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TERNARY WAVELETS AND THEIR APPLICATIONS TO SIGNAL COMPRESSION
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We introduce ternary wavelets, based on an interpolating 4-pointC2 ternary stationary subdivision scheme, for compressing
fractal-like signals. These wavelets are tightly squeezed and therefore they are more suitable for compressing fractal-like
signals. The error in compressing fractal-like signals by ternary wavelets is at most half of that given by four-point wavelets
(Wei and Chen, 2002). However, for compressing regular signals we further classify ternary wavelets into ‘odd ternary’ and
‘even ternary’ wavelets. Our odd ternary wavelets are better in part for compressing both regular and fractal-like signals
than four-point wavelets. These ternary wavelets are locally supported, symmetric and stable. The analysis and synthesis
algorithms have linear time complexity.
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1. Introduction

Multiresolution analysis and wavelets have received con-
siderable attention in recent years. Besides a broad range
of applications in approximation theory (Daubechies,
1988), signal processing (Mallat, 1989) and physics,
wavelets have also recently been applied to many prob-
lems in computer graphics. These graphics applications
include image compression (DeVoreet al., 1992), fast
methods for solving simulation problems in 3D mod-
elling, and animation (Liuet al., 1994), etc. Multireso-
lution analysis decomposes a complicated function into a
low resolution part, together with a collection of pertur-
bations, called wavelets coefficients, necessary to recover
the original function. Wavelets provide a powerful and
remarkably flexible set of tools for handling fundamen-
tal problems in science and engineering. There are many
constructions of wavelets for functions parametrized over
an interval (Anderssonet al., 1993). These have found use
in signal processing, signal compression (Wei and Chen,
2002), and many other applications involving functions
parametrized in one dimension. Classically, wavelets are
functions generated from one basic function by dilations
and translations. They admit a hierarchical decomposi-
tion. The functions that can be hierarchically decom-
posed can be generated through a simple process known
as recursive subdivision. The strong connection between
subdivision and wavelets allows us to create hierarchical
bases for multiresolution analysis by subdivision.

In this paper, we develop a new class of wavelets,
called ternary wavelets, based on an interpolating 4-point
C2 ternary stationary subdivision scheme (Hassanet al.,
2002), and describe how to use them in signal compres-
sion. The ternary wavelets are tightly squeezed and there-
fore are more appropriate for compressing fractal-like sig-
nals. Their degree of smoothness depends on various
weight parameters. When the values of parameters are
large, the corresponding scaling functions and wavelets
are fractal-like. The article is organized as follows: First,
we present some basic notions required to understand
the theoretical frame of subdivision and multiresolution
analysis. Secondly, we detail the construction of ternary
wavelets based on a modified interpolating 4-pointC2

ternary stationary subdivision scheme. Finally, we give
applications of our wavelets in signal compression where
we show that our wavelets compare favorably with other
similar wavelets, and we summarize the results for future
research directions.

2. Subdivision and Multiresolution Analysis

As the present work depends on a previous one, for the
clarity of foundations it will be necessary to review the
subdivision and multiresolution analysis machinery pre-
viously developed (Hassanet al., 2002; Lounsberyet al.,
1997).
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2.1. An Interpolating 4-Point C2 Ternary Stationary
Subdivision Scheme

Stationary subdivision schemes, which are classified into
binary and ternary subdivision schemes, have been stud-
ied in the fields of approximation and computer aided ge-
ometric design. Their mathematical description over ar-
bitrary control polygons is as follows. Suppose that the
initial control points of a control polygon are denoted by
p0

i , i ∈ Z. Then, for binary schemes the refined control
points {pj+1

i } are obtained recursively from{pj
i} by the

following formula:

pj+1
i =

∑
k∈Z

γ(2k−i)p
j
k,

and similarly for ternary schemes:

pj+1
i =

∑
k∈Z

γ(3k−i)p
j
k,

where γ = (γi) is the mask of the scheme. There are
many binary and ternary univariate subdivision schemes
such as a 4-point subdivision scheme (Dynet al., 1987),
a 6-point subdivision scheme (Weissman, 1990), ternary
and 3-point univariate subdivision schemes (Hassan and
Dodgson, 2001) and an interpolating 4-pointC2 ternary
stationary subdivision scheme with a tension parame-
ter (the 4-point ternary scheme, for brevity). We can
achieve greater smoothness with the same number of con-
trol points by using a ternary rather than a binary sub-
division scheme. Also, for the same smoothness, the 4-
point ternary scheme has a much smaller support and a
slightly lower computational cost than the equivalent bi-
nary scheme (Dubuc, 1986). These properties of ternary
subdivision schemes motivate us to design wavelets based
on a ternary, rather than a binary subdivision scheme.
Here we give a brief introduction to the 4-point ternary
scheme.

In this scheme, a polygonP j = (pj
i ) is mapped to a

refined polygonP j+1 = (pj+1
i ) by applying the follow-

ing three-subdivision rules:
pj+1
3i = pj

i ,

pj+1
3i+1 = a0p

j
i−1 + a1p

j
i + a2p

j
i+1 + a3p

j
i+2,

pj+1
3i+2 = a3p

j
i−1 + a2p

j
i + a1p

j
i+1 + a0p

j
i+2,

(1)

where the weights{aj} are given by

a0 = − 1
18

− 1
6
µ,

a1 =
13
18

+
1
2
µ,

a2 =
7x
18

− 1
2
µ,

a3 = − 1
18

+
1
6
µ,

and a0 + a1 + a2 + a3 = 1. However, the above scheme
does not interpolate endpoints. We modify it to interpolate
the endpoints as follows:

pj+1
1 =

3
4
pj
0 +

1
4
pj
1,

pj+1
2 =

1
4
pj
0 +

3
4
pj
1,

pj+1
3i = pj

i , i = 0, 1, . . . , n+ 1,

pj+1
3i+1 = a0p

j
i−1 + a1p

j
i + a2p

j
i+1 + a3p

j
i+2,

i = 1, 2, . . . , n− 1,

pj+1
3i+2 = a3p

j
i−1 + a2p

j
i + a1p

j
i+1 + a0p

j
i+2,

i = 1, 2, . . . , n− 1,

pj+1
3n+1 =

3
4
pj

n +
1
4
pj

n+1,

pj+1
3n+2 =

1
4
pj

n +
3
4
pj

n+1,

(2)

where thej-th control points are{pj
i}, i = 0 → n + 1,

and the(j + 1)-th control points are{pj+1
i }, i = 0 →

3n+ 3.

The smoothness of the limit functionf generated by
(1) and (2) depends on the tension parameterµ. Gener-
ally, f is C2 for 1/15 < µ < 1/9, and it is fractal-like
for µ > 1/9. Examples of curves generated by the modi-
fied 4-point ternary scheme are shown in Fig. 1.

(a) (b) µ = 0.066

(c) µ = 0.4 (d) µ = 0.8

Fig. 1. The modified 4-point ternary scheme for curves:
(a) The initial control polygon. (b) The limit curve
with µ = 0.066. (c) The limit curve withµ = 0.4.
(d) The limit curve withµ = 0.8.

2.2. Multiresolution Analysis

Here we give a brief introduction to the multiresolution
analysis construction process. For details, the reader is
referred to (Lounsberyet al., 1997; Stollnitzet al., 1996).

The starting point for multiresolution analysis is a
nested set of linear function spacesV 0 ⊂ V 1 ⊂ . . . ,
with the resolution of functions inV j increasing with
j. These nested spaces can be constructed by considering
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µ = 0.066 µ = 0.2 µ = 0.4 µ = 0.8

Fig. 2. 4-point ternary scaling functionsφj
0, φ

j
1, . . . , φ

j
i , . . . , φ

j
n from top to bottom with different values of the tension parameter.

all linear combinations of translated and scaled functions.
Let

Φj(x) =
(
φj

0(x) φj
1(x) . . .

)
, j = 0, 1, . . . ,

be the collection of scaling functions and

V j = span
{
φj

0(x), φ
j
1(x), . . .

