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Positron Emission Tomography (PET) is considered a key diagnostic tool in neuroscience, by means of which valuable
insight into the metabolism function in vivo may be gained. Due to the underlying physical nature of PET, 3D imaging
techniques in terms of a 3D measuring mode are intrinsically demanded to assure satisfying resolutions of the reconstruc-
ted images. However, incorporating additional cross-plane measurements, which are specific for the 3D measuring mode,
usually imposes an excessive amount of projection data and significantly complicates the reconstruction procedure. For
this reason, interpolation-based reconstruction methods deserve a thorough investigation, whose crucial parts are the inter-
polating processes in the 3D frequency domain. The benefit of such approaches is apparently short reconstruction duration,
which can, however, only be achieved at the expense of accepting the inaccuracies associated with the interpolating process.
In the present paper, two distinct approaches to the realization of the interpolating procedure are proposed and analyzed.
The first one refers to a direct approach based on linear averaging (inverse distance weighting), and the second one refers
to an indirect approach based on two-dimensional convolution (gridding method). In particular, attention is paid to two
aspects of the gridding method. The first aspect is the choice of the two-dimensional convolution function applied, and the
second one is the correct discretization of the underlying continuous convolution. In this respect, the geometrical structure
named the Voronoi diagram and its computational construction are considered. At the end, results of performed simulation
studies are presented and discussed.

Keywords: Tomographic reconstruction, three-dimensional positron emission tomography, Fourier slice theorem, frequ-
ency sample distribution, two-dimensional interpolation, inverse distance weighting, gridding method.

1. Introduction

With the aid of Computerized Tomographic (CT) imaging
methods, the human ability to gain non-invasive insight
into the internal structure of living organisms can be si-
gnificantly extended. Among the broad spectrum of va-
rious imaging techniques, Positron Emission Tomogra-
phy (PET) is regarded as a key diagnostic tool in neu-
roscience for studying the metabolism function in vivo
(Beutel et al., 2000). During the measuring procedure of
PET, tracer substances containing neutron-deficient radio-
isotopes have to be injected into the human body at first,
to spread in accordance with the metabolism in the body

and reach a quasi-steady distribution in the organ of inte-
rest afterwards. Since the half-life period of utilized ra-
dioisotopes is relatively short, the nuclear decay of the
neutron-deficient nuclide in terms of emitting positrons
may occur shortly after the injection. However, each of
the emitted positrons collides nearly immediately with an
available electron in tissues so that the so-called annihi-
lation process takes place. The two annihilation photons,
which emerge during this process, have very high depar-
ting velocities and may leave the human body in all like-
lihood along opposed directions. In this respect, if two
distinct photons are detected by two different sensor units
of the measuring system within a predefined time win-
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dow, this pair of photons can be assumed to belong to
the same annihilation process and can be hence registe-
red as a single coincidence event. Its true occurring lo-
cation, where the positron-emitting radioisotope actually
locates, lies somewhere on the straight line between these
two detecting sensor units. Thereafter, in the absence of
effects such as attenuation and scattering, the measured
number of coincidence events along the individual stra-
ight Line-Of-Response (LOR) between two sensor units
approximates the straight line integral of the underlying
tracer substance distribution. Since such substance distri-
butions normally reflect the metabolic functions in vivo,
malfunctions which are characteristic for diverse functio-
nal disorders could be diagnosed by observing the proper
visualization of the non-invasive distribution.

Due to the physical nature of the annihilation pro-
cess, the two emerging photons are actually emitted into
all spatial directions, i.e., there is no preferential direc-
tion in the three-dimensional (3D) spatial domain. Cor-
respondingly, 3D imaging techniques are intrinsically de-
manded for PET, since the more coincidence events are
measured by the measuring system of the PET scanner,
the better reconstruction quality may be achieved. To
fulfill this requirement, the measuring systems of most
PET scanners nowadays have cylindrical multi-ring struc-
tures whose cylindrical surfaces are subdivided into uni-
form sensor block units in both transaxial and axial direc-
tions (Bendriem and Townsend, 1998). For convenience,
the axial direction is conventionally designated as the z-
direction, whereas the transverse ring plane corresponds
to the x-y-plane, see Fig. 1. In order to enhance the
system sensitivity, not only the sensor units on the same
rings but also the ones on the different rings can be inter-
connected electrically. Thereby the originated large axial
field of view permits measurements of the so-called cross-
plane coincidence events and enables the achievement of
better reconstruction quality. To distinguish it from from
the obsolete two-dimensional (2D) measuring mode, such
an imaging technique in PET is henceforth designated as
3D-PET.

