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ROUGH RELATION PROPERTIES

Maria do Carmo NICOLETTI∗, Joaquim Quinteiro UCHÔA∗∗

Margarete T.Z. BAPTISTINI***

Rough Set Theory (RST) is a mathematical formalism for representing uncer-
tainty that can be considered an extension of the classical set theory. It has
been used in many different research areas, including those related to induc-
tive machine learning and reduction of knowledge in knowledge-based systems.
One important concept related to RST is that of a rough relation. This paper
rewrites some properties of rough relations found in the literature, proving their
validity.
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1. Introduction

Rough Set Theory (RST) was proposed by Pawlak (1982) as an extension of the
classical set theory, for use when representing incomplete knowledge. Rough sets can
be considered sets with fuzzy boundaries—sets that cannot be precisely character-
ized using the available set of attributes. During the last few years RST has been
approached as a formal tool used in connection with many different areas of research.
There have been investigations of the relations between RST and the Dempster-Shafer
Theory (Skowron and Grzymala-Busse, 1994; Wong and Lingras, 1989), and between
rough sets and fuzzy sets (Pawlak, 1994; Pawlak and Skowron, 1994; Wygralak,
1989). RST has also provided the necessary formalism and ideas for the develop-
ment of some propositional machine learning systems (Grzymala-Busse, 1992; Mrózek,
1992; Pawlak, 1984; 1985; Wong et al., 1986). It has also been used for, among many
other things, knowledge representation (Orlowska and Pawlak, 1984; Ziarko, 1991),
data mining (Aasheim and Solheim, 1996; Deogun et al., 1997), dealing with imperfect
data (Grzymala-Busse, 1988; Szladow and Ziarko, 1993), reducing the knowledge rep-
resentation (Grzymala-Busse, 1986; Jelonek et al., 1994; Pawlak at el., 1988), helping
to solve control problems (Ohrn, 1993; Pawlak, 1997; Słowiński, 1995), and analysing
attribute dependencies (Grzymala-Busse and Mithal, 1991; Mrózek, 1989).
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The notions of rough relations and rough functions are based on RST and, as
discussed in (Pawlak, 1997, p.139), ‘are needed in many applications, where experi-
mental data are processes, in particular as a theoretical basis for rough controllers’.
This paper presents the main concepts related to rough relations, rewrites some of
its properties and proves them to be valid. It is organized as follows: Section 2 is a
selection of mathematical results that constitute essential background knowledge to
what follows. Section 3 presents the basic concepts and notations related to Rough
Set Theory (extracted from the various sources listed in the References) as well as
some results that are necessary to understand Section 4, where the basic concepts and
notations related to rough relations are presented. In Section 5 the main properties
of rough relations are established and proved to be valid.

2. Mathematical Prerequisites

Some of the results presented in this section have been extracted from (Berztiss, 1975).

Definition 1. A binary relation from set A to set B is a subset of A×B. If R is
a relation, we write (x, y) ∈ R and xRy interchangeably.

Definition 2. A subset of A×A is a binary relation in the set A. In particular, the
set A× A is the universal relation in A.

Definition 3. Let A be a set and R a relation in A. The set of R-relatives of the
elements of A is R[A] = {y | for some x in A, xRy}.

Definition 4. If R is a relation from A to B, the reversed relation of R, written as
R−1, is a relation from B to A such that yR−1x if and only if xRy.

Definition 5. A relation R in a set A is

1. reflexive if xRx for all x ∈ A,

2. nonreflexive if ∃x ∈ A such that x6Rx,

3. an identity if it is reflexive and if xRy for x, y ∈ A yields x = y,

4. symmetric if xRy for x, y ∈ A yields yRx,

5. nonsymmetric if ∃x, y ∈ A such that xRy and y6Rx,

6. antisymmetric if xRy and yRx for x, y ∈ A yields x = y,

7. transitive if xRy and yRz for x, y, z ∈ A yields xRz.

Definition 6. A reflexive, antisymmetric and transitive relation in a set is a partial
order relation or a partial ordering in that set. If R is a partial ordering in A, the
ordered pair (A,R) is a partially ordered set.
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Definition 7. A relation in a set A is an equivalence relation in A if it is reflexive,
symmetric and transitive.

Definition 8. Let R be an equivalence relation on a set A. Consider an element
a of A. The set of R-relatives of a in A, R[{a}] is called the R-equivalence class
generated by a. When there is no danger of confusion, the symbol R[{a}] can be
abbreviated to [a].

