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GRADIENT FLOW OPTIMIZATION FOR REDUCING BLOCKING EFFECTS
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This paper addresses the problem of reducing blocking effects in transform coding. A novel optimization approach using
the gradient flow is proposed. Using some properties of the gradient flow on a manifold, an optimized filter design method
for reducing the blocking effects is presented. Based on this method, an image reconstruction algorithm is derived. The
algorithm maintains the fidelity of images while reducing the blocking effects. Experimental tests demonstrate that the
presented algorithm is effective.
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1. Introduction

The discrete cosine transform (DCT) plays an important
role in image and video compression techniques. With the
advancement of video communication, DCT has attracted
even further attention. The International Standard Orga-
nization (ISO) uses it as a standard component for image
and video compression in JPEG and MPEG (ISO, 1991;
1993). It is well known that the DCT has two main ad-
vantages. The first advantage is the feature of its excellent
energy compaction for highly correlated data. It has been
shown that the DCT is very close to the Karhunan-Loeve
transform for first-order statistic Markov processes which
can be used to model most digital images in communica-
tion (Jain, 1989). The second advantage is the fact that the
computation of the transform is efficient. A fast DCT is
available as in the fast discrete Fourier transform compu-
tation.

According to transform coding theory and some stan-
dards, a given image is divided into smallp× q rectangu-
lar blocks. Generally, the blocks are chosen to be square,
that is, p = q, and we denote the size of each block as
B×B in this paper. The processing of the DCT on a block
is known as the block discrete cosine transform (BDCT).
The process of partitioning an entire image into blocks
provides efficient hardware design and reduced compu-
tation time. However, since the BDCT is used block by
block without considering the correlations between any
two neighboring blocks, it results in block artifacts which
appear on many edges between two neighboring blocks.

This phenomenon is known as blocking effects. It deteri-
orates the quality of the decoded image. The blocking ef-
fects are encountered when the bit rate is further reduced,
as in the case of a higher compression.

The research of methodologies for reduction of
blocking effects has attracted much attention since the
1980s. In (Reeve and Lim, 1984), two methods, the
overlap method and the filtering method, were proposed.
These methods share the same advantage of simplicity
in computation, but some disadvantages exist in both the
methods. Since then many papers have been published
on this research. Yanget al. (1993) presented two other
methods, one using projection onto constrained convex
sets to reconstruct decoded images, and the other using
a constrained least-squares method with a high frequency
filter to recover images. This seminal paper introduced
the optimization idea into the problem of blocking effects.
In turn, the paper (Yanget al., 1995) offered an adaptive
method for this problem. Local statistical properties and
human perception were first introduced in this research.
In the paper (Minami and Zakhor, 1995) the use of cor-
relations between the intensity values of boundary pixels
of neighboring blocks was presented to reduce the block-
ing effects. More recently, the paper (Kimet al., 2000)
introduced a recognition method used in (Won and De-
rin, 1992) to reduce blocking effects. The paper (Kimet
al., 2000) set forth a restoration filter design method using
edge direction information, a constrained least-squares fil-
ter and classification with a model fitting criterion.
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In this paper, we propose a novel approach to the
problem of reducing blocking effects. Based on the fact
that the location of all block boundaries is known, and
only the pixel values on the block boundaries need to be
smoothed, an optimal filter design method is presented on
a constraint manifold. The constraint manifold can be re-
garded as a lower dimensional manifold imbedded into an
N2-dimensional linear spaceRN2

. So our research can
be converted into an optimization problem on the con-
straint manifold. This problem can be solved by using
the gradient flow method on the manifold. Based on this
idea, two algebraic differential equations for optimal fil-
ter design and optimal reconstruction are proposed for the
reduction of blocking effects. An algorithm based on al-
gebraic differential equations is derived. Two experiments
are given as a test of the proposed algorithm. These exper-
iments demonstrate that the algorithm is effective.

The organization of this paper is as follows: Follow-
ing Introduction, a mathematical description of blocking
effects is presented in Section 2. Section 3 discusses de-
sign methods of optimal filtering and reconstruction of de-
coded images using gradient flow optimization on a man-
ifold. Section 4 describes the proposed algorithm and two
experiments as tests. The conclusion is included in Sec-
tion 5.