On the other hand, the incorporation of additio-
nal cross-plane events often results in an excessive
amount of projection data, which significantly com-
plicates the reconstruction procedure. By using stan-
dardized reconstruction algorithms such as analytical
Filtered-BackProjection (FBP) or the iterative Maximum-
Likelihood-Expectation-Maximization (MLEM) method,
clinically impractical reconstruction time durations be-
come necessary (Moon, 1996). For this reason, recon-
struction approaches based on the Fourier slice theorem,
by means of which spectral values at particular frequency
sampling points in the discrete object spectrum can be ob-
tained, deserve a thorough investigation. Starting from
those frequency samples, the original distribution function
in the spatial domain can be directly calculated by perfor-

ming the inverse Fourier transform. Because of the sim-
plicity of such approaches, the reconstruction time can be
considerably reduced. Since the available sampling points
in the 3D frequency domain are naturally unevenly distri-
buted, theoretically the time-consuming Discrete Fourier
Transform (DFT) should be applied to perform the inverse
transform. In practice, an additional interpolating step for
estimating the unknown spectral values on a predefined
Cartesian grid is usually inserted to enable the utilization
of the Fast Fourier Transform (FFT) algorithm. Once the
interpolation is accomplished, the sought-after discrete di-
stribution function can be calculated by performing the in-
verse FFT. In this way, the reconstruction can be sped up
thanks to the FFT’s speed advantage. Due to the usage of
the interpolating step, such reconstruction approaches are
referred to as interpolation-based reconstruction methods
in this paper and will be closely addressed.

In the present paper, the principle of interpolation-
based reconstruction approaches will be presented first.
Apparently, their crucial parts are the interpolating steps
in the frequency domain which are always associated with
inevitable inaccuracies (Thevenaz et al., 2000). In the 2D
measuring mode, the fact that the sampling points with
known spectral values are highly unevenly distributed le-
ads to a very tricky problem. In the low frequency regions,
the sample densities are still high enough to guarantee
the interpolation results, but in the high frequency regions
the sample densities are simply too low to ensure achie-
ving rational results. Compared with the 2D measuring
mode, this problem still remains in 3D-PET but turns out
to be less critical because there is a larger number of fre-
quency samples available in the frequency domain due to
the additional cross-plane events. This is particularly be-
neficial for minimizing the unavoidable artifacts introdu-
ced by the interpolation procedure. Unfortunately, some
analysis reveals also the side-effect of this benefit (Li et
al., 2005). The fluctuation of the sample density becomes
also much more unpredictable, which increases the com-
plexity of a rational implementation. Based on this fact,
two distinct realizations of the interpolation procedure are
pursued. The first approach uses the straightforward li-
near averaging method to estimate the unknown spectral
values, whereas the second approach applies convolution
operations to obtain the values at desired interpolation po-
ints. Simulation results of these two approaches are pre-
sented subsequently. Due to the achieved different perfor-
mances, specific details and possible reasons are presented
and discussed at the end.

2. Principle of the interpolation-based
reconstruction approach

The fundamental concept of interpolation-based recon-
struction methods in 3D-PET is given by the 3D Radon
transform, which relates the measurable projection data to
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Fig. 1. Schematic illustration of the sensor arrangement of
a PET scanner.

the underlying continuous tracer distribution via integrals
along straight lines (Kak and Slaney, 1988). With the 3D
tracer distribution defined as f(x, y, z), the mathematical
definition of the associated projection signal p(u, v, ϑ, ϕ)
at a certain projection angle (ϑ, ϕ) can be formulated as

p(u, v, ϑ, ϕ) =
∫ ∞

−∞
f(x, y, z) dt, (1)

where the involved 3D coordinate transform is defined by⎡
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The spatial slope of an individual straight line is determi-
ned by the azimuthal angle ϕ and the co-polar angle ϑ
with respect to the transverse ring plane, while the para-
meters u and v depict its displacement with respect to the
origin in the space domain.

