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OPTIMIZATION AND POLE ASSIGNMENT

IN CONTROL SYSTEM DESIGN

Eric K. CHU∗

Some elementary optimization techniques, together with some not so well-known
robustness measures and condition numbers, will be utilized in pole assignment.
In particular, “Method 0” by Kautsky et al. (1985) for optimal selection of
vectors is shown to be convergent to a local minimum, with respect to the
condition number 1

2
‖X‖2F − ln | detX|. This contrasts with the misconception

by Kautsky et al. that the method diverges, or the recent discovery by Yang
and Tits (1995) that the method converges to stationary points.
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1. Introduction

Consider a controllable time-invariant linear multivariable system controlled by out-
put feedback

dx

dt
= Ax+ Bu, y = Cx (1)

with the given system matrix A ∈
� n×n , input matrix B ∈

� n×m and output matrix
C ∈

� l×n . We shall assume the matrices B and C to be of full rank. The system (1)
is controlled by output feedback u = Ky = KCx, giving rise to the closed-loop
system

dx

dt
= Acx = (A+BKC)x.

For state feedback, all the states in x can be observed or measured, and we have
C = In and Ac = (A+BK).

In the pole assignment problem (PAP), a feedback matrix K ∈
� m×l is sought

so that the closed-loop system matrix Ac ≡ (A + BKC) has a prescribed spectrum
Ω = {λ1, . . . , λn}. Note that Ω is closed under complex conjugation, so that ρ ∈
Ω⇔ ρ ∈ Ω, because Ac ∈

� n×n .

The PAP with state feedback is solvable for arbitrary closed-loop poles in Ω if
and only if the system (1), characterized by {A,B}, is completely controllable (Chu
and Li, 1993; Miminis, 1981; Paige, 1981; Varga, 1981b). That is, either of the matrices

[B, AB, A2B, . . . , An−1B], [sIn −A, B]
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is of full rank (for the latter, for all eigenvalues s ∈ λ(A)). With output feedback,
we also require that the system (1) be completely observable, i.e. that {AT , CT } be
completely controllable and the Kimura condition (Kimura, 1975; 1977) m + l ≥ n
hold. Note that for a particular Ω, the PAP may be solvable without {A,B,C} being
controllable or observable, if λ(A + BKC) = Ω for some K. Also, it is common to
assume that the algebraic multiplicity of any closed-loop pole is less than or equal
to min{m, l} so as to avoid defective eigenvalues (for exceptions, see, e.g., (Chu,
1986a; Fahmy and O’Reilly, 1982; 1988; 1988; Klein and Moore, 1977)).

1.1. PAP with State Feedback

For the history of the PAP, see (Mayne and Murdoch, 1970; Miminis and Paige, 1982a;
1982b; 1988; Rosenbrock, 1970). Most papers on pole assignment contain some survey
of the field; see the references in the bibliography and the references therein.

Classification is a subjective exercise. There are different interpretations of words
like ‘methods’, ‘algorithms’, ‘solution’, etc.. In particular, some hold the view that
‘algorithms’ have to be numerically stable, with numerically sound components and,
preferably, supported by the corresponding backward error analysis. Ideally, conver-
gence, independent of starting values, for any iterative processes may need to be
investigated theoretically and numerically. Efficiency may have to be supported by
operation counts and extensive numerical experiments. First, in this subsection we
shall attempt a brief summary of existing methods for the state feedback pole assign-
ment problem (SPAP).

There are four essential types of methods for the SPAP:

Classical methods: Transform system (1) into one or several SISO systems or
canonical forms (Frobenius, Luenberger, Jordan), or involve the controllabili-
ty matrix (e.g. Gourishanker and Ramar, 1976; Wonham, 1979). Numerically
unsound and inefficient techniques involving determinants or characteristic poly-
nomials were often used.

Direct methods: Transform the system into canonical form using stable unitary
matrices (e.g. the Schur form (Miminis and Paige, 1982a; 1982b; 1988; Petkov
et al., 1986; Varga, 1981a).

Matrix equation methods: Solve Sylvester-like matrix equations

AX −XΛ = BG (2)

with the diagonal Λ satisfying λ(Λ) = Ω, with the feedback matrix K = GX−1

(e.g. Bhattacharyya and De Sousa, 1982; Cavin and Bhattacharyya, 1982; Chu,
1986a; Fahmy and O’Reilly, 1982).

Eigenvector methods: Select the closed-loop eigenvectors xj , the columns of the
matrix X , from some admissible subspaces (see, e.g., (Kautsky et al., 1985; Klein
and Moore, 1977) and Section 2).
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Other methods: The Kautsky-Nichols-Van Dooren (KNV) algorithms (Kautsky et
al., 1985) attracted here much attention. Based on similar formulation, others
proposed modified or generalized methods in (Byers and Nash, 1989; Yang and
Tits, 1995; 1993) (more details will be given in Sections 3 and 4).