2. Mathematical Description of Blocking
Effects

After the BDCT transform, a decodedN × N image
X with blocking effects can be expressed in a submatrix
form as

X =


X1,1 X1,2 · · · X1,n

X2,1 X2,2 · · · X2,n

· · ·

Xn,1 Xn,2 · · · Xn,n

 , (1)

whereXi,j is a B × B submatrix, i, j = 1, 2, . . . , n,
and n = N/B is an integer. EveryXi,j is called a
block. There exist blocking artifacts between every adja-
cent block boundaries. Such artifacts are called blocking
effects.

Let fr
i,j and f l

i,j be respectively the last and first
columns of the submatrixXi,j for every i, j and write

fr
j = ((fr

1,j)
T , (fr

2,j)
T , . . . , (fr

n,j)
T )T ,

f l
j = ((f l

1,j)
T , (f l

2,j)
T , . . . , (f l

n,j)
T )T ,

whereT denotes the transpose. Then the difference vec-
tor fr

j − f l
j+1 is a measure of the blocking effects in the

column direction ofX. Define the column edge differ-
ence vectorfced as

fced = ((fr
1 − f l

2)
T , (fr

2 − f l
3)

T , · · · , (fr
n−1 − f l

n)T )T ,

whose norm‖fced‖ can be used to measure all blocking
effects in the column direction.

In the same manner, letgt
i,j and gb

i,j be the first and
last rows of the submatrixXi,j , respectively. Write

gt
j = (gt

j,1, g
t
j,2, . . . , g

t
j,n),

gb
j = (gb

j,1, g
b
j,2, . . . , g

b
j,n).

Then the differencegb
j−gt

j+1 is a measure of the blocking
effects in the row direction ofX. Define the row edge
difference vectorfred as

fred = (gb
1 − gt

2, g
b
2 − gt

3, . . . , g
b
n−1 − gt

n)T .

The norm of fred can be used to measure all blocking
effects in the row direction.

Let f be theN2-dimensional vector composed of
all columns of the decoded image matrixX. The ele-
ments of f are arranged such that the firstN elements
form the first column ofX, the nextN elements form
the second column ofX, and so on. Heref is called the
image vector ofX. It is easy to design two matricesRc

andRr such that

Rcf = fced, Rrf = fred. (2)

For the image matrixX, we can also define the corre-
sponding block edge vectorfe as

fe =
(
(fr

1 )T , (f l
2)

T , (fr
2 )T , . . . , (fr

n−1)
T , (f l

n)T ,

gb
1, g

t
2, . . . , g

b
n−1, g

t
n

)T
.

It is also easy to design two matricesQc and Qr such
that

Qcfe = fced, Qrfe = fred. (3)

The image vectorf and the matricesRc and Rr

will be used for optimal filter design for the decoded im-
ageX. The block edge vectorfe and the matricesQc

andQr will be used for the optimal reconstruction of the
decoded imageX.

3. Optimal Reconstruction Design Method

Generally, from Section 2, we can see thatfced and fred

provide all the information of edge differences between
any two neighboring blocks of the decoded image ma-
trix X. Therefore,‖fced‖ and ‖fred‖ can be used to
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measure the blocking effects. The larger‖fred‖ and
‖fced‖, the greater the blocking effects. Here, we propose
a method to design an optimal filterH such that, when
the image vectorf of X passes through the filterH, the

corresponding edge differences‖f̂ced‖
def= ‖RcHf‖ and

‖f̂red‖
def= ‖RrHf‖ of the new image vector̂f

def= Hf
can be kept to two given real parametersε1 and ε2, re-
spectively, that is

‖f̂ced‖ = ε1, ‖f̂red‖ = ε2. (4)

Note that (4) constitutes a lower manifold in the linear
spaceRN2

, which we call the constraint manifold. There-
fore, the problem of reducing blocking effects is converted
into the optimization problem: Design an optimal filterH
on the constraint manifold. We then solve this problem us-
ing the gradient flow optimization method on the manifold
hereafter.

Given a decoded imageX with blocking effects, let
f be its image vector. We design an optimal matrix filter
H such that the new image vector̂f = Hf is close to the
old image vectorf with the property of making the block
boundaries smooth and improving the quality of the de-
coded imageX. It is expected that onceH is designed,
the new image vector̂f is obtained, and the new recon-
structed imageX̂ is close to the old decoded imageX
with an improved peak signal to noise ratio (PSNR).