In accordance with the definition (1), the originally
2D Fourier slice theorem may be generalized to

P (jωu, jωv, ϑ, ϕ)
=F (jωx, jωy, jωz)∣∣∣∣∣∣∣

ωx = −ωu sin ϕ − ωv cos ϕ sin ϑ

ωy = ωu cos ϕ − ωv sin ϕ sin ϑ

ωz = ωv cos ϑ

,

(2)

which implies that the 2D Fourier transform of the pa-
rallel projections p(u, v, ϑ, ϕ) with respect to the varia-

bles u and v at a certain projection angle (ϑ, ϕ) corre-
sponds to a central plane crossing the 3D Fourier trans-
form of f(x, y, z) at exactly the same projection angles,
see Fig. 2. Theoretically, with the help of the extended
3D Fourier Slice Theorem in (2), the 3D object spectrum
F (jωx, jωy, jωz) could be entirely recovered by acqu-
iring 2D projection spectra at all feasible projection an-
gles. Despite possible data redundancy, the desired tracer
distribution could then be figured out by performing the
inverse Fourier transform (Li et al., 2005). Unfortuna-
tely, this procedure is merely applicable for the continu-
ous case. In practice, the number of available projection
angles as well as the number of projections at each pro-
jection angle are strictly limited. In this note, the recon-
structed 3D object spectrum is no longer of continuous
nature, but it is merely composed of frequency samples.
Due to the additional cross-plane coincidence events in
the 3D measuring mode, the number of obtainable frequ-
ency samples in the frequency domain is larger than that
in the 2D measuring mode. For an interpolation-based
reconstruction approach, the exact arrangement of these
frequency samples in the 3D frequency domain has to be
ascertained for the subsequent interpolating procedure.

3. Distribution of frequency samples in the
3D frequency domain

With the measurable projection data defined as straight
line-integrals, projections having the same inclination can
be combined together as sets of parallel line-integrals. Al-
though the sensor system of a modern PET scanner has
actually a cylindrical multi-ring structure, the measured
coincidence events can be subsequently arc-corrected and
rearranged in such a way as if they were consecutively
captured by two simultaneously rotating, parallel sensor
panels at various projection angles, see Fig. 3. It is worth
emphasizing here that despite the slope of the two projec-
tion panels with the angle ϑ in the axial direction, the rota-

Fig. 2. Schematic illustration of the 3D Fourier slice theorem.
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tional axis of the rotational movement remains the z-axis.
The individual projection beam which is determined by
the two associated block-detectors is conventionally desi-
gnated as the Tube Of Response (TOR). Along with this
modeling scheme, a related fictitious projection plane can
be introduced at each projection angle, which is parallel to
the two-sensor panels and additionally passes through the
origin of the spatial domain. If the inclination of a pro-
jection plane is defined as the direction of its normal, the
inclination of a projection plane is then consistent with the
associated projection angle.

Fig. 3. Modeling scheme of a cylindrical sensor system as two
simultaneously rotating sensor panels.

According to this definition, in the case of the 2D
measuring mode the projection plane has definitely no in-
clination with respect to the z-axis, whereas in the case
of the 3D measuring mode the projection plane correla-
ting with cross-plane coincidence events may be inclined
with respect to the z-axis. In the latter case, the associated
co-polar angle ϑ has a nonzero value. Due to the geome-
trical modeling scheme of the PET scanner, the measura-
ble parallel projection samples in a projection plane are
intrinsically equidistantly arranged along the z-axis. On
the contrary, along the perpendicular transverse direction
an arc-correction step has to be performed to ensure the
equidistance between adjacent projection samples, which
is normally already integrated into the projection acquisi-
tion procedure of hardware and hence causes no additional
computational overhead.

To this end, the projection samples in an arbitrary
projection plane are indeed ordered on a Cartesian gird.
Thereupon, the 2D fast Fourier transform can be utilized
to compute the discrete projection spectrum economically,
while the frequency samples are arranged on a Cartesian
grid as well. Considering the multi-ring block-detector
structure of a PET scanner, the spatial distribution of fre-
quency samples in the reconstructed 3D object spectrum
can be indeed constituted by consecutively gathering the
frequency samples with distinct inclinations, as if the 2D

Cartesian lattices of frequency samples were revolved in
the 3D frequency domain. In Fig. 4, such a constitution
procedure is schematically illustrated. For the 2D measu-
ring mode, the revolving Cartesian lattice in the frequency
domain has no slope with respect to the ωz-axis so that
the resulted frequency samples are bounded within a cy-
lindrical scope, see Fig. 4. In the 3D measuring mode,
however, apart from the projections along the transverse
direction, the revolving 2D Cartesian lattices correlating
with cross-plane events definitely tilt to the ωz-axis. In
this case, only part of the object spectrum can be recon-
structed. The confined region in the 3D frequency domain,
in which no frequency samples are obtainable, resembles
a head-to-head adhered truncated double-cone, see Fig. 4.
The final distribution of frequency samples in the recon-
structed 3D object spectrum is hence the accumulation of
all acquirable frequency samples, no matter whether from
the inclined or the noninclined Cartesian lattices.