}
.

Then nesting these spaces is equivalent to the fact that the
scaling functions are refinable, i.e.

Φj(x) = Φj+1(x)Sj . (3)

The next step in multiresolution analysis is to define
wavelet spaces also called orthogonal complement spaces,
denoted byW j . The inner product is used to define
W j as

W j =
{
f ∈ V j+1 | 〈f, g〉 = 0, ∀ g ∈ V j

}
,

where the inner product is

〈f, g〉 =
∫
f(x)g(x) dx.

The set of functions that span wavelet spaces are called
wavelets. The end point for multiresolution analysis is that
the analysis and synthesis filters associated with wavelets
are constructed and applied in linear time. Mallat (1989)
provides a convenient framework to develop the analysis
and synthesis filters.

3. Ternary Wavelets

In the previous section, we have introduced the general
framework of multiresolution analysis. In the following,
our first step is to define the scaling functions for a nested
set of function spaces. Then we will construct ternary
wavelets.

There is a straightforward recipe for computing scal-
ing functions of ternary wavelets: simply run the modified
4-point ternary scheme starting with a sequence of values
cjk = δi,k, k = 0, 1, . . . , n on level j. The limit func-
tions φj

i are the scaling functions for the ternary wavelets.
Figure 2 shows the scaling functions for different tension
parameter values. We see that the smoothness of the scal-
ing functions depends on the tension parameterµ when
it exceeds0.11 and then the scaling functions are fractal-
like signals. As we know, during the subdivision process
by the modified 4-point ternary scheme, at each stage we
keep all the old vertices and insert two new vertices “in
between” the old ones. The new vertices can be classi-
fied into odd and even vertices because these vertices are
inserted by using two different subdivision rules. There-
fore it is easy to classify the vertices into three categories
(old, odd new and even new). IfSj is a subdivision ma-
trix for the modified 4-point ternary scheme andSj

O, Sj
N1

and Sj
N2

represent the portions of the subdivision matrix
which weight the ‘old’, ‘odd new’ and ‘even new’ ver-
tices, respectively, thenSj can be written down in the
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block form as

Sj =

 Sj
O

Sj
N1

Sj
N2

 ,

where Sj
O is the identity matrix,Sj

N1
and Sj

N2
having

the following form:

3/4 1/4
a0 a1 a2 a3

a0 a1 a2 a3

...

a0 a1 a2 a3

a0 a1 a2 a3

3/4 1/4


,



1/4 3/4
a3 a2 a1 a0

a3 a2 a1 a0

...

a3 a2 a1 a0

a3 a2 a1 a0

1/4 3/4


,

respectively. The columns ofSj
N1

and Sj
N2

are sparse.

The first and last three columns ofSj
N1

and Sj
N2

are rel-
atively different, but the remaining interior columns are
shifted versions of the column 4 of their respective matri-
ces Sj

N1
and Sj

N2
. Blanks entries are taken to be zero,

and the dots indicate that the previous column is repeated,
shifted down by one row each time. This phenomena re-
flect the fact that ternary basis functions are locally sup-
ported.

We can further split the subdivision matrixSj into
two submatrices

Sj
s =

(
Sj

O

Sj
Ns

)
, s = 1, 2.

Similarly, we can write the collection of scaling functions
in the block form as

Φj+1(x) =
(
Oj+1(x) N j+1

1 (x) N j+1
2 (x)

)
,

whereOj+1(x) consists of all scaling functionsφj+1
i (x)

associated with the old vertices of the coarse polygon,
N j+1

1 (x) and N j+1
2 (x) consist of the remaining scal-

ing functions associated with the ‘odd new’ and ‘even
new’ vertices, respectively, added when obtaining a re-
fined polygon from a coarse polygon. Further, we can
split Φj+1(x) into the block form

Φj+1
s (x) =

(
Oj+1(x) N j+1

s (x)
)
, s = 1, 2.

Equation (3) can be decomposed into the block matrix
form

Φj
s(x) =

(
Oj+1(x) N j+1

s (x)
)( Sj

O

Sj
Ns

)
, s = 1, 2.