We can formulate the above idea as a typical op-
timization problem: Given a decoded imageX and f
as its corresponding image vector, find a matrix filterH
such that

min
H

‖Hf − f‖2 (5)

subject to

‖RcHf‖2 = ε21, (6)

‖RrHf‖2 = ε22, (7)

whereRc and Rr are the same matrices as in (2), and
ε1 and ε2 should be chosen properly so that the original
image information is retained and the blocking effects are
reduced.

Note that the constraints in the above formulation
mean that for the new image vector̂f = Hf , its col-
umn edge difference vector̂fced (f̂ced = RcHf) and
row edge difference vector̂fred (f̂red = RrHf) must
satisfy some smoothness conditions.

Let us start solving the problem (5)–(7). Define

ψ1(H) = (Hf − f)T (Hf − f)

= tr [(Hf − f)(Hf − f)T ],

ψ2(H) = (RcHf)T (RcHf)

= tr [(RcHf)(RcHf)T ],

ψ3(H) = (RrHf)T (RrHf)

= tr [(RrHf)(RrHf)T ],

where tr (X) denotes the trace ofX.

We have

∂ψ1(H)
∂H

= 2(Hf − f)fT = 2HffT − 2ffT , (8)

∂ψ2(H)
∂H

= RT
c RcHff

T +RT
c RcHff

T

= 2RT
c RcHff

T , (9)

∂ψ3(H)
∂H

= 2RT
r RrHff

T . (10)

Let ψ(H) = ψ1(H) + λ1ψ2(H) + λ2ψ3(H), whereλ1

and λ2 are indeterminates. We have

∂ψ(H)
∂H

=
∂ψ1(H)
∂H

+ λ1
∂ψ2(H)
∂H

+ λ2
∂ψ3(H)
∂H

= 2(H − I + λ1R
T
c RcH + λ2R

T
r RrH)ffT ,

where I is the identity matrix of the appropriate dimen-
sions.

So we can take the gradient flow ofH as

dH
dt

= −2(H − I + λ1R
T
c RcH + λ2R

T
r RrH)ffT . (11)

Next, let us determine what conditionsλ1 andλ2 satisfy.

SinceH satisfiesψ2(H) = ε21 and ψ3(H) = ε22,
taking the derivatives ofψ2(H) andψ3(H) with respect
to t, we have[

∂ψ2(H)
∂H

]T dH
dt

= 0, (12)

[
∂ψ3(H)
∂H

]T dH
dt

= 0. (13)

Substituting (9)–(11) into (12) and (13), we get

2ffTHTRT
c Rc

(
− 2(H − I + λ1R

T
c RcH

+λ2R
T
r RrH)ffT

)
= 0,

2ffTHTRT
r Rr

(
− 2(H − I + λ1R

T
c RcH

+λ2R
T
r RrH)ffT

)
= 0.
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It follows that

λ1ff
THT (RT

c Rc)2HffT

+ λ2f(Hf)TRT
c RcR

T
r RrHff

T

= ffTHTRT
c Rcff

T − ε21ff
T , (14)

λ1f(Hf)TRT
r RrR

T
c RcHff

T

+ λ2ff
THT (RT

r Rr)2HffT

= ffTHTRT
r Rrff

T − ε22ff
T . (15)

Multiplying (14) and (15) byfT from the right andf
from the left, and noting thatfT f = ‖f‖2, we have

λ1‖f‖4(Hf)T (RT
c Rc)2Hf)

+ λ2‖f‖4(Hf)TRT
c RcR

T
r RrHf)

= ‖f‖4(Hf)TRT
c Rcf − ε21‖f‖4, (16)

λ1‖f‖4(Hf)TRT
r RrR

T
c RcHf)

+ λ2‖f‖4(Hf)T (RT
c Rc)THf)

= ‖f‖4(Hf)TRT
r Rrf − ε22‖f‖4. (17)

Defining R̂c
def= RT

c Rc, R̂r
def= RT

r Rr, Ĥc
def=

HTRT
c Rc and Ĥr

def= HTRT
r Rr, and noting that gen-

erally ‖f‖ 6= 0, (16) and (17) are reduced to

‖Hf‖2
R̂2

c
λ1 + ‖Hf‖2

R̂cR̂r
λ2 = ‖f‖2

Ĥc
− ε21, (18)

‖Hf‖2
R̂rR̂c

λ1 + ‖Hf‖2
R̂2

r
λ2 = ‖f‖2

Ĥr
− ε22, (19)

where ‖f‖2
X

def= fTXf. The gradient flow dynamic sys-
tem is (11) with (18) and (19), which is an algebraic dif-
ferential equation.