The resulting frequency samples are obviously irre-
gularly distributed in the frequency domain. For the sake
of rapid reconstruction, interpolating steps have to be con-
ducted to enable the usability of the FFT algorithm. The-
oretically, a true 3D interpolating procedure in the 3D fre-
quency domain seems to be inevitable. But by observing
it closely, it turns out that only consecutive 2D interpo-
lations in a set of transverse planes are really required,
because the obtainable frequency samples fall exactly in
these equidistantly displaced planes which are perpendi-
cular to the ωz-axis (Li et al., 2006). This characteristic
simplifies the computational complexity of the interpola-
ting procedure significantly and speeds up the reconstruc-
tion again. Generally speaking, incorporating cross-plane
measurements leads to an increased density of frequency
samples in all transverse planes, which induces to scale
down the interpolation error effectively. However, depen-
ding on the axial location of the transverse plane, the den-
sity increase fluctuates considerably in various regions of

(a) (b)

Fig. 4. Schematic illustration of the frequency sample structure
in the reconstructed 3D object spectrum: (a) Fourier
transformed projection plane with no inclination , (b) Fo-
urier transformed projection plane with inclination.



Interpolation-based reconstruction methods for tomographic imaging . . . 67

transverse planes. For a transverse plane lying closely to
the origin of the 3D frequency domain, the additional fre-
quency samples concentrate predominantly in the central
region, where the density is already high enough for ratio-
nal interpolation, see Fig. 5. Otherwise, for a transverse
plane lying comparatively far from the spectral origin, the
predominant concentration of additional frequency sam-
ples shifts outwards, see Fig. 5. From the experience ga-
ined during the simulation, the density increase of frequ-
ency samples in the border area is actually more beneficial
for improving the interpolation results than the density
increase in the central region of an individual transverse
plane, because the density of only obtainable frequency
samples in the 2D measuring mode is too low for a ratio-
nal interpolation in the border region.

(a) (b)

Fig. 5. Schematic illustration of frequency sample distributions
in distinct transverse planes in the reconstructed 3D ob-
ject spectrum: (a) distribution of frequency samples in
a transverse plane lying close to the spectral origin, (b)
distribution of frequency samples in a transverse plane
lying far from the spectral origin.

4. Consecutive 2D interpolation procedures
in the 3D frequency domain

For the purpose of speeding up the reconstruction pro-
cedure, interpolation operations have to be performed in
each transverse plane of the reconstructed 3D object spec-
trum to enable the usability of the FFT algorithm. This
procedure is illustrated schematically in Fig. 6. Although
the intrinsic error associated with the interpolating proce-
dure cannot be completely avoided, distinct interpolating
schemes do provide varying performances. In the present
paper, two distinct interpolating approaches are pursued
and analyzed. The first approach presents a straightfor-
ward solution, for which the unknown spectral values are
estimated by the weighted linear averaging of the spec-
tral values of the relevant neighboring frequency samples.
On the contrary, the second approach uses the 2D convo-
lution operations in each transverse plane to acquire the
unknown values at the interpolation sites. Due to the 2D
convolution operation in the frequency domain, an addi-

Fig. 6. Illustration of the interpolating procedure in all
transverse planes.

tional division step in the spatial domain has to be accom-
plished subsequently to acquire the correct results.

4.1. Inverse distance weighting interpolation. The
Inverse Distance Weighting (IDW) interpolation method,
which was originally utilized in geoinformatics, can be
easily adopted for the case of interpolating from 2D une-
venly distributed frequency samples onto frequency sam-
ples arranged on a Cartesian grid in the transverse plane.
The IDW method is based on the assumption that the fre-
quency sample which is to be interpolated should be more
influenced by the closely located than by the remotely lo-
cated neighboring samples (Fisher and Embleton, 1987).
In this respect, the value at the desired location is then a
weighted linear average of the neighboring values, whe-
reas the associated weight decreases if the distance be-
tween the interpolation site and the scattered neighbor in-
creases. The corresponding mathematical definition of
IDW interpolation can be therefore formulated as

Fregular =
N∑

i=1

wi · fi, with wi =
h−p

i
N∑

j=1

h−p
j

, (3)

where fi represents the spectral value of the i-th scattered
frequency sample and wi the associated weight. In the for-
mula for calculating individual wi, hj depicts the distance
between the j-th neighboring sample and the interpolation
site, while N is the total number of all existing neighbors
within a pre-specified neighborhood. In Fig. 7, the selec-
tion of a relevant neighborhood and the related neighbo-
ring samples are exemplified, where the pre-defined rele-
vant neighborhood is illustrated as a gray-shaded square.

