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STABILITY AND OPTIMAL CONTROL OF NONLINEAR
DESCRIPTOR SYSTEMS: A SURVEY

PeTER C. MULLER*

In recent years the analysis and synthesis of control systems in descriptor form
have been established. This general description of dynamical systems is im-
portant for many applications in mechanics and mechatronics, in electrical and
electronic engineering, and in chemical engineering as well. This contribution
presents a survey of results on the stability analysis and on the optimal control
design of such systems. Lyapunov’s stability theory is generalized for descriptor
systems based on the stability theory with respect to a part of variables. Simi-
larly, the calculus of variations and Pontryagin’s maximum principle are checked
for a possible application in descriptor systems. Here, the notion of causality
plays an important role in whether or not Pontryagin's maximum principle can
be applied.

1. Introduction

In the last decade significant progress in dynamic systems described by differential-
algebraic equations (DAE) has been observed. In control theory descriptor (or singu-
lar) control systems have been investigated (Dai, 1989) and effective codes have been
developed in numerical mathematics to simulate such systems (Brenan et al., 1989;
Fihrer, 1988; Griepentrog and Marz, 1986; Hairer et al., 1989; Simeon, 1994). But
still there are many unsolved problems related to the analysis, design and simulation
of descriptor systems. Recent progress in parameter identification of linear mechanical
descriptor systems was outlined in (Schmidt, 1994). New methods for the analysis and
control design of linear mechanical descriptor systems can be found in (Schiipphaus,
1995). A thorough investigation of observers for general linear descriptor systems
was conducted in (Hou, 1995). Also the stability behaviour of such systems has been
discussed (Baji¢, 1992; Miiller, 1993) and first attempts to deal with the stability
problems of nonlinear mechanical descriptor systems can be found (Miiller, 1994). In
(Miiller, 1993; 1994) more references on related investigations are given. Following
(Miiller, 1996b), in this contribution some new results on the stability of nonlinear
descriptor systems are presented.

Similarly, the calculus of variations and Pontryagin’s maximum principle are
checked for a possible application in descriptor systems. The main problem of the op-
timal control design consists in the causality or non-causality of the descriptor system
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(Miiller, 1997b). Causality plays an important role in whether or not Pontryagin’s
maximum principle can be applied. Causality and non-causality distinguish between
the cases where the descriptor system is exclusively governed by the control input
or by its time-derivatives additionally. In the unusual case of non-causal systems a
quite different problem of optimal control design has to be considered (Miiller, 1997a;
1996a).

2. Problem Statement

Controlled time-invariant finite-dimensional descriptor systems can be described in
semi-explicit form by

;= fi(x1,z2,u) (1)

0 = fylzr, 22, 1) (2)

where x;,7 = 1,2 are n;-dimensional vectors and n; + ng = n. For the follow-
ing discussion of stability and of optimal control design we assume that the vector
functions are sufficiently smooth. Additionally, the uncontrolled system may have an
equilibrium point

1 =0, Ty =0, f1(0,0,0) =0, f2(0,0,0)=0 (3)

A special class of differential-algebraic equations (1), (2) consists of mechanical
descriptor systems with holonomic constraints described by Lagrange’s equation of
first kind:

M(2)% + k(z,2) = FT(2)A + T(z)u (4)
£(2)+ Ru =0 (5)

We confine ourselves to this case, but nonholonomic constraints could be consid-
ered too. The f-dimensional vector of displacements is denoted by z and w is the
r-dimensional vector of control inputs. The p-dimensional vector A represents con-
straint forces due to p holonomic constraints (5) (in the calculus of variations they
are Lagrange multipiers). The matrix of inertia M (z) is assumed to be symmetric,
bounded and (uniformely) positive definite. The vector function k(z, %) includes
Coriolis and centrifugal forces and uncontrolled applied forces as well. T is the input
matrix of a suitable dimension. The p x f-matrix F'(z) is the Jacobian matrix of the
constraint (5):

F(z)= 7 (6)