Proposition 1. Let R be an equivalence relation on A and let a, b ∈ A. Then
1. a ∈ [a], and
2. if aRb then [a] = [b].

Proposition 2. If Q is an equivalence relation in A, then Q = ∪1≤i≤nZi × Zi,
where Zi, 1 ≤ i ≤ n are equivalence classes in A induced by Q.

Proof. We have (a, b) ∈ Q ⇔ a, b ∈ Zi, for some i ∈ {1, 2, . . . , n}, where Zi is an
equivalence class in A induced by Q⇔ (a, b) ∈ ∪1≤i≤nZi × Zi for i ∈ {1, 2, . . . , n}.

Definition 9. If V and W are relations in A, then W •V is a relation in A defined
as W • V = {(a, c) ∈ A× A such that (a, b) ∈ V and (b, c) ∈ W for some b ∈ A}.

Proposition 3. If V, W, V1, W1 are relations in A, V1 ⊆ V and W1 ⊆ W , then
W1 • V1 ⊆W • V .

Proof. Let (a, c) ∈ W1 • V1 ⇒ ∃b ∈ A such that (a, b) ∈ V1 and (b, c) ∈ W1. Then
(a, b) ∈ V and (b, c) ∈W so that (a, c) ∈W • V .

3. Rough Set Theory

3.1. Basic Concepts

The basic concept of Rough Set Theory is the notion of an approximation space,
which is an ordered pair A = (U,R), where U is a nonempty set of objects, called the
universe, and R stands for the equivalence relation on U , called the indiscernibility
relation. If x, y ∈ U and xRy, then x and y are indistinguishable in A.

Each equivalence class induced by R, i.e. each element of the quotient set R̃ =
U/R, is called an elementary set in A. An approximation space can be alternatively
denoted by A = (U, R̃). It is assumed that the empty set is also elementary for
every approximation space A. A definable set in A is any finite union of elementary
sets in A. For x ∈ U , let [x]R denote the equivalence class of R, containing x.
For each subset X in A, X is characterized by a pair of sets—its lower and upper
approximations in A, defined respectively as

AA-low(X) =
{

x ∈ U | [x]R ⊆ X
}

,

AA-upp(X) =
{

x ∈ U | [x]R ∩X 6= ∅}.
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When there is no risk of misunderstanding and for the sake of simplicity, we
prefer to use Alow and Aupp instead of AA-low and AA-upp, respectively. The lower
approximation of X in A is the greatest definable set in A contained in X , and the
upper approximation of X in A is the smallest definable set in A containing X , with
relation to the set inclusion. A set X ⊆ U is definable in A iff Alow(X) = Aupp(X).
A rough set in A is the family of all subsets of U having the same lower and upper
approximations. Another definition found in (Klir and Yuan, 1995) states that ‘a
rough set is a representation of a given set X , by two subsets of the quotient set
U/R which approach X as closely as possible from inside and outside, respectively.
That is, 〈Alow(X), Aupp(X)〉’. Both the definitions are shown to be equivalent in
(Nicoletti and Uchôa, 1997).

3.2. Some Basic RST Results

The results presented in this section are relevant to the proofs that follow. They
are stated as propositions and their proofs can be found in related literature. Let
A = (U,R) be an approximation space and X ⊆ U .

Proposition 4. The following assertions hold:
1. Alow(X) = ∪Y such that Y is definable and Y ⊆ X, and
2. AA-upp(X) = ∩Y such that Y is definable and X ⊆ Y .

Proposition 5. Alow(X) ⊆ X ⊆ Aupp(X).

Proposition 6. Alow(X) = Aupp(X)⇔ X is definable.

Proposition 7. Aupp(X ∪ Y ) = Aupp(X) ∪ Aupp(Y ).

4. Rough Relations

Let A1 = (U1, R1) and A2 = (U2, R2) be two approximation spaces. The product of
A1 by A2 is the approximation space denoted by A = (U, S), where U = U1 × U2
and the indiscernibility relation S ⊆ (U1 × U2)2 is defined by ((x1, y1), (x2, y2)) ∈
S ⇔ (x1, x2) ∈ R1 and (y1, y2) ∈ R2, x1, x2 ∈ U1 and y1, y2 ∈ U2. It can be easily
proven that S is an equivalence relation.