In fact, the larger the relevant neighborhood is selec-
ted, the larger the number of scattered frequency samples
may be incorporated into the interpolating procedure, and
in turn the more accurate interpolation results could be
expected. However, a large number of sample neighbors
means also a higher computational expense, which cor-
respondingly slows down the reconstruction speed. The-
refore, a trade-off between the reconstruction time and
the interpolation accuracy has to be made. In the pre-
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sent paper, two different solutions are proposed in this
respect. On the one hand, the neighborhood’s extent is
uniformly defined independently of the related frequency
sample densities. The drawback of this easily realizable
approach is that the number of incorporated frequency
samples is permanently variable. Particularly in the bor-
der region of the traverse plane, the number of samples
could be very low because neighboring samples for a spe-
cified interpolation site are often barely available. On the
other hand, instead of a uniform extent of neighborhood
an equal number of neighboring samples can be used as
the criterion to determine the unequally bounded neigh-
borhood. In the border region with a low sample den-
sity, the seeking area has to be expanded gradually until
enough neighboring samples are encountered. Compa-
red with the former case, this seeking procedure is much
more time consuming. Fortunately, the exact locations of
unevenly distributed frequency samples in each transverse
plane can be determined in advance, because they are only
affected by the geometry of the PET scanner. Consequ-
ently, the unevenly distributed frequency samples in each
plane can be sorted according to their locations by using
an efficient data structure such as the balanced binary tree.
Based on the specified neighboring samples, the associa-
ted weights wi can be directly calculated according to (3).
Since the locations of the frequency samples as well as
their associated weights can be calculated without know-
ledge about their spectral values, the seeking and the suc-
cessive calculating procedure can be completed prior to
the actual reconstruction. In this way, the reconstruction
duration can be kept short.

4.2. Gridding method. The second approach to es-
timate the spectral values on a specified 3D Cartesian
lattice is based on separate 2D convolution operations
in each transverse plane. This approach was conventio-
nally used in the 2D reconstruction scenario and embra-
ced by the term “gridding method” (Schomberg and Tim-
mer, 1995). Since the irregularly distributed frequency

Fig. 7. Selection of the relevant neighborhood for a frequ-
ency node in the transverse plane to be interpolated.

samples in the 3D frequency domain merely locate in cer-
tain transverse planes, the gridding method known from
the 2D scenario can be easily extended to the 3D recon-
struction scenario, whose functional principle is outlined
in the following way: Consider a discrete 3D object spec-
trum Firregular, whose frequency samples are irregularly
distributed in a set of equidistantly displaced transverse
planes in the frequency domain. The equivalent discrete
spectrum FCartesian, but with sampling points arranged on
a 3D Cartesian grid, can be obtained by consecutively per-
forming 2D convolutions with a predefined 2D window
function Wwindow in all the transverse planes:

{FCartesian}layer = {Firregular}layer ∗ Wwindow, (4)

where ∗ denotes the 2D convolution operation and the
subscript { · }layer indicates that the convolution operation
merely takes place layer-wise. Due to the consecutive 2D
convolutions, the obtained FCartesian actually is not the
sampled object spectrum of the desired distribution func-
tion fCartesian, but rather an intermediate outcome. In
order to compensate the effect of convolution in the fre-
quency domain, an additional division step in the spatial
domain has to be introduced in the inversion step, prior to
a straightforward 3D inverse Fourier transform. With F−1

xy

defined as the 2D inverse Fourier transform in each trans-
verse plane with respect to the variables x and y, and F−1

z

defined as the 1D inverse Fourier transform with respect
to the variable z, respectively, the correct inversion pro-
cedure to acquire the desired fCartesian can be ultimately
expressed by the formula

fCartesian = F−1
z

{
F−1

xy {FCartesian}layer

wwindow

}
, (5)

where wwindow denotes the 2D inverse Fourier transform
of the 2D convolution window Wwindow used in the fre-
quency domain.