T 92T

It is assumed that the constraints are independent. In the case of linear constraints
this assumption is guaranteed by the condition

rank F =p (7)
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The matrix R represents a possible constant control input matrix in the constraints.
The form (1), (2) of the mechanical descriptor system (4), (5) is obtained by defining

2= |7, z=a (8)
z

[ 2
fr = _—M_l(k—FT)\—T’u) v fa=f+Ru 9)

ny = 2f5 nag=p (10)

The problems of stability and optimal control of nonlinear descriptor systems
consist on the one hand in the discussion of the stability of the equilibrium point (3)
of the system (1), (2) and, on the other hand, in the control design for (1), (2) with
respect to the performance criterion

T
J= / fo(x1, 2, u) dt — minimum (11)
0 uclU
where U is a set of bounded or unbounded control functions u(t). Again it is assumed

that the function fy is sufficiently smooth with respect to its arguments.

3. Representations of the System

To study descriptor systems carefully it is advantageous to have in mind different
forms of representation of the dynamical system (1), (2) which are related either to
the generation of differential equations for the z,-vector differentiating the algebraic
equations (2) as long as necessary or to the elimination of redundant coordinates gen-
erating the state space differential equations. In both the cases the key for that is the
index k of the system (1), (2) which is roughly speaking the number of differentiations
of the algebraic equations (2) to get the underlying set of ordinary differential equa-
tions (ODE). For simplicity, we assume that all algebraic equations have a uniform
index, i.e. that they all have the same index. Then we have in the case of index k:

%Eyug)zo, i=0,.. k-1 (12)
-1
Ty =~ (%Lf’fl(fQ)) LF(fy) = Fa(zr,@,u,...,ul) (13)
where
A
L() = L () + La() + ) (14)

a(- o(- ) A
Ly () = 5%]‘17 L,»n()= %Um: ELu(i)(') = L+ (-)  (15)
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The operator (14) is defined by the operators (15) where the first two are some Lie
derivatives and the last one is only applied to L,u by differentiating the control
input function with respect to time. The vector functions Li(fy), j=0,...,k—2
depend on x; but not on x3. The function L¥=1(f,) depends on x, such that the
related Jacobian matrix is regular and the differential equation (13) can be derived.
L*1(f,) = 0 is a first integral of (13). Additionally, the functions LI(f,) depend
generally on the time derivatives of the control input w: u,u,... ,ud j=0,... k.

Therefore the descriptor system (1), (2) can also be represented by the differential
equations (1) and (13) on a manifold described by the invariants (12).

Additionally, in principle it is possible to use the invariants (12) to eliminate kns
redundant variables and to end up with a set of ny — (k — 1)ny ordinary differential
equations in the state space. If :

5 L%(f5)
rank B—XT" = (k — 1)7’1,2 (16)
LE=2(f5)
which we may assume, the invariants LI (f,) = 0, j = 0,...,k — 2 can be solved

with respect to some redundant variables @1, depending on some essential variables
Lie:

Tir = g1 (:L'le, u,... ,u(k“z)) (17)

with the splitting

[ T1e jl = Pl‘l (18)

L1y
where P is a regular permutation matrix. As regards the dimensions, we have
dim Tip = (k — 1)712, dim Lie =M1 — (k - 1)712 (19)
The last invariant L*¥~1(f,) = 0 results in
T = G, (ml, U,... ,u(k‘1)> =gor (mle,u, .. ,u(k'l)) (20)

where (17) was used in (20). By these eliminations we end with

|i :?16 :l = Pf(x1,T2,u) = [ fle(mle:u,“"uw—l)) } (21)

T1r Fir(T1e,u,. .. ,utk—1)

The related state space ODE of the DAE system (1), (2) is given by the essential part
of (21):

Z1e = e (:cle,u, . ,u(k_l)) (22)
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In principle, the control system under consideration can be represented in three
descriptions, either in the form of a descriptor system by DAE’s (1), (2) or in the
form of ODE’s (1), (13) on the manifold (12), or in the form of the state space
ODE’s (22). The description (1), (2) is the most natural one since it applies usual
modelling procedures. The description (22) is the most favourable one, but in many
applications with nonlinear dynamics it is almost impossible to obtain it. Finally,
the description (1), (13), (12) is a connecting link helpfully used in analytical and
numerical investigations.

