAC) scheme, traditionally considered in
such a setting. The application of differential inequlities results to the analysis of the Lyapunov stability for a class of
nonlinear systems is investigated and it is shown how the problem of model following control may be tackled using this
methodology.
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1. Introduction

Differential inequalities constitute a part of the qualitative
theory of differential equations. In this paper we shall ex-
plore a part of this subject (Hatvany, 1975; Lakshmikan-
tham and Leela, 1969a; 1969b; Rabczuk, 1976; Szarski,
1967; Walter, 1970) concerned with certain problems of
ordinary differential equations (ODEs).

The qualitative theory of ODEs aims at investigating
the properties of their solutions without explicit knowl-
edge of their form. This is of significant importance in the
nonlinear context, because then such knowledge is seldom
available. What can be used, however, are the properties
of the right-hand side (RHS) of the equation and informa-
tion about its domain of definition.

Since the problem setting excluded quantitative
(closed-form or numerical) knowledge about solutions,
we must use some qualitative results about them, e.g.,
asymptotic properties (boundedness), the Lyapunov sta-
bility, monotonicity, etc. This (incomplete) list of exam-
ples shows that such results are of practical interest in the
control engineering context. An especially interesting fea-
ture is that they may hold for families of solutions giving
insights into robustness.

A well-known example of qualitative theory is the
use of Lyapunov functions (Hahn, 1967) for inferring the
Lyapunov stability. Another important, but not so well-
known, example is the differential inequalities approach
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(Liu and Siegel, 1994). This may be applicable – among
other things – to robust stability analysis (see Section 3),
and hence it is of interest in nonlinear, adaptive control.

2. Differential Inequalities

We shall now briefly present some basic concepts and re-
sults pertaining to differential inequalities. Emphasis will
be put on the scalar case, as it is directly relevant to the
methods of Section 3 and much less involved than the vec-
tor ODE one.

The early history of the subject (Rabczuk, 1976)
is related to the independent works of O. Perron and
S.A. Chaplygin, and we explain the essence of the ap-
proach using Chaplygin’s reasoning (Luzin, 1951).

Let us consider a scalar nonlinear ODE with known
RHS f :

ẋ = f(x, t), x(t0) = x0, (1)

defined in a domain Γ, such that (x0, t0) ∈ Γ and (1) has,
for each (x0, t0), a unique solution in Γ (e.g., f may be
Lipschitz in Γ). Since f is nonlinear, we cannot, in gen-
eral, integrate (1), so a method of approximate integration
was proposed by Chaplygin (Luzin, 1951).

Suppose that x = x(t) is the integral curve of (1)
corresponding to the initial condition (x0, t0) ∈ Γ. Let us
draw two differentiable curves v = v(t) and w = w(t),
such that v(t0) = w(t0) = x0 and

v(t) < x(t) < w(t) (2)
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Fig. 1. Chaplygin’s method of differential inequalities
(comparison principle): x(t) is the nominal, v(t)
a lower and w(t) an upper solution. The ODE
is ẋ = f(x, t) with the initial condition (x0, t0)
and the domain of definition Γ. The differential in-
equalities are v̇ < f(v, t) and f(w, t) < ẇ for
t > t0, implying v(t) < x(t) < w(t) for t > t0.

for all t > t0 i t w Γ (see Fig. 1). If it is possible to
arbitralily narrow the piece of Γ between v(t) and w(t),
then the solution is approximated within any desired ac-
curacy. Of course, x(t) is unknown, so we must ask what
conditions related to (1), v(t) and w(t)) should be postu-
lated so that (2) would hold.

A crucial observation is that since x(t) is defined by
a differential equation, it is characterised by its tangent
for any t from Γ. In particular, this is true at t = t0,
so v and w also satisfy (1) at that point, as v(t0) =
w(t0) = x0. But f is at least continuous in Γ (to have
the existence of x(t)), the equations

v̇ = f(v, t),

ẇ = f(w, t) (3)

imply that immediately to the right of t0 the tangent of
v(t) is smaller than the tangent of x(t), while the tan-
gent of w(t) is greater. In other words, v̇ < ẋ < ẇ ⇔
f(v, t) < f(x, t) < f(w, t) for all t close to t0 (with
t > t0), or the following differential inequalities hold:

v̇ < f(v, t), (4)

ẇ > f(w, t) (5)

locally to the right of t0.