Despite the seemingly uncomplicated expression
in (5), two significant aspects of the gridding method have
to be carefully considered. The first one is the selection of
the 2D window function Wwindow. Theoretically, the opti-
mal convolution function in the frequency domain should
be of infinite extent, which is, however, impractical with
respect to the computational cost. For this reason, the co-
nvolution function has to be truncated and windowed, so
that a trade-off between the reduced computational effort
and the accompanied accuracy deficit has to be taken into
account. Several authors have been engaged in this aspect
for finding an optimally appropriate solution and sugge-
sted the Modified Kaiser-Bessel (MKB) window function
as the most promising candidate (Schomberg and Tim-
mer, 1995; Jackson et al., 1991; Matej and Lewitt, 2001).
Although the conducted works deal mainly with the 2D
reconstruction scenario, the proposed MKB window func-
tion can be adopted here without significant modification,
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since for 3D-PET merely successive 2D gridding proce-
dures are required. With properly selected parameters, the
bell-shaped MKB function and its inverse Fourier trans-
form may be free from discontinuities. Actually, the 2D
convolution window used is the multiplicative product of
two 1D MKB functions.

The second important aspect of the gridding method
is the correct discretization of the underlying 2D continu-
ous convolution depicted in (4), since in Firregular only
frequency samples are available. In this case, the continu-
ous integral operation must be approximated and replaced
by a double summation, where each involved frequency
sample receives a weighting factor. Generally speaking,
the related weighting factor for a certain frequency sam-
ple is inversely proportional to the local density of its ne-
ighboring frequency samples. However, since the frequ-
ency samples are highly nonuniformly distributed in each
transverse plane, accurate calculation of an individual we-
ighting factor poses a computational challenge. In this re-
spect, a new modeling scheme for the assigned weighting
factors of scattered frequency samples are proposed, na-
mely, accurately modeled as the normalized area of a po-
lygon, which belongs to the specified frequency sample in
the transverse plane. According to this modeling scheme,
the higher the local density frequency sample, the smal-
ler the assigned polygon and correspondingly the smaller
the related weighting factor. In computational geometry,
the subdivision induced by this scheme is called the “Vo-
ronoi diagram.” Compared with the modeling schemes
proposed in the literature so far, the resulting weighting
factors are also much more precise in terms of discretiza-
tion. In contrast to some proposed time-consuming itera-
tive approaches, this modeling scheme is straightforward
and time efficient.

4.3. Computational construction of the Voronoi dia-
gram. The Voronoi diagram is a versatile geometric
structure. For a set of distinct frequency samples in a
transverse plane, the associated Voronoi diagram is defi-
ned as the subdivision of the plane into various polygons,
one for each sample, with the property that an arbitrary
point lies within a specified polygon if and only if the di-
stance from this point to the sample of the associated po-
lygon is shorter than all other distances between this point
and the remaining samples (De Berg et al., 1997). Such
polygons are often called Voronoi cells, whose normali-
zed area contents are of interest for the gridding method.
In Fig. 8, an exemplary Voronoi diagram for some given
frequency samples is schematically illustrated. Due to the
finite extent of Wwindow, a bounding neighborhood for
each interpolation location must be selected first, within
which the Voronoi diagram is to be generated.

For computing the Voronoi diagram, Fortune’s algo-
rithm commonly known and named after its inventor, is
preferred and implemented in this paper (Fortune, 1987).

Fig. 8. Schematic illustration of an exemplary Voronoi diagram.

The strategy of this efficient, event-driven algorithm is to
sweep a straight line over the concerned transverse plane,
during which action two different sorts of events are to be
correspondingly handled, the so-called site-event and the
arc-event. These two different events can be distinguished
subject to the intersection of the already constructed part
diagram structure with the sweeping line. In case of enco-
untering a site-event, a new Voronoi cell with associated
pending edges has to be added to the existing structure,
whereas for encountering an arc-event, the pending edges
of an open Voronoi cell are terminated by attaching inter-
section vertices. The affected Voronoi cell is thus closed.
However, after all detected events are handled, there are
still some open Voronoi cells. To close them, a bounding
box which is equal to the predefined relevant neighbor-
hood has to be added to the existing structure. In this
manner the Voronoi diagram, which is only composed of
close Voronoi cells, can be constructed step by step till
completeness. Once the complete Voronoi diagram is ge-
nerated, the areal content of each single Voronoi cell can
be easily calculated based on its determined vertices and
accordingly the weighting factor of the associated frequ-
ency sample can be figured out as well.