The three types of descriptions have to be supplemented by consistent initial
conditions satisfying the invariants (12),

Lj(f2)|t:0:0, =0, k=1 (23)
or the relations (17), (20):
Tiro = Gir (mleo,uo,-- U(()k 2))
T20 = Gor (:meo,um.. u(()’” 1)), T1e0 arbitrary (24)

4. Causality

The different representations of the control system in the preceding section show
that the system behaviour may depend not only on the control input u but also
on its time-derivatives , i, . k). Although the DAE description (1), (2) shows
exp11c1t1y only the input w, there may be hidden effects related to time-derivatives
1, ...,u® asit is shown by the representations (1), (12), (13) or (22). This situation
is very different from the common state space discussions. Any control design method
has to take care of this unconvenient problem. Therefore it is necessary to clarify this
unusual situation. Similarly to a definition by Dai (1989) for discrete-time systems,
the notion of “causality” is introduced.

Definition 1.  The descriptor system (1), (2) is called causal if the solution
[#1(t), z2(t)] does not depend on w(t),...,u* =D (t) but only on wu(t).

This definition does not have to consider u(¥) as it may be expected by the
notation of (13), because L*~1)(f,) = 0 is a first integral of (13) depending only on
4(t),...,u* "1 (t). It should be mentioned that descriptor systems of index k = 1
are always causal. Non-causal systems may only appear for k& > 2.

Now the question arises how causality can be checked. For linear descriptor
systems characterized by regular matrix pencils a necessary and sufficient condition
is available if the system is represented in its Weierstrass-Kronecker canonical form
(Dai, 1989). But this solution does not help us in the case of nonlinear descriptor
systems (1), (2). Therefore, in (Miiller, 1997a; 1996a; 1997b) a new criterion was
introduced by assuming sufficient smoothness of the vector functions. Based on the
description (1), (12), (13) the following theorem can be proved.
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Theorem 1. (Miiller, 1997b) Given a uniform indez k, the descriptor system (1),
(2) or (1), (12), (18) is causal if

8 /.. .
W(L;l(f2))=o, =0, k=2 (25)
In this case the invariants (12) are of the form
LI(fy) = L} (fs) = faj(®1,u) =0, j=0,....k—2 (26)
LED(f) = LEV(F,) = Fopr (@1, 22,u) = 0 (27)

They do not depend on the time-derivatives of the control input.

Accordingly, all the functions in (20)-(24) do not depend on the time-derivatives
of the control input, but only on wu(t).

To illustrate this result, a linear descriptor system in semi-explicit form is con-
sidered:

) = Anx + Az + Biu (28)
0 = Asjx; + Axxs + Bou (29)
Tt is assumed that the index & holds uniformly in all algebraic equations (29), i.e.
k=1 : Ay regular (30)
k=2 : Ay =0, AyA; regular (31)
E>3 : Ayp=0, AnAl Ap=0, j=0,...,k—3,
A21A’f1_2A12 regular (32)

Then the descriptor system (28), (29) is causal if and only if

k=1 : always (33)
k=2 : By=0 (34)
k>3 : By=0, Ay A} B;=0 j=0,...,k—3 (35)

Causality will be later an essential point to settle whether Pontryagin’s maximum
principle can be applied as usual or not.

5. Stability

5.1. Gemneral Theory

For standard state-space systems the notion of “stability” is well-defined (even if there
is not only one definition of stability but a great number of definitions related to
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different requirements of applications) and a related stability theory is well-established
(Hahn, 1967). For example, let us recall only the notions of stability in the sense of
Lyapunov, asymptotic stability, absolute stability, and the well-known stability theory
of Lyapunov.