Classical methods are usually inefficient or numerically unstable (Kautsky et al.,
1985; Miminis and Paige, 1988). Matrix equation methods usually require the solution
of Sylvester equations so that open-loop poles of A cannot be re-assigned easily
(with (2) being singular), and the parametrisation of the feedback matrix K in terms
of G in (2) is unnatural. The most efficient and numerically stable methods to date are
direct ones, with those by Petkov et al. (1986), Miminis and Paige (1982a; 1982b; 1988)
and Varga (1981a) considered to be the ‘state of the art’ methods for the SPAP.
However, these methods do not take into account the under-determined nature of the
SPAP. In the eigenvector methods, available degrees of freedom (when the number
of inputs m is greater than one) will be utilized to optimize the condition of the
closed-loop spectrum. Although more expensive than other ‘non-robust’ methods,
the KNV algorithms proposed by Kautsky et al. (1985) attracted much attention
and were implemented in the command PLACE in the MATLAB Control Toolbox
(Math Works, 1995). The KNV algorithms, which is important to our discussion here,
will be discussed in detail in Section 2. For other methods which take into account the
freedom in K, see (Brogan, 1974; Miminis and Paige, 1982a; 1982b; Varga, 1981a).

1.2. Output Feedback

In the KNV algorithms in (Kautsky et al., 1985), the state feedback pole assign-
ment problem was tackled (avoiding the word ‘solved’) by selecting closed-loop right-
eigenvectors from appropriate invariant subspaces. The feedback matrix K can then
be retrieved if the eigenvectors form a well-conditioned linearly independent set
(so that X−1 is well-behaved). For the output feedback pole assignment problem
(OPAP), both closed-loop left and right-eigenvectors have to be selected. The im-
plicit biorthogonality condition on the eigenvectors imposes a biconvex nature on the
resulting optimization problem (see (Boyd et al., 1994; Xiao et al., 1996) for more
details). As a result, the OPAP is very difficult to be solved. Most of the so-called
‘solutions’ to date mostly involve ad hoc procedures or heuristics which try to satis-
fy some conditions. No fail-safe algorithms solving the OPAP are known. Thus the
OPAP is essentially unsolved.

In an effort to relax the difficult OPAP, the approximate pole assignment ap-
proach was proposed in (Chu, 1993) (see also the related work (Ho et al., 1996)). The
approach solves the OPAP approximately, minimizing a functional involving the dis-
tances between the closed-loop eigenvectors and the subspaces they should belong to.
Preliminary results indicated a promising alternative approach in tackling the OPAP,
but more work has to be done in this area. The experience illustrates the importance
and potential of optimization in solving many difficult problems in control system
design.
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1.3. Why Pole Assignment?

The PAP is an important problem in control system design, although its practical
usefulness has been continuously in dispute (see (He et al., 1995) and the references
therein for related discussions). Many systems were controlled via pole assignment
and related techniques. Others preferred different techniques in state space (such as
LQR) or the frequency domain (like H∞). A satisfactory general-purpose method
has not been found yet. It has never been made clear how the closed-loop poles in Ω
could be selected. There has also been doubt about the condition of the PAP for large-
scale systems. Numerically stable algorithms have not been available until recently,
nor have manners of choosing the closed-loop eigenvectors been indicated. In spite of
the questions raised here and elsewhere, the search for numerically stable algorithms
for the PAP has never ceased. Possibly, it is partly the consequence of the challenge
presented by such a simply stated problem. Other reasons are:

1. The general OPAP as well as the ‘robust’ OPAP (ROPAP) and approximate
PAP (APAP) are still open. (See Section 1.4 for more details on ROPAP. From
now on the letter ‘R’ in front of a particular pole assignment problem will
indicate the robust version of the problem.)

2. New applications have been found, ranging from stabilizing the starting point
for Newton’s iteration for the solution of the algebraic Riccati equation (Chu
and Li, 1993) to the design of neural networks (Chu and Li, 1994).

3. In connection with the first reason above, many problems in control system
design give rise to the PAP, as a component of their solution process. For ex-
ample, the partial pole assignment problem (Datta and Saad, 1991; Saad, 1988)
for large-scale systems requires pole assignment for small subsystems.

4. More general systems, such as second-order (Chu, 2001b; Chu and Datta,
1996; Joshi, 1989) and descriptor ones (Chu, 1988), have been investigated and
generalizations of the PAP are obvious candidates for their control.