The elements (x1, y1) and (x2, y2) are indiscernible in S if and only if the
elements x1 and x2 are indiscernible in R1 and so are the elements y1 and y2
in R2. This implies that the equivalence class of S containing (x, y), denoted by
[(x, y)]S , should be equal to the Cartesian product of [x]R1 by [y]R2 , according to
Proposition 8. Example 1 shows the approximation space resulting from the product
of two approximation spaces.

Example 1. Let A1 = (U1, R1) and A2 = (U2, R2) be two approximation spaces,
where U1 = {x1, x2, x3, x4}, R1 = {(x1, x1), (x2, x2), (x3, x3), (x4, x4), (x1, x2),
(x2, x1), (x3, x4), (x4, x3)}, U2 = {a, b, c} and R2 = {(a, a), (b, b), (c, c), (a, b), (b, a)}.



Rough relation properties 625

x2

x3
x4

a
b

c

A1 = (U1,R1) A2 = (U2,R2)

x1

Fig. 1. Approximation spaces A1 = (U1, R1) and A2 = (U2, R2),
where U1 = {x1, x2, x3, x4} and U2 = {a, b, c}.

The approximation spaces A1 and A2 (and their elementary sets) are shown in Fig. 1.

Let A = (U,R) = (U1 × U2, R) be the approximation space resulting from the
product of A1 by A2, where U = {(x1, a), (x1, b), (x1, c), (x2, a), (x2, b), (x2, c), (x3, a),
(x3, b), (x3, c), (x4, a), (x4, b), (x4, c)} and R is defined by pairs ((x1, y1), (x2, y2)) ∈
R ⇔ (x1, x2) ∈ R1 and (y1, y2) ∈ R2. Figure 2 shows the approximation space A
given by its elementary sets.

�

A = (U,R)

(x1,a)

(x1,b) (x2,a)
(x2,b)

(x1,c) (x2,c)

(x3,a) (x3,b)

(x4,b)

(x4,a)

(x3,c) (x4,c)

Fig. 2. A = (U,R) is an approximation space resulting
from the product of A1 by A2 shown in Fig. 1.

The concepts of RST can be easily extended to a relation, mainly due to the fact
that a relation is also a set, i.e. a subset of a Cartesian product. So, let A1 = (U1, R1)
and A2 = (U2, R2) be two approximation spaces and A = (U,R) = (U1 ×U2, R) the
approximation space obtained by the product of A1 by A2. Given a relation (or a
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set) X ⊆ U1 × U2, the lower and upper approximations of X in the approximation
space A can respectively be defined as:

Alow(X) =
{

(x, y) ∈ U1 × U2 | [(x, y)]R ⊆ X
}

,

Aupp(X) =
{

(x, y) ∈ U1 × U2 | [(x, y)]R ∩X 6= ∅
}

.

Example 2. Let A = (U,R) = (U1 × U2, R) be the approximation space
as defined in Example 1. Consider the relations X, Y, Z ⊆ U1 × U2 such
that X = {(x1, a), (x1, b)}, Y = {(x1, c), (x2, c), (x3, c), (x4, c)}, and Z =
{(x1, a), (x1, c), (x3, a), (x3, c), (x4, c)}. Consequently,

Alow(X) = ∅, Aupp(X) =
[

(x1, a)
]

R
=
[

(x1, b)
]

R
=
{

(x1, a), (x1, b), (x2, a), (x2, b)
}

,

Alow(Y ) = Aupp(Y ) =
[

(x1, c)
]

R
∪
[

(x3, c)
]

R
=
{

(x1, c), (x2, c), (x3, c), (x4, c)
}

= Y,

Alow(Z) =
[

(x3, c)
]

R
=
{

(x3, c), (x4, c)
}

,

Aupp(Z) =
[

(x1, a)
]

R
∪
[

(x1, c)
]

R
∪
[

(x3, a)
]

R
∪
[

(x3, c)
]

R
= U.

�

Proposition 8. Let A = (U,R) be an approximation space and B = (U 2, S) the
approximation product space of A by A. Then:
1.
[

(x, y)
]

S
= [x]R × [y]R, and

2.
[

(y, z)
]

S
•
[

(x, y)
]

S
=
[

(x, z)
]

S
.