When compared with the large amount of research related to stability problems
of state-space systems almost nothing has been investigated regarding the stability
behaviour of descriptor systems. First general attempts were presented by Baji¢
(Baji¢, 1986; 1987; 1988a; 1988b; 1992; Baji¢ and Mili¢, 1987; Baji¢ et al., 1989)
and by a few other authors (Dolezal, 1987; Griepentrog and Mérz, 1986; Hill and
Mareels, 1990). In the case of linear time-invariant descriptor systems stability was
defined by the eigenvalues of a related matrix pencil (Dai, 1989). Some recent results
for nonlinear descriptor systems were reported in (Miiller, 1993; 1994; 1996b). One
essential difficulty of a suitable stability definition is the problem in which (sub-)space
stability has to be defined. To avoid impulse solutions of (1), (2), the initial conditions
x1(to) = T10, T2(to) = T20 must be consistent with the invariants (23). By these
algebraic constraints consistent solutions belong to a consistent manifold which is a
subspace of the generalized state space (1, 23). By restricting the stability problem
to the consistent manifold, the stability of an equilibrium point (3) can be defined
in the sense of Lyapunov confining the perturbed motion to the consistent manifold.
Similarly, asymptotic stability is defined with respect to this manifold.

In this restricted sense, stability results for linear time-invariant descriptor sys-
tems were reported in (Miiller, 1993) based on the discussion of a generalized Lya-
punov matrix equation generalizing the results of (Owens and Debeljkovi¢, 1985). For
linear mechanical descriptor systems the well-known theorem of Thomson, Tait and
Chetaev (Miiller, 1977) was generalized. Additionally, in (Miiller, 1994) the results of
(Miiller, 1993) were brought forward to nonlinear mechanical descriptor systems using
the Hamiltonian as a Lyapunov function. In (Miiller, 1996b) an extension for general
nonlinear descriptor systems was considered. Summarizing these results, we can de-
rive the Lyapunov-like stability theorem. In the following, we discuss the control-free
stability problem for u = 0 using the notation of (26). Introducing

k—2

Ty =2+ Z o fq;(x1,0) (36)

=0

such that &, = f,(z1,x2,0) = f,(x1,%>,0) and assuming a Lyapunov function

k-3
v(@1) = vo(@1) + Y, B; F3;(x1,0) (1, 0) (37)
Jj=0
with the property
; k—2
20T )F, (01,22,0) = 29E0F (2, 0,0)+ 3 FLi (e, OBy (E) (39)
Ox] Oxi iz

for suitable functions h;(Z;), we have the following result.
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Theorem 2. (Miiller, 1996b) If there exzist constants oy, 1 =0,..., k-2, 8; >0,
i=0,...,k—3, and a function vo(x1) such that

v(z1) >0 forall x #0, v(0) =0 (39)
condition (88) is satisfied, and

k-3
o(z,) = ‘9”°<f§ )7, (21,0,0) +2)  Bif3;(@1,0)f5, 111 (21,0) <O (40)
1 =0

for all 1 # 0 in a neighbourhood of 1 = 0, then the equilibrium point (8) is stable.
If, additionally, Krasovskii’s condition (Barbasin and Krasovskii, 1952)

b(@) =0 if z(t)=0 (41)

is fulfilled, then the equilibrium point (8) is asymptotically stable.

A characteristic of this result is that the Lyapunov function and its time-
derivative depend only on a part of the variables (x;) and do not depend on .
This fact is stimulating to apply the theory of stability with respect to a part of
variables (Miiller, 1982; Oziraner and Rumiantsev, 1972) to the stability problem of
descriptor systems. Comparing our problem with the definition and the results of par-
tial stability, essentially we have to look for stability with respect to the variables ;.
while the behaviour of x1,, x> is not of explicit interest. But the practical problem
is that usually x1. is not explicitly known. Therefore, in applications the variables
x; which embed ;. are considered. Nevertheless, the properties of definiteness will
be essentially related to @1, by the following statement.