1.4. Robust Pole Assignment

The PAP is one of the most intensively investigated problems in control system design
(see the long list of references in the bibliography). However, it was not until the
1980’s that modern numerical practices began to impact on control system design.
Numerically stable algorithms were proposed for testing controllability (Chu and Li,
1993; Miminis, 1981; Paige, 1981; Varga, 1981b) and the state feedback pole (Kautsky
et al., 1985; Miminis and Paige, 1982a; 1982b; 1988; Petkov et al., 1986; Varga, 1981a).
The available degrees of freedom were not utilized to improve the robustness of the
closed-loop system until the mid-1980s (Byers and Nash, 1989; Kautsky et al., 1985;
Klein and Moore, 1977).

Earlier attempts at applying optimization to the PAP involved naive over-
powering approaches, like minimizing a weighted sum of the squares of the distances
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between the closed-loop poles of (A+BKC) and their desired positions in Ω (Andry
et al., 1983). With robustness, various optimization techniques can obviously be ap-
plied to the robust PAP, minimizing some robustness measure or a condition number
with the pole assignment requirement providing the constraints (Byers and Nash,
1989; Kautsky et al., 1985; Klein and Moore, 1977). However, curiously and unfortu-
nately, even basic, rudimentary theory in optimization has seldom been applied to the
related optimization problems. For instance, iterative processes (like Methods 0, 1, 2
and 3 in (Kautsky et al., 1985)) have been proposed for the state feedback pole assign-
ment problem, in which a robustness measure or a condition number were minimized.
However, as far as we can recall, no one has written down the corresponding opti-
mality conditions! This paper investigates some of these optimization problems. Some
elementary optimization techniques, together with some not so well-known robustness
measures and condition numbers, borrowed from sizing and least change secant meth-
ods (Datta and Saad, 1991; Davidon, 1975; Dennis and Wolkowicz, 1990; Karmarkar,
1984; Zhao, 1996), will be our main tools. The works by Kautsky et al. (1985), Byers
and Nash (1989), and Yang and Tits (1989; 1997; 1995; 1993) are important to the
development of our paper and will be described in more details in later sections.

Finally, there was some interesting work recently in (Ho et al., 1996; Lam and
Yan, 1995) on applying gradient flow techniques (Cichocki and Unbehauen, 1993) to
the PAP. These techniques require the solution of a matrix differential equation which
will only be competitive on custom-built neural networks. These new developments
illustrate again the strong possibility and unfulfilled potential of applying optimization
(and neural network computing) to control system design.

2. KNV Algorithms

For the PAP for the system (1), we are seeking a feedback matrix K which satisfies
the closed-loop eigenvalue problems, for j = 1, . . . , n,

(A+BKC)xj = λjxj (3)

and, for i = 1, . . . , n,

yHi (A+BKC) = λiy
H
i (4)

for λj ∈ Ω and xj , yi 6= 0.

Let

B = QB1RB = [QB1, QB2]

[

RB

0

]

, CT = QC1RC = [QC1, QC2]

[

RC

0

]

be, respectively, the QR decompositions (Golub and Van Loan, 1989) of B and CT .
The matrix QB (QC) is orthogonal and RB (RC) is m×m (l× l) and nonsingular.
Premultiplying (3) by QTB2 to eliminate the dependence on B, we have

QTB2(A− λjI)xj = 0, ∀j. (5)
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The conditions in (5) can be interpreted as constraints on the closed-loop eigenvectors
xj , which have to be selected from the null-spaces defined. Let Uj be the correspond-
ing invariant subspace, i.e.

Uj ≡ Null
{

QTB2(A− λjI)
}

, ∀j.

It can be proven from the controllability of {A, B} that Uj is m-dimensional (Kaut-
sky et al., 1985). Let Sj ∈ � n×m be unitary, with its columns spanning Uj . Then we
need to choose the right-eigenvectors xj such that

xj = Sjuj , ∀j. (6)

Similarly, postmultiplying (4) by QC2, we have the corresponding constraints on
the left-eigenvectors yi:

yHi (A− λiI)QC2 = 0, ∀i,

and yi = Tivi with

Vi ≡ Null
{

QTC2(A
T − λiI)

}

.

Here Ti ∈ � n×l is unitary and Vi = span Ti is l-dimensional. Note that there are now
n(m+ l) unknowns in uj and vi (i, j = 1, . . . , n) with the biorthogonality condition
yHi xj = δij providing n

2 equations (c.f. with Kimura’s condition m+ l ≥ n).