If (4) and (5) are true globally, i.e., for all t > t0
(t in Γ), then the condition (2) is satisfied for all such
t (see Fig. 1 ). Let us suppose that the differential in-
equalities hold and either v(t) or w(t) intersects x(t)

at t1 > t0 (when (2) fails an intersection must occur, as
v(t), x(t) and w(t) are continuous). Then, by the conti-
nuity of f , either (4) or (5) is violated in a neighbourhood
of t1, which is a contradiction.

The above reasoning leads to the following funda-
mental result (Luzin, 1951):

Theorem 1. (Chaplygin) Let the scalar ordinary dif-
ferential equation (1) be given with an initial condition
(x0, t0) ∈ Γ, where Γ is a domain (open and connected
set) of existence and uniqueness for (1). If the right-hand
side f of (1) is continuous in Γ, x(t) is the solution
of (1) corresponding to (x0, t0) and the differential in-
equalities (4) and (5) hold for all t > t0 ( t in Γ ) with
v(t0) = w(t0) = x0, then the inequalities (2) are also
true for the same values of t.

Note that the theorem gives an estimate (i.e., (2)) of
the unknown solution x(t) on the basis of known func-
tions satisfying (4)–(5). It is a sufficient condition for that,
as it requires that the upper (lower) estimate have a greater
(smaller) tangent than x(t) for all times t > t0 ( t in Γ).
Clearly, the dotted curve in Fig. 1 satisfies (half of) (2)
but not (5).

For a given f it may be nontrivial to find v and w
for which (4) and (5) hold on a reasonably long interval of
t. Therefore, the following simple consequence of Theo-
rem 1 is useful:

Corollary 1. Let (1) be as in Theorem 1. If there are
functions f1 and f2, continuous in Γ, such that

f1(x, t) < f(x, t) < f2(x, t) (6)

for all (x, t) ∈ Γ (where t > t0) and ensuring for these
(x, t) the existence and uniqueness of solutions of the
scalar ordinary differential equations

v̇ = f1(v, t), v(t0) = x0, (7)

ẇ = f2(w, t), w(t0) = x0, (8)

then the solutions of (7) and (8) satisfy (2) for all t > t0
(t in Γ).

Therefore, it suffices to find two ODEs whose right-
hand sides bound the RHS of (1), as in (6). Of course,
f1 and f2 should be chosen to be as simple as possi-
ble to allow an easy integration of (7) and (8). In partic-
ular, if f1 and f2 are linear, f is twice differentiable
and we know (which is not always possible) the subset
of Γ where ∂2f/∂x2 has a constant sign, then Corol-
lary 1 leads to a powerful numerical method generating
sequences {vk(t)} and {wk(t)} rapidly convergent to
x(t) (see Luzin, 1951).



Stability of a class of adaptive nonlinear systems 457

Let us finally note that Theorem 1 and Corallary 1
deal with a nonlinear time-varying ODE, so that the set-
ting is fairly general (confined, however, to the scalar
case). This is particularly useful in the context of the
Lyapunov stability (see Section 3), especially for adaptive
control systems, as their closed-loop description explicitly
involves time (unless we consider regulation).

The reasoning behind the proof of Theorem 1 cannot
be repeated for vector ODEs and similar results are not
so straightforward to obtain. In the linear case, however,
some useful properties can be proved (Rabczuk, 1976).
These results are interesting for linear time-varying sys-
tems, which are useful in the context of adaptive control.

Theorem 2. Let A be an n × n constant matrix with
real entries and x : [0,∞) → R

n a vector of functions
satisfying the vector differential inequality

ẋ ≥ Ax, x(0) = x0, (9)

where the inequality is understood to be component-wise,
i.e., ẋi ≥

∑n
j=1 aijxj . A necessary and sufficient condi-

tion for a solution of (9) to be bounded from below by the
solution of

v̇ = Av, v(0) = x0 (10)

is that aij ≥ 0 for i �= j.