From the theory of gradient flows on manifolds
(Rapcsak, 1997; Helmke and Moore, 1994), we know that
the dynamics of (11) tend to a constant matrixH on the
manifold ‖f̂ced‖ = ε1, ‖f̂red‖ = ε2 . This constant ma-
trix H is the optimal filter in the sense of (5) with (6) and
(7).

Theorem 1. Let an image vectorf and two matricesRc

and Rr of proper dimensions be given. If a matrixH on
the constraint manifold of (6) and (7) optimizes (5), then
H is the solution of the following algebraic differential
equation:

dH
dt

= −2(H − I + λ1R̂cH + λ2R̂rH)ffT , (20)

‖Hf‖2
R̂2

c
λ1 + ‖Hf‖2

R̂cR̂r
λ2 = ‖f‖2

Ĥc
− ε21, (21)

‖Hf‖2
R̂rR̂c

λ1 + ‖Hf‖2
R̂2

r
λ2 = ‖f‖2

Ĥr
− ε22, (22)

where R̂c = RT
c Rc, R̂r = RT

r Rr, Ĥc = HTRT
c Rc and

Ĥr = HTRT
r Rr.

The advantage of Theorem 1 is that it converts an
optimization problem into that of solving an algebraic
differential equation. But, generally, this theorem is more
important in a theoretical sense than in real applications.
With the high dimensionality of the matrix filterH,
solving (20) with (21) and (22) is complex and time
consuming.

In applications, we are more interested in the opti-

mal reconstruction of the image vector̂f
def= Hf than in

obtaining the optimal filterH. Let f̂e denote the block
edge vector off̂ , which is defined in the same way as the
block edge vectorfe of f in Section 2, and letf̂ē de-
note the vector whose components are the same as inf̂
but not in f̂e. Similarly, let vectorfē be the vector whose
components are the same as inf but not in fe. From

min ‖Hf − f‖2 = min ‖f̂e − fe‖2 + min ‖f̂ē − fē‖2,

taking account of the constraints (6) and (7), we know that
we just need to letf̂ē = fē in the above equation and
minimize ‖f̂e − fe‖2. This means that we only need to
minimize ‖f̂e−fe‖ and to let the other components in̂f
be equal to their corresponding components inf .

For the vectorf̂e, similar to (2) and (3) in Section 2,
we haveQcf̂e = f̂ced = Rcf̂ andQrf̂e = f̂red = Rrf̂ ,
whereQc, Qr, Rc andRr are the same matrices as in (2)
and (3). So we have the following result:

Theorem 2. Let an image vectorf , and two matrices
Rc and Rr of proper dimensions be given. If there is an
image vectorf̂ which satisfies the constraints

‖Rcf̂‖ = ε1, ‖Rrf̂‖ = ε2

and minimizes‖f̂−f‖, then the components of̂f that are
not boundary components are equal to the corresponding
non-boundary components off and the block edge vec-
tor f̂e of f̂ are determined by the following algebraic
differential equation:

df̂e

dt
= −2(f̂e − fe + λ1Q̂cf̂e + λ2Q̂rf̂e), (23)

‖f̂e‖2
Q̂2

c
λ1 + ‖f̂e‖2

Q̂cQ̂r
λ2 = f̂T

e Q̂cfe − ε21, (24)

‖f̂e‖2
Q̂rQ̂c

λ1 + ‖f̂e‖2
Q̂2

r
λ2 = f̂T

e Q̂rfe − ε22, (25)

where Q̂c
def= QT

c Qc, Q̂r
def= QT

r Qr.

Proof. Note that minimizing‖Hf − f‖2 is equivalent
to minimizing ‖f̂e − fe‖2, and constraints‖Rcf̂‖ = ε1
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and ‖Rrf̂‖ = ε2 are equivalent to‖Qcf̂e‖ = ε1 and
‖Qrf̂e‖ = ε2, respectively, as has previously been dis-
cussed.

Define

ψ1(f̂e) = (f̂e − fe)T (f̂e − fe),

ψ2(f̂e) = (Qcf̂e)T (Qcf̂e),

ψ3(f̂e) = (Qrf̂e)T (Qrf̂e).