After selecting the eigenvectors such that X = [x1, . . . ,xn] and Y = [y1, . . . ,yn]
are nonsingular, we can retrieve the feedback matrix K by

K = B†
(

XΛY H −A
)

C† = R−1B Q
T
B1

(

XΛY H −A
)

QC1R
−1
C

with Y HX = In and Λ = diag {λ1, . . . , λn}. For the SPAP, recall that C = C
† =

C−1 = In, Vi = � n and there is no constraint on Y .
As κ(X) ≡ ‖X‖ ‖Y ‖ (the 2-norm is used in the paper unless otherwise stated)

represents a condition number of the closed-loop eigenvalue problems (3) and (4),
the RSPAP has been reduced to the selection of X so as to minimize a robustness
measure, such as κ. (For more general results on condition numbers and perturba-
tion analysis of ordinary and generalized eigenvalue problems, see (Chu, 1986b; 1987;
Stewart and Sun, 1990).) In addition, it can be shown that κ and other related ro-
bustness measures can be linked to measures in the frequency domain (Kautsky et
al., 1985; Chu, 1993), which are popular in engineering circles.

Kautsky et al. (1985) proposed three different algorithms for the selection of
right-eigenvectors xj from Uj , which will be described later. See (Kautsky et al.,
1985) for numerical experiments comparing various algorithms.

2.1. Method 0

Method 0 is based on the heuristic that the perfectly conditioned eigenvalues for a
symmetric matrix have identical left and right-eigenvectors. Assume that all the eigen-
values are real and let X− be constructed from X by deleting the eigenvector xj ,
i.e.

X− = [x1, . . . ,xj−1,xj+1, . . . ,xn].
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In an iteration in Method 0, all the eigenvectors xj are updated one after another,
by selecting xj to be the projection of the null space of X

T
− onto Uj . When X

is nonsingular, XT− has a one dimensional null space identical to the closed-loop
left-eigenvector corresponding to λj . The selection process thus optimizes the degree
of orthogonality of the right-eigenvectors by rank-1 updates. No objective function
was optimized and the method was thought in (Kautsky et al., 1985) to possess a
‘convergence’ problem, with respect to κ(X). While this observation was factually
correct, Yang and Tits (1995; 1993) proved that the method converges with respect
to (maximizing) another robustness measure | detX |.

Method 0 cannot handle complex eigenvalues in its original form, due to the
need to update two complex conjugate eigenvectors at the same time. However, this
can be remedied, as in the generalization in (Yang and Tits, 1995; 1993). Similar
generalizations were considered by Kautsky et al. but were abandoned because of the
‘convergence’ problems perceived at the time.

One more comment on Method 0 is that the order in which the eigenvectors are
updated can tremendously affect the efficiency of the iteration. One strategy is to
arrange {‖yi‖} in ascending order and update xj in the same order (Chu, 1993).
Note that changing xj affects all the left-eigenvectors yi (i 6= j), thus the strategy
deals with the better conditioned eigenvalues last. The strategy proved to be effective
in numerical experiments in (Chu, 1993) and can be applied to all rank-1 update
methods. Similar strategies can easily be applied to methods which update more than
one vector.

In (Yang and Tits, 1995; 1993), the iterative process is linked to the maximization
of | detX |. This will be discussed in Sections 4 and 5.

2.2. Method 1

Method 1 was the method of choice in (Kautsky et al., 1985) and was implemented
in the MATLAB command PLACE in the Control Toolbox (Math Works, 1995). Only
the case when all the eigenvalues are real was discussed in (Kautsky et al., 1985),
although any simple test example shows that the complex case can be handled by
the MATLAB command PLACE. It is unclear how the complex case was treated in the
MATLAB Control Toolbox.

The method can be summarized as follows:

min
xj

‖Y ‖2F such that xj ∈ Uj , ‖xj‖ = 1. (7)

Note that the above process is equivalent to the minimization of κF (X) with the same
constraints. The approach also avoids the problem associated with the nonuniqueness
of solutions when minimizing κ(X) or κF (X), as κJ(αX) = κJ(X) (J = 2, F ) (see
(Byers and Nash, 1989) and Section 3 for more details).

For each iteration which updates the eigenvectors xj (j = 1, . . . , n) in some
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order, we have

X = [X−, xj ] = Q





R QT1 xj

0 qT2 xj



 , (8)

where

X− = Q1R = [Q1, q2]

[

R

0

]

denotes the QR decomposition of X−. Note that some permutation matrix has been
ignored in (8), without loss of generality. As the matrix Y satisfies

Y T = X−1 =





R−1 −β−1R−1QT1 xj

0 β−1



 , β = qT2 xj ,

the minimization problem in (7) reduces to

min
uj

∥

∥

∥

∥

∥

β−1

[

R−1QT1 Sj

Im

]

uj

∥

∥

∥

∥

∥

(9)

using the fact that xTj xj = u
T
j uj = 1. From the QR decomposition

STj q2 = γZe1, (10)

we have

β = qT2 Sjuj = γe
T
1 Z
Tuj = γz1, z = Z

Tuj =

[

z1

z2

]

.