Proof. (Necessity) Suppose that (9) holds. Then, defining
u(t) = ẋ − Ax (so that u(t) ≥ 0 for all t ≥ 0), (9) is
equivalent to

ẋ = Ax + u(t), x(0) = x0, (11)

from which

x(t) = eAt +
∫ t

0

eA(t−s)u(s) ds. (12)

In particular, if x0=0, then v(t) ≡ 0, and thus we need
to show that x(t) ≥ 0 for all t ≥ 0. From (12) we
have x(t) =

∫ t

0 eA(t−s)u(s)ds with u(s) ≥ 0 for all
0 ≤ s ≤ t. Hence the proof of necessity reduces to a nec-
essary condition for the nonnegativity of the matrix eAt,
understood component-wise, i.e., [eAt]ij ≥ 0 for all i, j.
For small t ≥ 0 we have

eAt ≈ I +At, (13)

so that aij ≥ 0 for i �= j gives the required property.
(Note that aii may be negative, since – according to (13)
– [eAt]ii = 1 + aiit and thus choosing t small enough,
[eAt]ii ≥ 0.)

(Sufficiency) Let Aij ≥ 0 for i �= j hold. From (10) we
have

v(t) = eAtx0 (14)

and thus, by comparison with (12), we have to prove that∫ t

0
eA(t−s)u(s)ds ≥ 0 for all t ≥ 0. This, in the view

of the nonnegativity of u, reduces to the demonstration of
eAt ≥ 0 for all t ≥ 0. Now, for any m ∈ N, the identity

eAt = (eAt/m)m (15)

holds trivially. For any arbitrarily large t there exists an
m ∈ N, such that (13) is valid for eAt/m. But then (15)
expresses eAt as a finite product of nonnegative matrices,
and thus eAt is nonnegative as required.

This result is interesting for linear time-varying sys-
tems, which are useful in the context of adaptive control.

3. Lyapunov Functions via Differential
Inequalities

The basics of differential inequalities have been explained
in the previous section. Let us now turn to their applica-
tions to the Lyapunov stability. The approach presented
here was pioneered by C. Corduneanu (1960; 1961), but
for a comprehesive discussion see also (Lakshmikantham
and Leela, 1969a).

Let us just recall that the Lyapunov direct method
(Hahn, 1963) is of paramount importance for adaptive
control systems (Narendra and Annaswamy, 1989). If the
control objective is model reference tracking, then, even
for the linear time-invariant model of the plant, the closed-
loop system is nonlinear and nonautonomous, hence the
importance of the uniform asymptotic stability of time
varying systems (see Definition 5). This is a non-trivial
problem and in the closed-loop configuration additionally
complicated by the conflict of control action driving the
tracking error to zero with the adaptation rule aiming at
zeroing the parameter error. The nonlinear, time-varying
behaviour should be considered in the presence of distur-
bances and unmodelled dynamics, and thus requires ro-
bust stability (see Definition 6). The differential inequal-
ities approach to the Lyapunov stability deals precisely
with this problem.

In order to make our discussion rigorous, we start
with the necessary definitions. Let Kρ,t0 = {(x, t) ∈
R

n × R| ‖x‖ < ρ, t ≥ t0} be a half-cylindrical neigh-
bourhood of the t-axis in R

n × R.

Definition 1. A function φ : [0, ρ] → R is said to belong
to the class K if and only if it is continuous, monotoni-
cally increasing and φ(0) = 0.

Definition 2. A function V : Kρ,t0) → R is called posi-
tive definite if and only if V (0, t) ≡ 0 and there exists a
function φ : [0, ρ] → R of the class K such that

V (x, t) ≥ φ(‖x‖) (16)

in Kρ,t0 . The function −V is called negative definite.
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Note that (16) implies (by Definition 1) that V is
positive uniformly in t (for all t ≥ t0).

Definition 3. A function V : Kρ,t0) → R is called de-
crescent if and only if there exists a function ψ : [0, ρ] →
R of the class K such that

V (x, t) ≤ ψ(‖x‖) (17)

in Kρ,t0 .

The function ψ in (17) limits the growth of V from
above uniformly in t (for all t ≥ t0).

Definition 4. A function V : Kρ,t0) → R is called radi-
ally unbounded if and only if (16) holds for any ρ , where
φ(ρ) → ∞ as ρ→ inf .

Radial unboundedness is important for global stabil-
ity results.