Proof. 1. It trivially follows from the definition of the relation S.
2. Let (a, c) ∈ [(y, z)]S•[(x, y)]S . Then there exists a b ∈ U such that (a, b) ∈ [(x, y)]S
and (b, c) ∈ [(y, z)]S . It follows that (a, b)S(x, y) and (b, c)S(y, z). Hence aRx, bRy,
bRy and cRz. Consequently, (a, c) ∈ [(x, z)]S .

On the other hand, let (a, c) ∈ [(x, z)]S . This gives (a, c)S(x, z). We thus get
aRx and cRz. Since R is an equivalence relation, aRx, yRy and cRz. This clearly
forces (a, y)S(x, y) and (y, c)S(y, z). Hence (a, y) ∈ [(x, y)]S and (y, c) ∈ [(y, z)]S ,
and therefore (a, c) ∈ [(y, z)]S • [(x, y)]S .

5. Rough Relation Properties

The reference (Pawlak, 1981, pp.9–10) lists twelve properties of approximations of
binary relations in a product space and assumes that they are all true. However,
when evaluating these properties, we found that some of them do not exactly prove
their validity as stated in the reference. In the following we rewrite those properties
and prove those that are valid. In order to do that, we will consider an approximation
space A = (U,R) and B = A × A = (U 2, S) as the approximation product space,
where S ⊆ U2. We will also consider a relation Q ⊆ U 2.
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Property 1. If Q is an identity relation in U , then
1. Aupp(Q) is an identity relation in U ⇔ Aupp(Q) = Q,
2. Alow(Q) is an identity relation in U ⇔ Alow(Q) = Q, and
3. if Alow(Q) 6= ∅ and Alow(Q) 6= Q, then Alow(Q) is an identity relation in a proper
subset of U .

Proof. 1. From the fact that Q is an identity relation in U , knowing from Proposition 5
that Q ⊆ Aupp(Q), it follows that Aupp(Q) is an identity relation in U ⇔ Aupp(Q) =
Q.

2. This results from the facts that Alow(Q) ⊆ Q (by Proposition 5) and that Q is
an identity relation in U .

3. It trivially follows from the fact that a subset of an identity relation defined in U
will be an identity relation in a proper subset of U .

As a consequence of Property 1, it can be said that if Q is an identity relation
in U , Alow(Q) and Aupp(Q) are both identity relations in U iff Q is definable.

Property 2. If Q is a reflexive relation in U , then
1. Aupp(Q) is a reflexive relation in U , and
2. if Alow(Q) 6= Q, nothing can be said about the reflexivity of Alow(Q).

Proof. 1. Since Q is reflexive in U and Q ⊆ Aupp(Q), we conclude that Aupp(Q) is
reflexive in U .

2. This inconclusive assertion can be evidenced in Example 3.

Example 3. Let A = (U,R) be an approximation space such that U =
{a, b, c, d} and R = {(a, a), (b, b), (a, b), (b, a), (c, c), (d, d), (c, d), (d, c)}, i.e. U/R =
{{a, b}, {c, d}}. Consider the approximation space B given by A × A, i.e. B =
(U2, S), such that U2/S = {{(a, a), (b, b), (a, b), (b, a)}, {(a, c), (a, d), (b, c), (b, d)},
{(c, c), (d, d), (c, d), (d, c)}, {(c, a), (d, a), (c, b), (d, b)}}. This situation is depicted in
Figs. 3 and 4.

A=(U,R)

a b

c d

Fig. 3. Approximation space A = (U,R) where U = {a, b, c, d}.

We may have, for example, the following settings:

• Let Q = {(a, a), (b, b), (c, c), (d, d)} be a reflexive relation in U . Then we get
Alow(Q) = ∅, i.e. we have a nonreflexive relation.
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B = (U2,S)

(a,a)

(a,b)

(b,a)

(b,b)

(a,d)
(b,d)

(c,a) (c,b)

(c,d)

(c,c) (d,d)
(d,c)

(a,c)

(b,c)

(d,a) (d,b)

Fig. 4. B = (U2, S) is the approximation product space A×A.

• Let Q = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c), (d, a)} be a reflexive
relation in U . Then Alow(Q) = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)}
is a reflexive relation in U .

• Let Q = {(a, a), (b, b), (c, c), (d, d), (a, c), (a, d), (b, c), (b, d)} be a reflexive relation
in U . Then Alow(Q) = {(a, c), (a, d), (b, c), (b, d)} is a nonreflexive relation in any
subset of U .