From (9), the original minimization in (7) is further reduced to

min
z

∥

∥

∥

∥

∥

[

R−1QT1 Sj

Im

]

Z

[

z1

z2

]∥

∥

∥

∥

∥

/|γz1|

or the simpler problem

min
z̃

∥

∥

∥

∥

∥

[

R−1QT1 Sj

Im

]

Z

[

1

z̃

]
∥

∥

∥

∥

∥

, z̃ = z2/z1. (11)

It is easy to see that the minimization problem in (11) is a standard linear least-
squares problem, which can be solved by using, again, the QR decomposition (Golub
and Van Loan, 1989).

In (Chu, 1993), another interpretation of Method 1 in terms of eigenvectors was
presented. It can be proven that the rank-1 update process is equivalent to minimizing
a quotient of quadratics in uj . Thus the process is equivalent to solving a symmetric
generalized eigenvalue problem M1x = λM2x, which can be solved in general by



Optimization and pole assignment in control system design 1043

the symmetric QZ algorithm (Golub and Van Loan, 1989). The transformation of the
minimization problem in (7) to the simpler (11) is done via the QR decomposition (10),
which is equivalent to the first step of the QZ algorithm, when the rank-1 M2 is
transformed.

If rank-2 updates are required, as in the case when some eigenvalues λj are
complex, the minimization in (11) will then involve quotients of quartics. In each of
the rank-2 update steps, these quotients of quartics can be minimized by established
routines of unconstrained optimization, such as the BFGS quasi-Newton method with
line search or a trust-region Newton-like method (Bertsekas, 1995; Fletcher, 1987).

2.3. Methods 2 and 3

Method 2 involves the heuristic that a well-conditioned set of eigenvectors should be
nearly orthogonal. The method starts off with an arbitrary orthogonal set of reference
vectors {zj}. For small values of m, a weighted sum of the squares of the angles
or distances between zj and the subspace Uj is minimized. It is realized through
changing a particular pair of eigenvectors by Jacobi rotations (Golub and Van Loan,
1989). Details can be found in (Kautsky et al., 1985).

Method 2 can handle complex eigenvalues with ease, as it updates a pair of
vectors simultaneously, although the generalization was not included in (Kautsky et
al., 1985). When the number of inputs m is greater than n/2, it will be more efficient
to deal with the orthogonal complements of Uj , in which case we have Method 3.

Methods 2 and 3 were found to be satisfactory in terms of efficiency and conver-
gence. However, Method 1 was preferred in (Kautsky et al., 1985), mainly due to its
direct minimization of a condition number.

3. Byers-Nash Approaches

The work by Byers and Nash (1989) extended the approach by Kautsky et al. As one
of the main contributions of the paper, Byers and Nash pointed out that minimizing
condition numbers such as κ(X) and κF (X) does not yield a unique solution, because
κk(X) = κk(αX) (k = 2, F ). This will give rise to singular Hessian matrices and
hence difficulties when standard optimization routines are applied. As a result, an
extra constraint like ‖X‖F = 1 has to be imposed, or modified robustness measures
such as

f3(X) = ‖X‖
2
F + ‖X

−1‖2F

have to be used (Byers and Nash, 1989). The measure f3 can be shown to be related
to an upper bound of κF (X), when X is nonsingular (Byers and Nash, 1989, eqn. 6),
where

κF (X) = ‖X‖F ‖X
−1‖F ≤

1

2
f3.
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Other measures considered in (Byers and Nash, 1989), coupled with the constraint
‖X‖F = 1, were

f1 ≡ κ
2
F (X), f2 ≡ −

1

f1
, f4 ≡ −

1

f3
, f5 ≡ log f3.

There is still some scaling flexibility in the solution X , but this can be eliminated by
insisting on choosing the first component of eigenvectors xj to be real and positive.

The truncated Newton method (with line search), the conjugate gradient method
and Newton’s method (Bertsekas, 1995; Fletcher, 1987) were then applied to the
robustness measures, and some numerical results were reported in (Byers and Nash,
1989, Sections 4–6). Various derivatives of the robustness measures were then derived
(Byers and Nash, 1989, Section 5).

Interestingly, quasi-Newton methods (like BFGS with inexact line-search) were
not applied, in fear of their ‘ineffectiveness’ for ‘large-scale’ problems. Also, optimality
conditions were not investigated. Nevertheless, the work by Byers and Nash represents
one of the few serious attempts at applying optimization techniques to the PAP.

4. Yang-Tits Algorithm

Yang and Tits (1995; 1993) investigated Method 0 in (Kautsky et al., 1985) and
proved its convergence with respect to maximizing the robustness measure | detX |.
Similar measures were used in (Yang, 1989; 1997), and were linked to other condition
numbers and robustness measures in (Katti, 1983; Marcus, 1962).