Definition 5. Consider the vector differential equation

ẋ = f(x, t), f(0, t) ≡ 0 (18)

having a unique solution x(t; t0, x0) in a domain Γ ⊂
R

n × R for each initial condition (x0, t0) ∈ Γ. We say
that the trivial solution of (18) is

1. stable iff for any ε > 0 there exists δ = δ(ε, t0) >
0 such that ‖x0‖ < δ implies ‖x(t; t0, x0)‖ < ε for
all t ≥ t0;

2. uniformly stable iff for any ε > 0 there exists
δ = δ(ε) > 0 such that ‖x0‖ < δ implies
‖x(t; t0, x0)‖ < ε for all t ≥ t0;

3. asymptotically stable iff it is stable and there exists
δ� = δ�(t0) > 0 such that ‖x0‖ < δ� implies
limt→∞ ‖x(t; t0, x0)‖ = 0;

4. uniformly asymptotically stable iff it is uniformly sta-
ble and there exists δ� > 0 such that for any ε > 0
there exists T (ε) > 0 such that ‖x0‖ < δ� implies
‖x(t; t0, x0)‖ < ε for all t ≥ t0 + T (ε).

Definition 5 encapsulates the essential notions of the
Lyapunov stability of the zero equilibrium of (18) needed
in our context. The uniform stability (Concept 2 above)
differs from the ordinary one (Concept 1) by being in-
dependent of the initial time t0, despite the time-varying
character of (18). The important strengthening in Con-
cept 3 is that the trajectory x(t; t0, x0) will asymptoti-
cally tend to zero, which is a critical property for error
equations in adaptive systems. Finally, Concept 4 is the
most desirable combination: the trivial solution of (18)
is uniformly stable and it has a neighbourhood (defined

by ‖x0‖ < δ�) such that invariably (i.e., for all times
t ≥ t0 + T (ε)) the solution x(t; t0, x0) will approach the
equilibrium as closely as desired (within arbitrary preci-
sion ε).

Note that the notions of Definition 5 describe local
properties, i.e., they postulate the existence of a neigh-
bourhood of the t-axis (e.g., a half-cylinder Kρ,t0), in
which the relevant conditions hold.

From the robustness point of view it is important to
consider stability when the right-hand side of (18) is not
known exactly and/or the system (18) operates in the pres-
ence of disturbances. This motivates the following defini-
tion:

Definition 6. Consider the vector differential equation

ẋ = f(x, t) +R(x, t), f(0, t) ≡ 0 (19)

having a unique solution x(t; t0, x0) in a domain Γ ⊂
R

n × R for each initial condition (x0, t0) ∈ Γ. We say
that the trivial solution of (19) is

1. integrally stable iff, for any ε > 0, there exists δ =
δ(ε, t0) > 0 such that ‖x0‖ < δ and

∫ t

t0

sup
‖x‖<ε

‖R(x, t)‖ dt < δ (20)

imply ‖x(t; t0, x0)‖ < ε for all t ≥ t0;

2. stable under perturbations bounded in the mean iff,
for any ε > 0, there exists δ = δ(ε, t0) > 0 such
that ‖x0‖ > δ and

sup
t≥t0

∫ t+1

t

sup
‖x‖<ε

‖R(x, t)‖ dt < δ (21)

imply ‖x(t; t0, x0)‖ < ε for all t ≥ t0.

This definition deals with the robust stability of (19)
and thus conditions are imposed on the perturbation term
R(x, t) in (19). In this framework Property 1 in Defini-
tion 5 is considered. Thus, Concept 1 in Definition 6 pos-
tulates that for all trajectories x(t; t0, x0) (from a neigh-
bourhood ‖x0‖ < δ), the contribution of R(x, t) over
time is small if so are the trajectories (see (20)). A similar
idea is expressed in Part 2 of Definition 6 with one impor-
tant difference: the smallness of R(x, t) is measured by
the boundedness in the mean, i.e., on all intervals [t, t+1].

Let us now present the differential inequalities ap-
proach to the Lyapunov stability.

Lemma 1. (Szarski, 1967) Let t0 ≥ 0, kr,t0 = {(y, t) ∈
R × R| 0 ≤ y < r ≤ ∞, t ≥ t0} and ω : kr,t0 → R be
a continuous function. Consider the differential equation

ẏ = ω(y, t) (22)
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with (y0, t0) ∈ kr,t0 , and J the maximal interval of the
existence of a solution y(t) of (22) for (y0, t0). If z(t)
is a continuous function for all t ∈ [t0, t1], where J ⊂
[t0, t1], such that

D+z(t) ≤ ω(z(t), t) with z(t0) ≤ y0 (23)

for all t ∈ [t0, t1], then

z(t) ≤ y(t) (24)

for all t ∈ [t0, t1].