• Let Q = {(a, a), (a, b), (b, b), (b, a), (c, c), (d, d)} be a reflexive relation in U . Then
Alow(Q) = {(a, a), (b, b), (a, b), (b, a)} constitutes a reflexive relation in a proper
subset of U .

�

Property 3. If Q is a symmetric relation in U , then
1. Aupp(Q) is symmetric, and
2. Alow(Q) is symmetric provided that Alow(Q) 6= ∅.

Proof. 1. Assume that Q is symmetric. Let (x, y) ∈ Aupp(Q). Thus, [(x, y)]S∩Q 6= ∅,
i.e. ∃(x1, y1) ∈ Q such that xRx1 and yRy1. This clearly forces yRy1 and xRx1.
Hence (y, x)S(y1, x1). Since (x1, y1) ∈ Q and Q is symmetric, we have (y1, x1) ∈ Q.
So, [(y, x)]S ∩Q = [(y1, x1)]S ∩Q 6= ∅, and therefore (y, x) ∈ Aupp(Q), i.e. Aupp(Q)
is symmetric.
2. Assume that Q is symmetric and Alow(Q) 6= ∅. Let (x, y) ∈ Alow(Q). We see
that [(x, y)]S ⊆ Q and, since Q is symmetric, this implies that [(y, x)]S ⊆ Q, i.e.
(y, x) ∈ Alow(Q), which means that Alow(Q) is symmetric.

Property 4. If Q is an antisymmetric relation in U , then
1. Alow(Q) is antisymmetric in U , provided that Alow(Q) 6= ∅, and
2. nothing can be said about the antisymmetry of Aupp(Q) if Q 6= Aupp(Q).

Proof. 1. If Alow(Q) 6= ∅, then ∃(x, y) ∈ Alow(Q). But if (x, y) ∈ Alow(Q) and
(y, x) ∈ Alow(Q), since Alow(Q) ⊆ Q and Q is antisymmetric, we have (x, y) = (y, x).
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2. Consider again Example 3 and an antisymmetric relation given by:

• Q = {(a, a), (b, b), (c, c), (d, d)}; Aupp(Q) = {(a, a), (b, b), (a, b), (b, a), (c, c),
(d, d), (c, d), (d, c)} is not an antisymmetric relation since (a, b), (b, a) ∈ Aupp(Q)
and a 6= b;

• Q = {(a, c), (a, d), (b, c)}; Aupp(Q) = {(a, c), (a, d), (b, c), (b, d)} is an antisym-
metric relation.

Property 5. If Q is a nonsymmetric relation in U , then nothing can be said about
Alow(Q) and Aupp(Q) being or not a nonsymmetric relation.

In the settings of Example 3 consider the following nonsymmetric relations:

• Q = {(a, a), (b, b), (a, b), (b, a), (c, d)}; thus Alow(Q) = {(a, a), (a, b), (b, a), (b, b)}
and Aupp(Q) = {(a, a), (b, b), (a, b), (b, a), (c, c), (d, d), (c, d), (d, c)} are symmet-
ric relations;

• Q = {(a, c), (a, d), (b, c), (b, d), (c, d)}; thus Alow(Q) = {(a, c), (a, d), (b, c), (b, d)}
and Aupp(Q) = {(a, c), (a, d), (b, c), (b, d), (c, c), (d, d), (c, d), (d, c)} are nonsym-
metric relations;

• Q = {(a, c), (a, d), (b, c), (b, d), (d, a)}; thus Alow(Q) = {(a, c), (a, d), (b, c), (b, d)}
is a nonsymetric relation and Aupp(Q) = {(a, c), (a, d), (b, c), (b, d), (d, a),
(d, b), (c, a), (c, b)} constitutes a symmetric relation;

• Q = {(a, a), (a, b), (b, b), (b, a), (a, c)}; thus Alow(Q) = {(a, a), (a, b), (b, b), (b, a)}
is a symmetric relation and Aupp(Q) = {(a, a), (a, b), (b, b), (b, a), (a, c), (a, d),
(b, c), (b, d)} is a nonsymmetric relation.

Property 6. If Q is a transitive relation in U , then
1. Alow(Q) is a transitive relation in U provided that Alow(Q) 6= ∅, and
2. nothing can be said about the transitivity of Aupp(Q).