Lemma 1. If there exist two functions vo(x1) and

Ul( | for(21,0) [, || 2 p—2(1,0) || )>0 (42)
such that

v(z1) = vo(x1) +vi (|| For(21,0) [, || Fopn(@1, 0)[)>0 (43)

is positive definite, then

v(zy) =0 (P”l l ile }) > (Pml I: g :IEZ ) }) = Ve(T1e) >0 (44)

where ve(x1.) is positive definite with respect to T1..

Therefore, by using the invariants (26) as first integrals, the construction of
suitable Lyapunov functions is simplified and definiteness properties can essentially
be directed to a consistent solution manifold.

Now we are able to transfer some of the results of partial stability (Miiller, 1982;
Oziraner and Rumiantsev, 1972) to the stability problem of nonlinear descriptor sys-
tems.
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Theorem 3. (Miiller, 1996b) If there exist functions vo and vi of Lemma 1 such
that

) ov(x
o(xy, ) = %fl(ml,mg, 0)<0 (45)
Ty
then the equilibrium point (3) is stable with respect to x1, = 0. If, additionally,
1')(1131,1132) < "'LUQ(ﬂJl) <0 (46)

holds for a certain positive definite function ws(x,), then 1. = 0 is asymptotically
stable. If (46) is replaced by

o(x1,T2) < —w2(z1) <0 (47)

for a positive definite function wq(xy1), then asymptotic stability is guaranteed if
Krasouskii’s condition

1')(.1:1,1:2) =0 Zf T1e = 0 (48)
s additionally met.

Theorem 3 shows how the theory of stability with respect to a part of variables
can successfully be applied to the stability problem of descriptor systems.

5.2. Thomson-Tait-Chetaev Theorem

In the case of the linear time-invariant holonomic mechanical system

M3(t) + (D + G)2(t) + Kz(t) = FTA(t) (49)
Fz(t) =0, (50)
where the matrices D = DT, G = -GT, K = KT are respectively related to

damping, gyroscopic and stiffness forces, the result of Theorem 2 can be simplified.
Without the constraints (50) the stability behaviour of the unconstrained system (49)
(A = 0) was investigated in detail in (Miiller, 1977). A very famous stability result
is the theorem of Thomson and Tait which has been proved by Chetaev by applying
Lyapunov’s theory. A generalization with respect to pervasive damping instead of
complete damping was presented in (Miiller, 1977). Now it is possible to generalize
these stability results to constrained mechanical systems (49), (50), q.v. (Miiller, 1993;
1994).

Theorem 4. (Miiller, 1993) If the system (49), (50) satisfies the conditions
M=M">0, D+ayFTF>0, K+a,F'F>0 (51)

for some numbers oy > 0 and as > 0, then the mechanical system is asymptotically
stable if the condition

Ms?+(D+G)s+ K —-F7T
rank F 0 =f+p (52)
(I-F"F)Ds 0
1s met for all s € C.
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The condition (52) is an explicit form of Krasovskii’s requirement (41). The
matrix FT represents the Moore-Penrose inverse matrix of F.

Theorem 4 shows explicitly, by the constants «; and «q, the stabilization effect
of the holonomic constraints. The unconstrained system (F = 0) may be unstable
but the constraints may lead to a stable constrained system. Then the instabilities
are located in the space of the constrained modes. The theorem represents a proper
generalization of the well-known stability theorem of Thomson, Tait, and Chetaev
including also the effect of pervasive damping due to (52).

The results of Theorems 2 and 3 can also be applied to nonlinear constrained
mechanical systems (4), (5) by using the Hamiltonian as a Lyapunov function. The
stability theorems were reported in (Miiller, 1994).