We have

∂ψ1(f̂e)

∂f̂e

= 2(f̂e − fe), (26)

∂ψ2(f̂e)

∂f̂e

= 2QT
c Qcf̂e, (27)

∂ψ3(f̂e)

∂f̂e

= 2QT
r Qrf̂e. (28)

Let ψ(f̂e) = ψ1(f̂e)+λ1ψ2(f̂e)+λ2ψ3(f̂e), where
λ1 and λ2 are indeterminates. We have

∂ψ(f̂e)

∂f̂e

=
∂ψ1(f̂e)

∂f̂e

+ λ1
∂ψ2(f̂e)

∂f̂e

+ λ2
∂ψ3(f̂e)

∂f̂e

= 2(f̂e − fe + λ1Q
T
c Qcf̂e + λ2Q

T
r Qrf̂e).

So we can compute the gradient flow off̂e as

df̂e

dt
= −2(f̂e − fe + λ1Q

T
c Qcf̂e + λ2Q

T
r Qrf̂e). (29)

Next, in the same way as in the proof of Theorem 1, we
determineλ1 and λ2.

Since f̂e satisfiesψ2(f̂e) = ε21 and ψ3(f̂e) = ε22,
we have [

∂ψ2(f̂e)

∂f̂e

]T
df̂e

dt
= 0, (30)

[
∂ψ3(f̂e)

∂f̂e

]T
df̂e

dt
= 0. (31)

Substiting (27)–(29) into (30) and (31), we get

(QT
c Qcf̂e)T (f̂e − fe + λ1Q

T
c Qcf̂e + λ2Q

T
r Qrf̂e) = 0,

(QT
r Qrf̂e)T (f̂e − fe + λ1Q

T
c Qcf̂e + λ2Q

T
r Qrf̂e) = 0.

It follows that

λ1f̂
T
e (QT

c Qc)2f̂e + λ2f̂
T
e Q

T
c QcQ

T
r Qrf̂e

= f̂T
e Q

T
c Qcfe − ‖Qcf̂e‖2, (32)

f̂T
e Q

T
r QrQ

T
c Qcf̂e + λ2f̂

T
e (QT

r Qr)2f̂e

= f̂T
e Q

T
r Qrfe − ‖Qrf̂e‖2. (33)

Defining Q̂c
def= QT

c Qc, Q̂r
def= QT

r Qr, we obtain

‖f̂e‖2
Q̂2

c
λ1 + ‖f̂e‖2

Q̂cQ̂r
λ2 = f̂eQ̂cfe − ε21, (34)

‖f̂e‖2
Q̂rQ̂c

λ1 + ‖f̂e‖2
Q̂2

r
λ2 = f̂eQ̂rfe − ε22. (35)

The gradient flow dynamic system is (29) with (34) and
(35), which constitutes an algebraic differential equa-
tion.

The optimal block edge vector̂fe can substitute the
old block edge vectorfe as we reconstruct the decoded
imageX with the hope of having a higher PSNR.

Since the number of components of̂fe is much
smaller than the number of the entries of the matrix fil-
ter H, the computation off̂e has much less complexity
than the computation in Theorem 1.

4. Algorithm and Experiments

4.1. Algorithm Description

In this section, we propose a numerical algorithm based
on (23)–(25). Given a decoded imageX with blocking
effects, we properly choose two numbersε1 > 0 and
ε2 > 0, an initial vector f0 with ‖Qcf0‖ = ε1 and
‖Qrf0‖ = ε2, and an appropriate iteration stepsizeh
first. Then we design the following numerical algorithm
with the inputs,X, f0, Qc, Qr, ε1, ε2 and h, and the out-
put, X̂, which is a reconstructed image matrix.

Algorithm :
Compute the block edge vectorfe of the decoded im-
ageX. Let f̂e = f0 as an initial vector. Compute the
optimal reconstructed edge vector̂fe from the following
iteration:

Iteration :
do {solveλ1 and λ2 first from the subsystem of

algebraic equations:

‖f̂e‖2
Q̂2

c
λ1 + ‖f̂e‖2

Q̂cQ̂r
λ2 = f̂T

e Q̂cfe − ε21,

‖f̂e‖2
Q̂rQ̂c

λ1 + ‖f̂e‖2
Q̂2

r
λ2 = f̂T

e Q̂rfe − ε22,

then

f̂e := f̂e − 2h(f̂e − fe + λ1Q̂cf̂e + λ2Q̂rf̂e)

}while f̂e is not a constant vector.