Proof. 1. Assume that Q is transitive. Let (x, y) ∈ Alow(Q) and (y, z) ∈ Alow(Q).
Consequently, we have
• (x, y) ∈ Alow(Q)⇒ [(x, y)]S ⊆ Q,
• (y, z) ∈ Alow(Q)⇒ [(y, z)]S ⊆ Q,
• (x, y) ∈ Q and (y, z) ∈ Q⇒ (x, z) ∈ Q, i.e. [(x, z)]S ∩Q 6= ∅.

In order for Alow(Q) to be transitive, we have to prove that [(x, z)]S ⊆ Q. Let
(a, b) ∈ [(x, z)]S . This forces (a, b)S(x, z). Hence aRx and bRz. Given aRx and
yRy, it can be said that (a, y)S(x, y). This gives (a, y) ∈ [(x, y)]S ⊆ Q. Also, if yRy
and bRz, then (y, b)S(y, z) and so (y, b) ∈ [(y, z)]S ⊆ Q. Since Q is transitive, it
follows that (a, b) ∈ Q.
2. Consider Example 3 and the transitive relation given by

• Q = {(a, d), (c, b)}; thus Aupp(Q) = {(a, c), (a, d), (b, c), (b, d), (d, a), (d, b), (c, a),
(c, b)} is not transitive since (a, d) ∈ Aupp(Q), (d, b) ∈ Aupp(Q) and (a, b) 6∈
Aupp(Q);

• Q = {(a, a), (a, b), (b, b), (b, a), (c, c)}; thus Aupp(Q) = {(a, a), (a, b), (b, a), (b, b),
(c, c), (d, d), (c, d), (d, c)} is a transitive relation.
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Property 7. If Q is an equivalence relation in U , then
1. Aupp(Q) is a tolerance relation (reflexive and symmetric), and
2. if each Zi, 1 ≤ i ≤ n is an equivalence class induced by Q, then we have

AB-upp(Q) =
⋃

1≤i≤n

Ui × Ui,

where Ui = AA-upp(Zi), 1 ≤ i ≤ n.

Proof. 1. If Q is an equivalence relation, then it is reflexive, symmetric and transitive.
Property 2 assures that if Q is reflexive, so is Aupp(Q) and, in turn, Property 3
assures that if Q is symmetric, so is Aupp(Q). Consequently, if Q is an equivalence
relation, Aupp(Q) is a tolerance relation.
2. We shall prove that for Q being an equivalence relation, if each Zi, 1 ≤ i ≤ n is
an equivalence class induced by Q, we get

AB-upp(Q) =
⋃

1≤i≤n

Ui × Ui,

where Ui = AA-upp(Zi), 1 ≤ i ≤ n.

First, let us show that
⋃

1≤i≤n Ui ×Ui ⊆ AB-upp(Q). If (x, y) ∈
⋃

1≤i≤n Ui ×Ui,
then x, y ∈ Ui = AA-upp(Zi) for some i. We thus get [x]R∩Zi 6= ∅ and [y]R∩Zi 6= ∅.
Hence ∃a ∈ Zi such that aRx, and ∃b ∈ Zi such that bRy. For this reason, aQb,
aRx, bRy. This forces (a, b) ∈ Q and (a, b)S(x, y). Thus (a, b) ∈ Q ∩ [(x, y)]S , and
then Q ∩ [(x, y)]S 6= ∅. Consequently, (x, y) ∈ AB-upp(Q).

Now, let us show that AB-upp(Q) ⊆
⋃

1≤i≤n Ui ×Ui. If (x, y) ∈ AB-upp(Q), then
[(x, z)]S ∩Q 6= ∅. Thus ∃(a, b) ∈ [(x, y)]S ∩Q. This gives (a, b)S(x, y) and (a, b) ∈ Q.
We get aRx, bRy and aQb, so a, b ∈ Zi for some i, 1 ≤ i ≤ n, a ∈ [x]R and
b ∈ [y]R. Therefore a ∈ Zi ∩ [x]R and b ∈ Zi ∩ [y]R, so x ∈ AA-upp(Zi) = Ui and
y ∈ AA-upp(Zi) = Ui. It follows that (x, y) ∈ Ui×Ui and then (x, y) ∈

⋃

1≤i≤n Ui×Ui.

Example 4. Let A = (U,R) be an approximation space, where U =
{a, b, c, d, e, f, g} and U/R = {{a, b}, {c, d}, {e, f}, {g}}, as shown in Fig. 5. Let
B = (U2, S) be the approximation space product of A by A as shown in Fig. 6.
Consider the equivalence relation on U given by

Q =
{

(a, a), (c, c), (a, c), (c, a), (d, d), (e, e), (f, f), (d, e),

(d, f), (e, d), (e, f), (f, e), (f, d), (b, b), (g, g)
}

.