Here

D+z(t) = lim inf
h→0+

[z(t+ h) − z(t)]/h (25)

is the lower right Dini derivative.

For the lemma to hold it suffices that ω is contin-
uous, but then only the existence of solutions of (22) is
guaranteed, and not necessarily the uniqueness. More-
over, nothing is said about the trivial solution of (22). In
particular, we do not know if y(t) ≡ 0 satisfies (22).
These additional assumptions must be made in order
to proceed to the core results on stability (Corduneanu,
1960).

Theorem 3. (Corduneanu) Let ω be as in Lemma 1, give
rise to a unique solution of (22) for any (y0, t0) ∈ kr,t0

and ω(0, t) ≡ 0. Moreover, suppose that the function
V : Kρ,t0 → R, associated with (18), is locally Lipschitz
in Kρ,t0 and satisfies

V ′(x, t) ≤ ω(V (x, t), t) (26)

for all (x, t) ∈ Kρ,t0 , where

V ′(x, t) = lim inf
h→0+

V (x+ hf(x, t), t+ h)
h

. (27)

1. If the trivial solution of (22) is stable and V is pos-
itive definite, then the trivial solution of (18) is also
stable.

2. If the trivial solution of (22) is uniformly stable and
V is positive definite and decrescent, then the trivial
solution of (18) is also uniformly stable.

3. If the trivial solution of (22) is asymptotically stable
and V is positive definite, then the trivial solution of
(18) is also asymptotically stable.

4. If the trivial solution of (22) is uniformly asymptot-
ically stable and V is positive definite and decres-
cent, then the trivial solution of (18) is also uniformly
asymptotically stable.

5. If the trivial solution of (22) is integrally stable, V
is globally Lipschitz in Kρ,t0 and positive definite,
then the trivial solution of (18) is also integrally sta-
ble.

6. If the trivial solution of (22) is stable under perturba-
tions bounded in the mean, V is globally Lipschitz in
Kρ,t0 and positive definite, then the trivial solution
of (18) is also stable under perturbations bounded in
the mean.

Note that V is a Lyapunov functionwith (26) an ana-
logue of the negative definiteness condition. However, it
is more than that, as (26) allows considering families of
positive definite (and decrescent, where appropriate) func-
tions, and this is abetted by the possibility of choosing a
convenient ω. This allows investigating robust stability,
even via conditions 1–4 of Theorem 3. The claims 5–6
intrinsically deal with perturbations of the system (18).

In Theorem 3 the role of z(t) of Lemma 1 is played
by V (x, t) evaluated along the solution x(t;x0, t0). The
lower right Dini derivative of (27), together with the (lo-
cal or global) Lipschitz condition, corresponds to the total
(along the trajectory) derivative of the differentiable Lya-
punov function.

While the results of Theorem 3 are, by definition, lo-
cal in nature, they can be extended to the global ones (sta-
bility in the large), if it is possible to find a sufficiently
large ρ. If the required domain of stability is unbounded
or equal to R

n (stability in the whole), V must addition-
ally be radially unbounded. Again the robustness aspect
of the method will be retained.

An analogous approach (Corduneanu, 1961) allows
investigating instability.

4. MRAC via Special Techniques
of the Lyapunov Stability

In this section we describe certain special techniques of
the Lyapunov stability, which, coupled with the apparatus
of the previous sections, can be used to tackle the problem
of model following. They are also applicable in the model
reference adaptive control (MRAC) context and offer an
alternative perspective on the problem.

Section 4.1 presents a hardly known approach, origi-
nally proposed in a different context in mechanics. Here it
is recast in the model following framework. Section 4.1.1
shows how a development in the Lyapunov theory which
is independent of the results of Section 4.1 leads to a more
general setting relevant in the MRAC setup. The tech-
niques employ the differential inequalities machinery of
Section 3, thus offering robustness.
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4.1. Model Following: The Stability Approach

Early results are due to Makarov (1938), who considered
the following problem:

Definition 7. Let us consider the system of two vector
differential equations

ṙ = g(r, t), g(0, t) ≡ 0, (28)

ẋ = f(x, r, t) (29)

having in a domain Γ ⊂ R
n × R, for all initial condi-

tions (r0, t0),(x0, t0) ∈ Γ, a unique solution r(t; t0, r0)
of (28) and a unique solution x(t; t0, x0) of (29). The
system (28)–(29) is called Makarov stable if and only if
for any ε > 0 there exist δ1 = δ1(ε, t0) and δ2 =
δ2(ε, t0) such that ‖r0‖ < δ1 and ‖r0 − x0‖ < δ2 imply
‖r(t; t0, x0)‖ < ε and ‖r(t; t0, x0) − x(t; t0, x0)‖ < ε
for all t ≥ t0.