6. Optimal Control

6.1. General Theory

The purpose of this section is to derive conditions for the design of optimal control of
descriptor systems. If we look for the system description (1), (12}, (13) instead of (1),
(2), then an obvious problem appears. Generally, the system behaviour may depend
not only on the control input w, but also on its time-derivatives w,, ..., u® . This
is an inconvenient problem statement, so we have defined the property of causality
in Section 4 to distinguish between the cases where time-derivatives appear or not.
Therefore, in the following we have to distinguish between causal and non-causal
descriptor systems (1), (2). In the first case we can apply Pontryagin’s maximum
principle without any problem whereas in the other we have to discuss a more com-
plicated optimization problem. According to the discussions in (Miiller, 1997a; 1996a)
the following results are presented for the optimal control design of the descriptor sys-
tem (1), (2) with respect to the performance criterion (11).

Theorem 5. (Miiller, 1996a; 1997a) For causal descriptor systems (1), (2) the Pon-
tryagin mazimum principle can be applied as usual. Necessarily there are nontmmal
adjoint vectors A1 and Ao such that with the Hamiltonian

H=Xf+X]fy— fo (53)

the adjoint differential-algebraic equations

: 0H

AL = _E (54)
0H

0= -5 (55)

are satisfied and the optimal control fulfils

I&?I}CH Hopt (56)
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For simplicity, the boundary conditions of the adjoint variables are not considered
explicitly, but they have to be appropriately chosen.

The optimal control problem looks quite different for non-causal descriptor sys-
tems because of the influence of the time-derivatives of the control input. Actually,
the following procedure is recommended. Having regard to ,...,u*1) the rep-
resentation (1), (12), (13) of the descriptor system is preferred. By introducing the
vectors

£1 =u, £?, = i"a R} gk = u(k~1)7 v = u(k) (57)
an extended state vector
T
zo=|af of & ¢ . ¢ (58)

is defined which satisfies the ordinary differential equation

fl(m17m2,£1)
}Z(mljw2)£17§27" '751077))

Do = & (59)
&k

v

and the algebraic equations

Lj(fz) = f2j(m17$2>£1a£27--'7£j+1) =0, j=0,...,k-1 (60)

The original control constraints w € U appear now as state constraints ¢ e U.
Additionally, the question arises whether the control problem is stated properly. For
a reasonable problem statement, additional constraints on & =1,...,& = ulk-D
and particularly on v = u*) may be efficient. Now, the corresponding Hamilton
function is introduced:

H=XF1+MF - fo+vl& +9les+- +v7_ & +vTv  (61)

For the extended system (59) and the Hamilton function (61) the procedures of the
calculus of variations or Pontryagin’s maximum principle can be applied leading to
an optimal control design of non-causal descriptor systems. But again the constraints
&, € U of the extended states must be taken into account, which highly complicates
the optimization procedure.

Note that the algebraic constraints (60) do not have to be included in (61) ex-
plicitly because they are taken into account by the second set of differential equa-
tions, i.e. by (13). But the initial conditions of the system (59) have to be chosen
consistently, i.e. they have to satisfy the algebraic constraints (60) according to the
requirements (23).
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6.2. Illustrative Examples

In the following, three small academic examples are discussed to illustrate the ques-
tions of causality and optimization. The first two examples are essentially related to
the distinction of causal and non-causal mechanical descriptor systems.

6.2.1. Causal Mechanical Descriptor System

The system considered consists of two spring-mass-oscillators where the masses are
connected by a rigid bar (Fig. 1). Additionally, the first oscillator is controlled.
Lagrange’s equations of first kind (when neglecting the static forces due to the equi-
librium position z1q, 220 and regarding only the dynamic behaviour) are as follows:

mizi+czi=Atu (62)

MoZy + o2 = —A (63)

Z1 — %22 = 0 (64)
Cr m, m,

C

|

!
L 210+ 2, | i
F 220t 2z |

Fig. 1. Two spring-mass oscillators connected by a rigid bar.

2

AN
e
\\\\i\\?

The description (1), (2) is obtained by:

x] = [ 21 oz EZ1 2 ] , X =[A] (65)

- 25 5

T4
fl: _c_lxl_{_i_l_i ) fQ:l'l"'l?Z (66)
ma my mi
Ca A
—_ Ty — ——
L mo mo J

It follows from (32) and (35) that the system has index 3 and that it is causal.