The main contributions of the work by Yang and Tits are as follows:

1. They resurrected the simple and powerful Method 0 in (Kautsky et al., 1985), by
proving its convergence with respect to maximizing | detX |. Only convergence
to stationary points can be proven, although numerical experiments illustrated
that these stationary points were most likely to be local minima.

2. They generalized the rank-1 update approach for Method 0 in (Kautsky et al.,
1985) to a rank-2 update method, which is more efficient than its original version
for real eigenvalues. Note that rank-2 updates have to be used for complex
eigenvalues.

3. With the new insight into Method 0, various algorithms were re-assessed in
(Yang and Tits, 1993).

We next describe the generalized Method 0 (with rank-2 updates). Similarly to the
original Method 0 in (Kautsky et al., 1985), X− = [x1, . . . ,xj−1,xj+2, . . . ,xn]. The
null space of XH− is then projected, respectively, onto the appropriate subspaces Uj
and Uj+1. To enforce convergence, the new eigenvectors are selected to be those which
are closest to the ones they replaced.

The work by Yang and Tits made an important advance towards understanding
the optimization problems related to the selection of eigenvectors in the KNV algo-
rithms, an area where little work has been done. Convergence to stationary points
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was proven. Again interestingly, no optimality conditions were written down for the
optimization problems involved.

In Sections 5–7, some of the results by Yang and Tits will be extended. The rank-
2 update generalization is actually a special case of a rank-n update method, which
can be derived from the necessary optimality conditions. In addition, many other
eigenvector selection algorithms can be shown to be closely related to Method 0.

5. Robustness Measures

In (Zhao, 1996, Ch.4) as well as (Datta and Saad, 1991; Davidon, 1975; Dennis and
Wolkowicz, 1990; Karmarkar, 1984), the following condition numbers were used to
investigate sizing and least-change secant methods (for s.p.d. matrices X):

(I) κ(X) = λ1/λn = ‖X‖ ‖X
−1‖, where λ1 and λn are respectively the largest

and smallest eigenvalues of X ,

(II) ω(X) = (tr X)/ndet(X)1/n, the ratio between the arithmetic and geometric
means of the eigenvalues of X ,

(III) σ(X) = λ1/(detX)
1/n,

(IV) τ(X) = tr (X)/nλn,

(V) max det(X) such that λ1(X) ≤ 1, the restricted maximum determinant mea-
sure (Wolkowicz, 1990).

In the study of least-change secant methods (Zhao, 1996), the above condition
numbers were applied to measure the distance between X and αIn, a multiple of the
identity matrix. As a result, the redundancy issues raised by Byers and Nash (1989)
have no significance here. Note that the measure in (V) is obviously similar to (II) as
well as the determinant measure used by Yang and Tits (1995; 1993). The measures
in (II)–(V) were described as ‘uniform’, since they involved all the eigenvalues of X ,
as compared to only λ1 and λn for κ in (I).

Some important results from (Zhao, 1996, Section 4) are quoted here (with λi
arranged in descending order):

Lemma 1. (Zhao, 1996, Proposition 4.1) The uniform condition number ω(X) pos-
sesses the following properties:
(i) 1 ≤ ω(X) ≤ κ(X) < [κ(X) + 1]2/κ(X) ≤ 4ω(X)n, with equality in the first
and second inequalities if and only if X is a (nontrivial) multiple of the iden-
tity, and equality in the last one if and only if

λ2 = · · · = λn−1 =
λ1 + λn
2
;

(ii) ω(αX) = ω(X), for all α > 0;

(iii) if n = 2, ω(X) is isotonic with κ(X);
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(iv) the measure ω is pseudoconvex on the set of s.p.d. matrices, and thus any
stationary point is a global minimizer of ω;

(v) if V is a full rank m × n matrix, n ≤ m, then the optimal column scaling
that minimizes the measure ω, i.e.

minω[(V D)T (V D)]

over all positive diagonal matrices D is given by

Dii =
1

‖Vi‖
, i = 1, . . . , n

where Vi is the i-th column of V .

The proof of Lemma 1 can be found in (Dennis and Wolkowicz, 1990). For a
definition of pseudoconvexity, see (Dennis and Schnabel, 1983).

Lemma 2. (Zhao, 1996, Proposition 4.2) The measure σ(X) satisfies

(i) 1 ≤ σ(X) ≤ nω(X) ≤ nκ(X) ≤ 4nω(X)n ≤ 4nσ(X)n,

(ii) σ(αX) = σ(X), for all α > 0,

(iii) the measure σ is a pseudoconvex function on the set of s.p.d. matrices, and
thus any stationary point is a global minimizer.