In essence, the definition postulates that the reference
model (28) be stable (in the sense of Part 1 of Definition 5)
and so be the error between the reference r(t) and the
state x(t) of the system (29). By modifications similar to
those in Parts 2–4 of Definition 5, we can get analogous
versions of the Makarov stability.

Of course, introducing the new variable e(t) =
r(t) − x(t) the problem may be recast into the (2n+ 1)-
dimensional classical (i.e., Part 1 of Definition 5) setting.
However, Definition 7 allows using a priori knowledge
of (29) and does not require f(0, 0, t) ≡ 0. Also, it may
be easier to work directly with (29) than to deal with the
new system obtained from the concatenation of r(t) and
e(t). In fact, the investigation of the Makarov stability can
be done by considering two Lyapunov-like functions: one
for r(t), the other for r(t) − x(t). To give the result, we
need the following definition:

Definition 8. Let Mρ,t0 = {(r, x, t) ∈ R
n×R

n×R| ‖r−
x‖ < ρ, t ≥ t0}. A function V : Mρ,t0 → R is called
Makarov positive definite if and only if v(r, r, t) ≡ 0 and
there exists a function φ : [0, ρ] → R of the class K such
that

V (r, x, t) ≥ φ(‖r − x‖) (30)

in Mρ,t0 .

Recall that Kρ,t0 dealt with the t-axis in R
n×R. In

Definition 8, Mρ,t0 takes into account that the ‘desired’
trivial solution is with respect to the difference r(t)−x(t).

Theorem 4. (Makarov) Let there exist two differentiable
functions V1 : Kρ,t1 → R and V2 : Mρ,t1 → R, such
that V1 is positive definite and V2 is Makarov positive

definite. The system (28)–(29) is Makarov stable if the
derivatives

V ′
1(r, t) = lim

h→0

V1(r + hg(r, t), t+ h)
h

=
∂V1

∂t
+

n∑
k=1

∂V1

∂rk
gk(r, t),

V ′
2 (r, x, t) = lim

h→0

V2(r+hg(r, t), x+hf(x, r, t), t+ h)
h

=
∂V2

∂t
+

n∑
k=1

(
∂V2

∂rk
gk(r, t)+

∂V2

∂xk
fk(r, x, t)

)

are negative definite in Kρ,t0 and Mρ,t0 respectively.

Instead of the differentiability of V1 and V2 in The-
orem 4, we could require them to be locally Lipschitz
and consider the lower right Dini derivative, as in Theo-
rem 3. However, differentiability permits the explicit for-
mulae (31) for V ′

1 and V ′
2 , which are helpful in under-

standing the essence of Makarov’s approach. Instability
results in the same vein can also be obtained.

The idea of considering two simultaneous systems
of vector differential equations and analysing the stabil-
ity of the difference of their solutions has been pursued
in various contexts by several authors. Particularly in-
teresting are methods utilising differential inequalities, as
in the works of (Lakshmikantham, 1962a; 1962b; Lak-
shmikantham and Leela, 1969a). The dicrete-time analo-
goues were considered by Pachpatte (1971).

4.1.1. Partial Stability

Makarov’s approach to model following, presented in
Section 4.1, is closelly related to partial stability, because
we may take for granted the stability of the reference
model (28). Thus, the problem reduces to the issue of
the stability of (29), i.e., it concerns only a part of the
(2n+1)-dimensional space. This motivates the following
definition (Corduneanu, 1964).