4.4. Remaining difficulty. Despite this clear construc-
tion scheme, there is a remaining difficulty in constructing
the Voronoi diagram. Since the encountered events do not
have to be handled immediately, they need to be sorted in
a queue temporarily subject to their associated coordina-
tes. The coordinate of a site-event is simply the coordinate
of the associated frequency sample itself, whereas the co-
ordinate of an arc-event is actually the coordinate of the
associated circle’s center. Since the associated circle of an
arc-event is normally determined by three points during
the construction, numerical calculations based on their co-
ordinates are necessary. In this case, numerical inaccura-
cies cannot be completely excluded. Particularly, since
the frequency samples in the transverse plane may be so-
metimes very densely distributed, numerical inaccuracies



70 Y. Li et al.

turn out to be a really serious problem so that in the worst
case the affected events may be sorted into a queue with
a wrong order. Due to the progressive nature of Fortune’s
algorithm, even a simply inverted order may lead to a to-
tally false outcome for the Voronoi diagram. Despite great
efforts such as iteratively solving the underlying quadratic
equation, this problem cannot be optimally and comple-
tely avoided so that within the scope of the present paper
an additional verifying step has to be accomplished after
the constructing procedure. If degeneracy is spotted, the
affecting frequency sample has to be regrouped with a ne-
arby neighboring frequency sample and the constructing
procedure has to to be repeated under the modified con-
dition. Once the Voronoi diagram is generated, the regro-
uped frequency samples receive a weighting factor which
is equal to the normalized areal content of the Voronoi
cell divided by the number of regrouped samples. This
means effectively that the erroneously calculated weigh-
ting factor has to be accepted to by-pass the numerical
problem. However, as the degeneracy occurs seldom and
the number of neighboring samples is relatively large, the
influence of such approximations could be reasonably ne-
glected.

5. Simulation results

For the purpose of evaluation, the two interpolation-based
reconstruction methods were implemented using the pro-
gramming language C++. Although the two proposed me-
thods are generally applicable to truly measured projec-
tion data, in the scope of this paper only simulation stu-
dies on the basis of simulated projection data are perfor-
med. This is due to the fact that the simulated projec-
tion data are free from the acquisition noise, which is ty-
pical for the truly measured projection data. In the case of
using simulated projection data, the reconstruction results
are merely influenced by the utilized reconstruction me-
thods and reasonable evaluation with respect to the recon-
struction quality may be achieved, whereas in the case of
using truly measured projection data, the cause of possi-
ble reconstruction deviation cannot be clearly ascertained.
For this reason, using noise-free projection data is signifi-
cant for a correct evaluation of the discussed interpolation-
based reconstruction methods.

Consequently, a 3D phantom object consisting layer-
wise of the so-called 2D Shepp-Logan phantoms is defi-
ned as the original distribution function, which is of the di-
mension 128 × 128 × 32, i.e., 32 layers in the z-direction
and 128 × 128 pixels on each transverse layer. The 2D
Shepp-Logan phantom contains several ellipses with dif-
ferent sizes and absorption properties to resemble the fe-
atures in the human brain. In order to imitate the 3D brain
structure, the extents of the 2D Shepp-Logan phantoms on
various layers are intentionally differently specified and
the change of extents between layers basically occurs gra-

Fig. 9. 3D phantom object consisting layer-wise of 2D
Shepp-Logan phantoms.

dually, e.g., the 2D phantoms on the topmost and lower-
most layers are much smaller than that on the central layer,
see Fig. 9. Based on this defined 3D phantom, the corre-
sponding projection data can be then computed by means
of the accurately modeled system matrix, which is prima-
rily based on the geometry of the individual TOR and self-
implemented before (Li et al., 2006).