The equivalence classes induced by Q are Z1 = {a, c}, Z2 = {b}, Z3 = {d, e, f}
and Z4 = {g}. The upper approximations of these classes are given by

U1 = AA-upp(Z1) = {a, b, c, d}, U2 = AA-upp(Z2) = {a, b},

U3 = AA-upp(Z3) = {c, d, e, f}, U4 = AA-upp(Z4) = {g}.

It should be noted that in this case we have U = U1 ∪ U2 ∪ U3 ∪ U4. The
upper approximation of Q is given by Aupp(Q) = {(a, a), (a, b), (b, a), (b, b),
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a
b

c d

e f

g

A=(U,R)

Fig. 5. Approximation space A = (U,R), where U = {a, b, c, d, e, f, g}.

(a,a)

(a,b)(b,b)

(b,a)(c,c)(d,d)

(c,d) (d,c)

(e,e) (e,f)

(f,f) (f,e)

(a,c) (a,d)

(b,d) (b,c)

(d,a) (d,b)

(c,b)(c,a)

(a,e) (b,e) (e,a) (e,b) (c,e) (d,e)

(d,f)(c,f)(f,b)(f,a)(b,f)(a,f)

(e,c) (e,d)

(f,c) (f,d)

(a,g)

(b,g)

(g,a)

(g,b)

(c,g)

(d,g)

(g,c)
(g,d)

(e,g)
(f,g)

(g,e)

(g,f)

(g,g)

B=(U2,S)

Fig. 6. Approximation product space B = (U 2, S) resulting from A×A.

(c, c), (c, d), (d, c), (d, d), (a, c), (a, d), (b, c), (b, d), (c, a), (c, b), (d, a), (d, b), (e, e), (e, f),
(f, e), (f, f), (c, e), (c, f), (d, e), (d, f), (e, c), (e, d), (f, c), (f, d), (g, g)}. It can be easily
verified that Aupp(Q) = (U1 × U1) ∪ (U2 × U2) ∪ (U3 × U3) ∪ (U4 × U4).

�

Property 8. If Q is an equivalence relation in U , then

AB-low(Q) =
⋃

1≤i≤n

Vi × Vi,

where Vi = AA-low(Zi), 1 ≤ i ≤ n and Zi is an equivalence class induced by Q.
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Proof. Let us first show that
⋃

1≤i≤n Vi × Vi ⊆ AB-low(Q). Indeed, for (x, y) ∈
⋃

1≤i≤n Vi × Vi we have (x, y) ∈ Vi × Vi for some i. Thus x, y ∈ AA-low(Zi) and
then [x]R ⊆ Zi, [y]R ⊆ Zi for some i. We thus get [x]R × [y]R ⊆ Zi × Zi ⊆ Q. But
since [(x, y)]S = [x]R × [y]R (see Proposition 8), it follows that [(x, y)]S ⊆ Q, i.e.
(x, y) ∈ AB-low(Q).

Now, let us show that AB-low(Q) ⊆
⋃

1≤i≤n Vi × Vi. For (x, y) ∈ AB-low(Q) we
have [(x, y)]S ⊆ Q. From Proposition 8 it follows that [x]R × [y]R ⊆ Q. Thus [x]R ⊆
Zi and [y]R ⊆ Zi for some equivalence class Zi of U , induced by Q. Consequently,
x ∈ AA-low(Zi) = Vi, y ∈ AA-low(Zi) = Vi for some i, and so (x, y) ∈

⋃

1≤i≤n Vi×Vi.
This property is illustrated in Example 5.

Example 5. Let A = (U,R) be an approximation space and B = (U 2, R) the
approximation product space B = (U 2, R) as defined in Example 4. Also consider
the same relation Q defined there. We then have

Alow(Q) =
{

(e, e), (f, f), (e, f), (f, e), (g, g)
}

,

which is an equivalence relation in {e, f, g}, a subset of U . The lower and upper
approximations of the equivalence classes Z1, . . . , Z4 induced by Q are given by

U1 = AA-low(Z1) = U2 = AA-low(Z2) = ∅,

U3 = AA-low(Z3) = {e, f}, U4 = AA-low(Z4) = {g}.