Definition 9. Let us consider the system of two vector
differential equations

ṙ = G(r, e, t), G(0, 0, t) ≡ 0, (31)

ė = F (r, e, t), F (0, 0, t) ≡ 0, (32)

having in a domain Γ ⊂ R
m × R

n × R a unique
solution r(t; t0, r0, e0) of (31) and a unique solu-
tion e(t; t0, r0, e0) of (32) for all initial conditions
(r0, e0, t0) ∈ Γ. The trivial solution (r(t), e(t)) ≡
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(0, 0) ∈ R
m × R

n of (31)–(32) is called partially sta-
ble with respect to e if and only if for any ε > 0 there
exists δ = δ(ε, t0), such that‖r0‖ + ‖e0‖ < δ implies
‖e(t, t0, r0, e0)‖ < ε for all t ≥ t0.

Let us note the special structure of the problem, em-
phasising the role of the solution e(t) ≡ 0 of (32). The
setting does not require the stability with respect to r, only
the existence of the trivial solution (r(t), e(t)) ≡ (0, 0)
(r(t), e(t)) ≡ 0. The vector e in (31)–(32) may be in-
terpreted in the context of MRAC as e(t) = r(t) − x(t),
provided n = m (see remarks to Definition 7). Defi-
nition 9 is a general one, so solutions of (31) depend on
e0 (since G depends on e), but in the setting similar to
Definition 7 this would not be relevant, as (31) would es-
sentially be (28).

By standard modifications of Definition 9 we can get
other notions of partial stability, analogous to Parts 2–4 of
Definition 5. In this context we need the following ana-
logues of Definitions 2 and 3, where Pρ0,t0 = {(r, e, t) ∈
R

m × R
n × R| ‖e‖ < ρ, t ≥ t0} emulates Kρ,t0 :

Definition 10. A function V : Pρ,t0 → R is called posi-
tive definite with respect to e if and only if V (0, 0, t) ≡ 0
and there exists a function φ : [0, ρ] → R of the class K ,
such that

V (r, e, t) ≥ φ(‖e‖) (33)

in Pρ,t0 .

Definition 11. A function V : Pρ,t0 → R is called
partially decrescent if and only if there exists a function
ψ : [0, ρ] → R of the class K such that

V (r, e, t) ≤ ψ(‖r‖ + ‖e‖) (34)

in Pρ,t0 .

The main result in the style of Theorem 3 is the fol-
lowing:

Theorem 5. Let ω be as in Lemma 1, give rise to a
unique solution of (22) for any (y0, t0) ∈ kr,t0 and
ω(0, t) ≡ 0. Moreover, suppose that the function V :
Pρ,t0 → R, associated with equations (31)–(32), is lo-
cally Lipschitz in Pρ,t0 and satisfies

V ′(r, e, t) ≤ ω(V (r, e, t), t) (35)

for all (r, e, t) ∈ Pρ,t0 , where

V ′(r, e, t)

= lim inf
h→0+

V (r+hG(r, e, t), e+hF (r, e, t), t+h
h

. (36)

1. If the trivial solution of (22) is stable and V is posi-
tive definite with respect to e, then the trivial solution
r(t) ≡ 0, e(t) ≡ 0 of (31)–(32) is partially stable
with respect to e.

2. If the trivial solution of (22) is uniformly stable, V
is positive definite with respect to e and partially de-
crescent, then the trivial solution r(t) ≡ 0, e(t) ≡ 0
of (31)–(32) is uniformly stable with respect to e.

3. If the trivial solution of (22) is asymptotically stable
and V is positive definite with respect to e, then the
trivial solution r(t) ≡ 0, e(t) ≡ 0 of (31)–(32) is
asymptotically stable with respect to e.

4. If the trivial solution of (22) is uniformly asymptot-
ically stable and V is positive definite with respect
to e and partially decrescent, then the trivial solu-
tion r(t) ≡ 0, e(t) ≡ 0 of (31)–(32) is uniformly,
asymptotically stable.

The reasoning can be carried over to Cases 5 and 6 of
Theorem 3. The required modifications of Definition 6 are
straightforward. If V in Theorem 5 is differentiable, as
opposed to the weaker Lipschitz condition, then the simi-
larity of (36) and (31) is explicit.

5. Conclusions

The approach presented in the paper is an attempt of ap-
plying the results from the quantitative theory of ordinary
differential equations to the analysis of the robustness of
the Lyapunov stability for nonlinear systems. This ap-
proach is similar to the one that has been used with success
to the analysis of the BIBO stability of discrete-time, non-
linear systems using difference inequalities (Dzieliński,
2002a; 2002b). In the continuous case presented here, dif-
ferential inequalities are used.
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