By using interpolation-based reconstruction me-
thods, i.e., the direct approach (IDW) and the convolution-
based indirect approach (gridding method), distinct recon-
struction results of the original 3D phantom can be achie-
ved. In Fig. 10, the layer-wise depiction of the reconstruc-
ted 3D phantom object by using the IDW method is gi-
ven. The observation of this reconstruction result confirms
clearly the correctness of the implemented IDW method,
in which 2D Shepp-Logan phantoms of various extents
in individual transverse layers are properly reconstructed.
This conclusion is also applicable to the reconstruction
results achieved by using the gridding method. Its com-
plete layer-wise depiction is omitted here, because, due to
the restricted depiction extents, differences between the
results of the two discussed methods can be barely di-
stinguished optically. Instead, for the purpose of a sub-
jective evaluation, the middle layers of differently recon-
structed 3D phantoms as well as the original Shepp-Logan
phantom of the same extent are exemplarily selected and
depicted side by side in Fig. 11. Although both of the
interpolation-based reconstruction methods yield seemin-
gly correct results, optical observation shows anyhow that
the reconstruction result achieved by using the IDW me-
thod exhibits more distortions than the result achieved by
using the gridding method. On the contrary, the difference
between the reconstruction results based on the 2D filtered
backprojection and the gridding method is minor. Never-
theless, one can say that the contrast in the reconstructed
phantom by using the gridding method is slightly higher
so that the contour is correspondingly clearer.

As for the simulation time, less than 10 minutes on a
PC are really needed to complete the reconstruction for a
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Fig. 12. RMSD values of various reconstruction results.

given dimension, which may appear at first glance not to
be very efficient. However, most of the simulation time
actually has to be spent to load the pre-calculated we-
ighting factors from the hard disc into the main memory.
In this respect, there is no significant time difference be-
tween the two reconstruction methods, since no matter
how the weighting factors are calculated, they are both
pre-calculated and stored on the hard disc as files. Apart
from this reading time, the real reconstruction time is in
fact much shorter, e.g., a couple of minutes. Neverthe-
less, further analysis regarding the data arrangement and
efficient data input/output is inevitable.

In order to quantify the differences between the
diverse reconstructions, the values of the Root-Mean-
Square-Deviation (RMSD) for individual reconstruction
results can be calculated, with the mathematical definition
given by

RMSD =

√√√√ 1
MN

M∑
i=1

N∑
j=1

(fori [i, j] − frec [i, j])2 ,

(6)
where fori [i, j] and frec [i, j] denote respectively the ori-
ginal and reconstructed pixel values in the i-th row and
j-th column of the same layer with M rows and N co-
lumns. In Fig. 12, the calculated RMSD values depending
on layer numbers are depicted for various reconstruction
results. Besides IDW and the gridding method, the results
of the 2D filtered-backprojection serving as a reference
are also evaluated. For the IDW method, both the uniform

(a) (b)

(c) (d)

Fig. 11. Middle layers in the reconstructed 3D phantoms by
using the Fourier-based inversion methods and the 2D
filtered backprojection: (a) Shepp-Logan phantom, (b)
2D filtered backprojection , (c) inverse distance weigh-
ting , (d) gridding method.

neighborhood and the uniform number of neighbors are
taken into account. The diagram in Fig. 12 reveals that
both of the IDW implementations provide equivalent out-
comes, which are, however, worse than that of the FBP
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method, whereas the result achieved by using the grid-
ding method has the best reconstruction quality among all
the methods. The reason for the unsatisfying result of the
IDW method traces back to the fact that the straightfor-
ward interpolation in the frequency domain corresponds to
an equivalent low-pass filtering in the space domain, thro-
ugh which artefacts are introduced into the reconstruction
results. On the contrary, the gridding method uses convo-
lution instead of direct interpolation and therefore balan-
ces the effect of low-pass filtering to some degree. While
for the IDW method the weighting factors are exclusively
determined by distances between frequency samples and
the interpolation location, the gridding method has a much
higher degree of freedom due to the versatile choices of
convolution functions. In particular, by choosing the para-
meters of the MKB function properly, a good compromise
that both the MKB function in the frequency domain and
its inverse transform in the space domain decay relatively
rapidly and smoothly can be reached so that the low-pass
effect can be compensated more effectively.

6. Conclusions

In this work interpolation-based reconstruction methods
for 3D-PET were proposed and analyzed. Since merely
consecutive 2D interpolation operations in the 3D frequ-
ency domain are necessary, reconstruction procedures can
be sped up significantly. However, simulation studies re-
veal that classically implemented interpolation does not
provide satisfying results, while interpolation performed
based upon convolution operations in the frequency do-
main leads indeed to a better reconstruction quality. Al-
though additional compensating steps in the spatial do-
main are demanded, the required weighting factors can be
calculated in advance and fetched during the convolution
procedure so that the thereby caused computational over-
head may be even neglected.
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