The proof of Lemma 2 can be found in (Wolkowicz, 1990).

Lemma 3. (Zhao, 1996, Proposition 4.3) The measure τ(X) satisfies
(i) 1 ≤ ω(X) ≤ τ(X) ≤ κ(X) ≤ 4ω(X)n,

(ii) τ(αX) = τ(X) for all α > 0,

(iii) the measure τ is pseudoconvex on the set of all s.p.d. matrices, and thus any
stationary point is a global minimizer.

The proof of Lemma 3 can be found in (Zhao, 1996, p.32).

The lemmas in this section on the condition numbers ω, σ and τ contain pow-
erful results on the relation between various condition numbers and their convexity.
However, the convergence results are only valid for unconstrained optimization of the
condition numbers in the set of s.p.d. matrices. For the PAP, the optimality condi-
tions derived from the robustness measures are of great interest. These conditions may
form a basis of future algorithms. The numbers of possible combinations of robustness
measures and various forms of the PAP are enormous and we shall only present some
selected results of our preliminary study.

6. Method 0 Revisited

In this section, we assume that the Sj ∈ � n×m is extended to an n × n unitary
matrix [Sj , Ŝj ]. That is, the columns of Ŝj form a unitary basis of U

⊥
j , the orthogonal

complement of Uj .
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6.1. The Yang and Tits Measure

In this subsection, we shall consider the robustness measure −| detX | used in (Yang
and Tits, 1995; 1993). Note that the measure is equivalent to σ(XHX) or the re-
stricted maximum determinant measure in the previous section. It is easy to modify
the condition number − detX for s.p.d. matrices, by replacing X with XHX . Con-
sequently, we have to minimize the robustness measure − det(XHX) = − det(X)2

or −| detX |, exactly the measure used by Yang and Tits.

Consider the eigenvector selection problem for the RSPAP:

min
‖xj‖=1

{−| detX |} s.t. ŜHj xj = 0, ∀j. (12)

The minimization problem in (12) can actually be stated as one without constraints,
with the variables xj replaced by Sjuj as in (6). The formulation in (12) gives rise to
a simpler exposition and is retained. Similar comments hold for similar minimization
problems in the following sections.

The Lagrangian of the minimization problem in (12) equals, with αj and βj
denoting the Lagrange multipliers,

L ≡ −| detX |+
∑

j

1

2
αj
(

xHj xj − 1
)

− βHj Ŝ
H
j xj .

The Karush-Kuhn-Tucker (KKT) conditions imply

−yj | detX |+
∑

j

αjxj − Ŝjβj = 0, ∀j. (13)

Premultiplying (13) by xHj , we obtain αj = −| detX |. In turn, premultiplying (13)

by ŜHj , we obtain βj = −| detX |Ŝ
H
j yj . Substituting αj and βj back into (13), we

have the optimality condition

xj =
(

In − Ŝj Ŝ
H
j

)

yj = SjS
H
j yj , ∀j. (14)

If we update only a particular j, (14) represents exactly Method 0 in (Kautsky et
al., 1985)! Note that the constraints ‖xj‖ = 1 destroy the convexity of the feasible
region.

Note that (14) is a set of n nonlinear simultaneous equations in xj , and its
solution by any iterative process represents a rank-n update eigenvector selection
method.

6.2. Entropy

The convexity of the feasible region can be restored by considering the following
minimization problem:

min
xj

1

2
‖X‖2F − ln | detX | s.t. Ŝ

H
j xj = 0, ∀j. (15)
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The condition number used in (15) is the ‘entropy measure’ which can be considered
to be a generalization of the condition number ω in the previous section.

Instead of the ratio ω(X) between the arithmetic and geometric means, let us
replace the numerator in the ratio by its exponential, i.e. the ratio

exp{(tr X)/n}

(detX)1/n
.

With XHX substituted into X and the logarithm taken, we have

2

n
E(X) ≡

2

n

{

1

2
‖X‖2F − ln | detX |

}

,

which leads to the entropy measure in (15).

Note that E(X) does not involve the inverse X−1 and so is convenient to dif-
ferentiate and manipulate. What is more important, the optimization problem in (15)
does not have any constraint on the sizes of xj , and the feasible region for xj now
consists of the invariant subspace Uj . The combined feasible region for X is obviously
convex. However, the optimization problem in (15) is not convex in general, as the
objective function is not convex (due to the term − ln | detX |; it is locally convex
from Lemma 4).