Compute the reconstructed imagêX using f̂e in-
stead offe.
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4.2. Experiments

As almost all algorithms reported in the literature for re-
ducing blocking effects are applied to highly compressed
images where blocking effects are better evidenced, we
also conduct our experiments in highly compressed image
cases.

Experiment 1. We use a typical512 × 512 Lena image.
The image is divided into8 × 8 blocks and compressed
using the JPEG standard with a compression rate of 32:1.
Figure 1 is the512 × 512 compressed Lena image. The
PSNR of Fig. 1 is 30.3930 dB. Figure 2 is a128 × 128
subimage of Fig. 1. It is re-scaled to show the blocking
effects. The blocking effects are more clearly visible in
Fig. 2. After processing the image by the proposed algo-

Lena after DCT

Fig. 1. Image compressed with a rate of 32:1.

Fig. 2. A subimage extracted from Fig. 1.

rithm with ε1 = 8.0503 and ε2 = 5.9053, the PSNR is
30.9547 dB with an improvement of 0.5617 dB. The im-
proved visual quality can be seen in Fig. 3, which is an
128 × 128 subimage of the processed512 × 512 Lena
image, corresponding to the unprocessed image Fig. 2.
We also compute the percentage of the processing time
for deblocking over the processing time for JPEG decom-
pression. The percentage is 0.16%. It is satisfactory from
the viewpoint of applications.

Fig. 3. Subimage of the image processed in Experiment 1.

Note that since the block edge vectorfe includes
information from all block boundaries, the proposed algo-
rithm is to reduce the blocking effects between any adja-
cent block boundaries simultaneously. We can also define
the block edge vectorfe for every adjacent block and re-
duce them sequentially. That is, for every subimage ma-
trix (Xi,j , Xi,j+1) of the decoded image matrixX in (1)
in Section 2, we definefe = ((fr

i,j)
T , (f l

i,j+1)
T )T , where

fr
i,j and f l

i,j+1 are the same as in Section 2, and design a
proper matrixQ such that‖Qfe‖ = ‖fr

i,j − f l
i,j+1‖ = ε.

We can obtain a new corresponding block edge vectorf̂e

betweenXi,j andXi,j+1 using the above algorithm with
Qc = Q, ε1 = ε,Qr being the zero matrix andε2 = 0.
Using f̂e instead offe, we can reduce the blocking ef-
fects between the block matricesXi,j andXi,j+1 in all
vertical directions. Similarly, we can reduce the blocking
effects sequentially in all horizontal directions. Based on
this idea, we design the second experiment with a better
PSNR. �

Experiment 2: We use the same Lena image as in Ex-
periment 1 as a test. All the edge difference vector norms
of any two adjacent blocks in the original image are cal-
culated and transmitted to the reconstruction end asε.
The processed image has an improved PSNR. The PSNR
is 31.1339 dB and the improvement value of PSNR is
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Fig. 4. Subimage of the image processed in Experiment 2.

0.7401 dB. Figure 4 is an128 × 128 subimage of the
processed512 × 512 Lena image, corresponding to the
unprocessed image of Fig. 2. We can see from it the
improved reduction of blocking effects. Compared with
Fig. 2, Fig. 4 has a much better visual quality. From Fig. 4
we also notice that when the new block edge vectorf̂e

replaces the old one, the new blocking artifacts around the
new edges are much weaker compared with Fig. 2. The
percentage of the processing time for deblocking over the
processing time for JPEG decompression is 0.24%. Com-
pared with the corresponding number 0.16% in Experi-
ment 1, 0.24% is a little greater. But if we compare the
two experiments with respect to the PSNR, Experiment 2
is better than Experiment 1. So in applications, we must
attain some tradeoff between the processing time and the
image quality.

5. Conclusion

In this paper, a gradient flow optimization method was ap-
plied to the problem of reducing blocking effects in trans-
form coding. By using properties of gradient flows, an op-
timal filter design method and an optimal reconstruction
method for reducing the blocking effects were presented.
These design methods were based on dynamic algebraic
differential equations, which can be turned into iterative
formulas when they are used in numerical computations.
An algorithm for the optimal reconstruction of images was
provided. This algorithm can be used to reconstruct a de-
coded image by using only two constrained parameters.
Experiments showed that the algorithm can obtain signif-
icant improvements regarding the PSNR and good visual
quality.
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