It should be noted that U3 and U4 are the equivalence classes of Q.
�

Property 9. If Q is a partial ordering in U , then
1. if Alow(Q) 6= Q, then nothing can be said about Alow(Q) being a partial ordering,
2. if Aupp(Q) 6= Q then nothing can be said about Aupp(Q) being a partial ordering.

A relation Q is a partial ordering if it is reflexive, antisymmetric and transitive.
If Q is a partial ordering on U , based on Properties 2, 4 and 6, nothing can be said
about Alow(Q) and Aupp(Q) being or not a partial ordering relation.

Property 10. If Q is a relation in U , then
1. Alow(Q

−1) = (Alow(Q))
−1,

2. Aupp(Q
−1) = (Aupp(Q))

−1.

Proof. 1. Note that (x, y) ∈ Alow(Q−1)⇔ [(x, y)]S ⊆ Q−1 ⇔ [(y, x)]S ⊆ Q⇔ (y, x) ∈
Alow(Q) ⇔ (x, y) ∈ (Alow(Q))−1. The equivalence [(x, y)]S ⊆ Q−1 ⇔ [(y, x)]S ⊆ Q
can be proved by observing that (a, b) ∈ [(x, y)]S ⇔ (b, a) ∈ [(y, x)]S .
2. This part is similar to Part 1.

Property 11. If V and W are any relations in U and Q = W • V (composition
of V and W ), then
1. Alow(W ) •Alow(V ) ⊆ Alow(Q),
2. Aupp(Q) ⊆ Aupp(W ) •Aupp(V ).
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Proof. 1. For (x, z) ∈ Alow(W ) • Alow(V ) there exists a y ∈ U such that (x, y) ∈
Alow(V ) and (y, z) ∈ Alow(W ). Thus [(x, y)]S ⊆ V and [(y, z)]S ⊆W . From Propo-
sition 3 it follows that [(y, z)]S • [(x, y)]S ⊆ W • V = Q. Proposition 8 assures that
[(x, z)]S ⊆ Q⇒ (x, z) ∈ Alow(Q). Example 6 illustrates this property.
2. For (x, y) ∈ Aupp(Q) we have [(x, y)]S ∩ Q 6= ∅, so there exists (a, b) ∈ [(x, y)]S
such that (a, b) ∈ Q =W •V . Consequently, there exists a c ∈ U such that (a, c) ∈ V
and (c, b) ∈ W . This gives (a, c) ∈ Aupp(V ) and (c, b) ∈ Aupp(W ). Hence (a, b) ∈
Aupp(W ) • Aupp(V ) and so [(a, b)]S ∩ (Aupp(W ) • Aupp(V )) 6= ∅. Therefore (x, y) ∈
Aupp(W ) • Aupp(V ), since [(a, b)]S = [(x, y)]S . Example 7 illustrates this property.

Example 6. Let A = (U,R) be an approximation space and B = (U 2, R) the
approximation product space B = (U 2, R) as defined in Example 4. Let Q =W •V ,
where

V = {(a, a), (b, b), (e, d), (e, g), (f, g)},

W = {(a, a), (a, b), (b, a), (b, b), (e, f), (e, g), (f, g)},

Q =W • V = {(a, a), (a, b), (b, a), (b, b)},

Alow(V ) = {(e, g), (f, g)},

Alow(W ) = {(a, a), (a, b), (b, a), (b, b), (e, g), (f, g)},

Alow(Q) = {(a, a), (a, b), (b, a), (b, b)},

Alow(W ) •Alow(V ) = ∅ ⊆ Alow(Q).

�

Example 7. Let A = (U,R) be an approximation space and B = (U 2, R) the
approximation product space B = (U 2, R) as defined in Example 4. Let Q = V •W ,
where

V = {(d, d)}, W = {(c, a)}, Q = V •W = ∅,

Aupp(V ) = {(c, c), (d, d), (c, d), (d, c)},

Aupp(W ) = {(c, a), (d, a), (c, b), (d, b)},

Aupp(Q) = ∅ ⊆ Aupp(W ) •Aupp(V ) = {(c, a), (c, b), (d, a), (d, b)}.

�
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6. Conclusion

This work establishes main properties related to rough relations and proves their
validity. It is worth mentioning that many of these properties are rewritten versions
of those listed in (Pawlak, 1981). We have also shown, using examples, the properties
that are not valid.
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