Consider the Lagrangian of the minimization in (15):

L ≡
1

2
‖X‖2F − ln | detX | −

∑

j

βHj Ŝ
H
j xj . (16)

The KKT conditions then yield

xj − yj − Ŝjβj = 0

as in the steps of the previous subsection; premultiplications of (16) by xHj and Ŝ
H
j

yield, after some simple rearrangement,

βj = Ŝ
H
j yj , ∀j, (17)

and

xj = SjS
H
j yj . (18)

Notice that the scaling of xj is somehow done implicitly, due to the inclusion of the
term 1

2
‖X‖2F in E(X), so that

‖xj‖
2 = xHj

(

SjS
H
j yj
)

= xHj yj = 1, ∀j.

Also, there is no redundancy issue as mentioned in (Byers and Nash, 1989), since, in
general, E(αX) 6= E(X). Not surprisingly, (18) and (14) contain an identical system
of nonlinear equations in X , which gives rise to Method 0 and its generalizations.
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Recall the convergence results (to stationary points) by Yang and Tits (1995;
1993). We shall show that the correct condition number used in analysing Method 0
should be the entropy measure E(X) in (15). This is based on the following result:

Lemma 4. The Hessian ∇2L of the Lagrangian function (obtained by differentiating
with respect to elements in X columnwise, and then the elements in [β1, . . . ,βn])

L(x1, . . . ,xn; β1, . . . ,βn) ≡
1

2
‖X‖2F − ln | detX | −

∑

j

βHj Ŝ
H
j xj

is given by

∇2L =

[

In2 + Ỹ S̃

S̃H 0

]

, S̃ ≡
[

Ŝ1, . . . , Ŝn

]

,

and Ỹ has n2 n× n submatrices, with the (i, j)-th subblock being yjy
H
i .

The proof of Lemma 4 is elementary, involving differentiation of the Lagrangian
function L, and will be left as an exercise.

From Lemma 4, it is easy to show that the second-order sufficient optimality
condition (Bertsekas, 1995; Fletcher, 1987) is satisfied by a solution x∗j of (18). For the

minimizer x∗j and the corresponding β
∗
j = Ŝ

H
j y
∗
j (from (17)), with x

∗
j (j = 1, . . . , n)

and β∗j (j = 1, . . . , n) stacked into z, we have

zH∇2L(x∗j ,β
∗
j )z = ‖X‖

2
F + n > 0.

Consequently, the generalized version of Method 0, i.e. the solutions of (18), converge
to local minima.

7. Method 1

Let us return to Method 1 in (Kautsky et al., 1985) and consider the minimization
problem

min
‖xj‖=1

1

2
‖X−1‖2F s.t. ŜHj xj = 0, ∀j.

The Lagrangian for the minimization problem equals

1

2
tr
(

X−1X−H
)

+
1

2
αj
(

xHj xj − 1
)

−
∑

j

β
H
j Ŝ
H
j xj .

The KKT conditions are

−Y Y Hyj + αjxj − Ŝjβj = 0.

With the notation λij = (y
H
i yj)/‖yj‖

2, the following optimality conditions can be
obtained:

xj =
1

‖yj‖2
SjS

H
j Y Y

Hyj = SjS
H
j

∑

i

λijyi, ∀j. (19)
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As in other generalizations of the PAP, similar nonlinear equations as in (19)
are obtained. Note that (19) can be considered as a generalization of Method 0,
which projects the left-eigenvectors onto span Sj as right-eigenvectors. The method
indicated in (19) obviously involves a similar but more sophisticated process. Ideally,
when {yi} are mutually orthogonal, we have that λij equals a nontrivial multiple
of the Kronecker delta δij . Consequently, the equations in (19) are identical to those
in (18) or (14).

When only a particular j is updated, as in the original Method 1 by Kaut-
sky el al., we have the necessary optimality condition

xj =
1

‖yj‖2
SjS

H
j Y Y

Hyj . (20)

Solving (20) will thus be equivalent to the process described in (Kautsky et al., 1985).
Note that Y H = X−1 can be updated easily, using the well-known rank-1 update of
inverse results. Obviously, there is no reason to stop at updating one or two eigenvec-
tors, and (20) could be solved simultaneously for all j, as in (19). Thus xj is projected
from yj , first obliquely by the projection Y Y

H , then orthogonally by SjS
H
j , and fi-

nally scaled by ‖yj‖
2.

8. Epilogue

We have presented some interesting robustness measures and optimization techniques
applicable to robust pole assignment problems. The RSPAP has been treated in Sec-
tions 6 and 7 to illustrate the potential of the approach. Various robustness measures
can be applied to the full or partial pole assignments, with state or output feedbacks,
in exact or approximate forms, for ordinary or descriptor systems of first or higher
order. (See (Chu, 2001a) for more details.) The number of possible combinations is
endless. Obviously, much work needs to be done theoretically as well as numerically in
this new development of applying optimization to the old problem of pole assignment.
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