There is a more general result behind. Holonomic mechanical descriptor sys-
tems (4), (5) have uniform index k¥ = 3 and they are causal iff R = 0, i.e. if the
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constraints (5) are not controlled. If at least one constraint is controlled, i.e. it de-
pends explicitliy on u, then the system (4), (5) is non-causal.

The optimal control design is performed according to Theorem 5. In (Miiller,
1997a) the linear-quadratic optimal regulator problem was discussed. In (Miiller,
1996a) the time-optimal control problem was solved. In both the cases well-known
results were obtained, but based on a DAE-approach and not on a classical state
space approach which arises from the ordinary differential equation

(m1+ma)é1 + (c1 +¢2)21 = u (67)

where z; is chosen as a generalized coordinate.

6.2.2. Non-Causal Mechanical Descriptor System

The second example differs from the first one by introducing the control to the con-
straint such that we have the typical problem of a controlled mechanism:

m121 +ciz1 = A (68)
ngg + Cozp = —-A (69)
21—z +u=0 (70)

The description (1), (2) is obtained from (65) and

Zz3 1
Tq
fi= —ﬂ—a:l-i-i , fo=z1—20+U (71)
1 my
Ca A
-, —
L ™2 ma

The condition (35) is violated (B, # 0) and therefore this system is non-causal. This
fact can be shown explicitly if we write down Lagrange’s equation of second kind with
respect to the generalized coordinate z; and the equation determining the constraint
force A:

(m1 +ma)Z; + (c1 + C2)71 = —CoU — Mali (72)
A= [ by, e, 73)
mi + My mi %) ! ma

The representation (72) shows that introduction of extended state variables (57) is
necessary to handle properly the optimization procedure. In the same way the solution
x2 = [A] depend on 4 such that the system (68)—(70) is non-causal. In (Miiller, 1997a;
1996a) some discussions of the optimal control design are presented.
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6.2.3. Non-Causal Academic Example

In order to illustrate the difficulties and the surprising results of the optimal control
design of non-causal descriptor systems, we consider the following simple academic
example:

To =21 + b1u (74)
T3 = x2 + bou (75)
0= T3 + bgu (76)

The index is k = 3 and the system is causal for b2 = 0, b3 = 0. The underlying
ordinary differential equations on a manifold are written down according to (1), (12),
(13):

.’tl = _blﬂ - bQU — bg U (77)
T9 =1 + biu (78)
I3 = xo9 + bou (79)

with the invariants

Z1 +b1u+b2u+b3ﬂ=0 (80)
Ty + bou + bgu = 0 (81)
3 +bsu=20 (82)

The invariants represent the explicit solution of the system (74)-(76). According
to (80), (81) the solutions of z;, m, depend on u and @ if the coefficients by, by do
not vanish.

Looking for an optimal control with respect to the quadratic performance crite-
rion

o0
J = 5/ (17} + 223 + qsTs + ru2) dt ~— minimum (83)
0

where u is unbounded, and r > 0, ¢; > 0, i = 1,2, 3, the calculus of variations leads
to the optimal feedback control

1

il [(b1q1 b3q2)T1 + bagaxa + b3gsms — baqudy + 3qlx1] (84)

While a simple proportional feedback

1
Ue = ;blqlllil (85)
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is designed for the causal system, for the non-causal one a proportional and a (twice)
time-derivative feedback (84) arises. The related closed-loop control system is a stan-
dard system of fourth order (b3 # 0, ¢; > 0):

b3q1E1 — bsbaqid1 — by (bage — b1q1) @1 + babsgazs + (r + bibsgo + b3gs)zs =0

by

b
b CL‘3'—“0, i’3—$2+—2$3:0 (86)
3

To —x1 + s

Arbitrary values of z19, %10, %20, Z30 can be chosen as initial conditions.

It is easy to prove that the characteristic polynomial of the closed-loop Sys-
tem (86) is bi-quadratic such that the system is unstable. This is a consequence of
an irregularly stated optimization problem. The performance criterion (83) considers
the square of the control but it is not related to the time-derivatives of the input. To
regularize the problem, the weighting of i has to be introduced corresponding to the
solution (80). Then a stable optimal feedback control can be expected.

According to (57) the extended variables

51 = u, 52 = 'H,, v =1 (87)
are introduced. The criterion (83) is modified into
1 0 9 9 2 2 .9 .2
J = 3 (0123 + 223 + g333 + r1u® + rod® + rail )dt (88)
0

Since the solution (80)—(82) of the descriptor system (74)—(76) is known, the resulting
optimization problem reads as follows. For the dynamical system

=&, L=v (89)
the performance criterion
L[ 2 2
J = 5 {fh(blfl + 0282 + b3v)” + g2(b2&1 + baéa)
v /o
+ q3b3&] + 116 + ra8d + rav? }dt (90)

has to be minimized with respect to v. This is a classical linear-quadratic optimal
regulator problem which can be solved by the usual Riccati approach. After some
lengthy calculations we have

= ‘q—lb—z—_’_‘r—s{(%blbs + Pr3)&1 + (gubabs + P22)€2} (91)
3

with

Py = —qbibs + \/ngzbg(qlbg +73) + q1b1(q1b1b3 + bor3) (92)

Po = —qubsbs + 1/ (@ub} + qob% + 72 + 2P1s) (a13 + ) (93)
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Having in mind (87), the result (91) represents an asymptotically stable differential
equation of second order with respect to u. Therefore this control leads to an asymp-
totically stable behaviour of the descriptor system (74)-(76) for consistent initial
conditions.

It should be mentioned that the solution of the linear-quadratic optimal con-
trol problem can be discussed by introducing a generalized Riccati equation. But
this only makes sense in the case of causal systems, because the feedback control is
then a proportional feedback of the descriptor-variables. But even in this case the
generalized Riccati equation has to be handled very carefully. A detailed discussion
was presented in (Hou, 1995; Schiipphaus, 1995) also including numerical aspects.
For non-causal systems the Riccati equation approach does not meet the problem,
because the typical time-derivative feedback part is not represented by this approach
directly. Only when the extension (57)-(60) is performed, there may exist a certain
chance to define a Riccati equation approach. But there is still a problem, because
the extended state space system (59) is not completely controllable because of the
invariants (60). Therefore this approach is a completely open problem which has to
be discussed in future.

Summarizing, this simple example clearly shows the difficulties of the optimal
control design of non-causal descriptor systems. To solve such problems carefully, the
extended state vector (58) according to the time-derivatives (57) has to be introduced
but also the performance criterion has to be re-considered by introducing penalty
functions of time-derivatives of the control input to regularize the optimal control
problem.

7. Conclusions

The description of nonlinear dynamical systems by the so-called descriptor systems
becomes more and more popular. Therefore tools for the analysis and control de-
sign of such systems are needed. In this contribution some results on the stability
analysis and optimal control design have been reported. The stability analysis is es-
sentially based on Lyapunov’s stability theory with respect to a part of the variables.
In the case of linear mechanical descriptor systems, the famous result of Thomson,
Tait, and Chetaev has been generalized. For the optimal control design it was nec-
essary to introduce the notion of causality and to distinguish between causal and
non-causal descriptor systems. In the first case the calculus of variations and Pon-
tryagin’s maximum principle can be applied as usual, but in the second case one has
to take care and it is recommended to solve the problem on the basis of the so-called
underlying ordinary differential equation on a manifold. Two examples of constrained
spring-mass oscillators illustrate the occurence of causal and non-causal mechanical
descriptor systems. The third academic example shows the severe difficulties of the
optimal control design of non-causal descriptor systems. Surprising results appeared
demonstrating that many problems are still open. In particular, efficient numerical
methods are missing, especially for non-causal systems.
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