Now, we are in a position to define the basis of two
wavelet spaces, called the ‘odd ternary’ and ‘even ternary’
wavelets spaces, denoted byW j

1 and W j
2 respectively,

which are orthogonal complements ofV j in V j+1. The
projection ofN j+1

s (x) onto W j
s will give us an orthog-

onal basisΨj
s(x) = {ψj

si
(x)} for W j

s . This basis can be
expressed in the matrix form

Ψj
s(x) = N j+1

s (x)− Φj
s(x)α

j
s, s = 1, 2. (4)

The coefficientsαj
s are the solution to the linear system

formed by taking the inner products of each side of (4)
with Φj

s(x) and using the fact that〈Φj
s(x),Ψ

j
s(x)〉 = 0:

〈Φj
s(x),Φ

j
s(x)〉αj

s = (Sj
s)T 〈Φj+1

s (x), N j+1
s (x)〉,

s = 1, 2. (5)

The synthesis filtersSj
s andQj

s of odd ternary and
even ternary wavelets are defined by the matrix relation

(
Sj

s Qj
s

)
=

(
I −αj

s

Sj
Ns

I − Sj
Ns
αj

s

)

and the analysis filtersAj
s andBj

s are(
Aj

s

Bj
s

)
=

(
I − αj

sS
j
Ns

αj
s

−Sj
Ns

I

)
.

So far, we have presented two sequences of orthog-
onal wavelets named the odd ternary and even ternary
wavelets. Unfortunately, like other existing wavelets, the
synthesis and analysis filters of odd ternary and even
ternary wavelets are not sparse enough, either, which
increases the computational time in practical problems.
As orthogonality is not the only desirable property in a
wavelets spaces, compact support, smoothness and sym-
metry are sometimes more important in practice. Thus, if
we desire efficient, smooth, and symmetric wavelets with
compact support, we will have to sacrifice orthogonality.
That is, we no longer require the waveletsΨj

s(x) to be
orthogonal toV j , but to preserve good approximation
properties, we require the wavelets to be as orthogonal
as possible subject to the linear time requirement. Such
a kind of wavelets are called biorthogonal wavelets. The
work (Lounsberyet al., 1997) gives a method calledpri-
ori to construct biorthogonal wavelets. The idea is that,
for each ψj

si
(x) ∈ Ψj

s(x), those members ofΦj
s(x)

whose supports are sufficiently distant from the support
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of N j+1
si

∈ N j+1
s have their corresponding coefficients

in the i-th column ofαj
s set to zero. The remaining non-

zero coefficients can be determined by solving a smaller,
local variant of (5). For the modified 4-point ternary
scheme, the support ofφj

si
(x) belongs to[i − 3, i + 3].

We then take the waveletsψj
si

(x) to be

ψj
si

= N j+1
si

−
(
φj

si−d
, . . . , φj

si+d

) (
αs−d

, . . . , αsd

)T
,

where
(
αs−d

, . . . , αsd

)
are the non-zero entries of thei-

th column ofαj
s and d is the d-disc around a vertexv,

defined to be the set of all vertices reachable fromv by
following d.

For ternary wavelets we simply take the following
wavelets:

ψj
i = N j+1

i −
(
φj

i−d, . . . , φ
j
i+d

)
(α−d, . . . , αd)

T
,

where (α−d, . . . , αd) are the non-zero entries of thei-th
column of αj and N j+1

i are the scaling functions cor-
responding to new vertices. The synthesis and analysis
filters are defined by

(
Sj Qj

)
=

(
I −αj

Sj
N I − Sj

Nα
j

)
,

(
Aj

Bj

)
=

(
I − αjSj

N αj

−Sj
N I

)
,

respectively, whereSj
N represents the portion of the sub-

division matrix which weighs the new vertices. Forµ =
0.066 and d = 4, the matricesαj and αj

s, s = 1, 2 are
as follows:

α0 = β


4874 685 −889 −256 279 57 −121 −4

585 4212 2907 749 −893 −203 398 12

11 −977 888 3244 3244 888 −977 11

12 398 −203 −893 749 2907 4212 585

−4 −121 57 279 −256 −889 685 4874

 ,

α0
1 = β


4874 −889 279 −121

585 2907 −893 398

11 888 3244 −977

12 −203 749 4212

−4 57 −256 685

 ,

α0
2 = β


685 −256 57 −4

4212 749 −203 12

−977 3244 888 11

398 −893 2907 585

−121 279 −889 4874

 ,

α1 =β



4874 686 −890 −258 275 55 −102 −22
585 4211 2908 754 −881 −193 331 70 −110 −24
11 −967 881 3216 3222 909 −887 −189 334 71
13 404 −199 −890 897 3193 3196 902 −878 −187
−3 −129 73 338 −185 −877 901 3195 3195 902

−25 −111 70 334 −187 −878 902 3195
−24 −110 71 334 −187 −878

−24 −110 71 334
−24 −110

.
.
.

.
.
.

−110 −24
334 71 −110 −24

−878 −187 334 71 −110 −24
3195 902 −878 −187 334 70 −111 −25
902 3195 3195 901 −877 −185 338 73 −129 −3

−187 −878 902 3196 3193 897 −890 −199 404 13
71 334 −189 −887 909 3222 3216 881 −967 11

−24 −110 70 331 −193 −881 754 2908 4211 585
−22 −102 55 275 −258 −890 686 4874


,

where the blank entries are taken to be zero, and the dots
indicate that the previous two consecutive columns are re-
peated and shifted down by two rows each time. The order
of matrix αj is (n3j +1)× (2n3j), wheren is the num-
ber of the vertices of the initial polygon,

α1
1=β



4874 −890 275 −102
585 2908 −881 331 −110
11 881 3222 −887 334
13 −199 897 3196 −878
−3 73 −185 901 3195

−25 70 −187 902
−24 71 −187

−24 71
−24

...

−110
334 −110

−878 334 −110
3195 −878 334 −111
902 3195 −877 338 −129

−187 902 3193 −890 404
71 −189 909 3216 −967

−24 70 −193 754 4211
−22 55 −258 686


,

α1
2=β



686 −258 55 −22
4211 754 −193 70 −24
−967 3216 909 −189 71

404 −890 3193 902 −187
−129 338 −877 3195 902

−111 334 −878 3195
−110 334 −878

−110 334
−110

...

−24
71 −24

−187 71 −24
902 −187 70 −25

3195 901 −185 73 −3
−878 3196 897 −199 13

334 −887 3222 881 11
−110 331 −881 2908 585

−102 275 −890 4874


,

where β = 10−4, the blank entries are taken to be zero,
and the dots indicate that the previous column is repeated
and shifted down by one row each time. The orders of
matricesαj

1 and αj
2 are (n3j + 1)× (n3j).

Figure 3 shows the ternary wavelets for different val-
ues of the tension parameter. At this point, we have com-
pleted the steps in designing the ternary wavelet basis and
its filter bank. The next section is devoted to its applica-
tions in signal compression.

4. Applications of Ternary Wavelets

The subject of this section is to apply the ternary
wavelets and further classified odd ternary and even
ternary wavelets in signal compression. The goal of com-
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(a) µ = 0.066 (b) µ = 0.8

Fig. 3. Ternary wavelets: (a) withµ = 0.066 and (b)µ = 0.8. The first and third columns represent
odd ternary wavelets. The second and fourth columns represent even ternary wavelets.

pression is to express an initial set of data using some
smaller set of data, either with or without loss of infor-
mation. Here, we compress some signals and compare the
compression results with other existing wavelets.

Signal 1. Given a fractal-like signal generated by the
Weierstrass function

W (x) =
∞∑

j=1

r(s−1)jsin(rjx), r > 1,

where s ∈ (1, 2) is the box dimension ofW (x), we
compress the signal by 4-point wavelets, ternary, even
ternary, and odd ternary wavelets. For a fixed compres-
sion ratio of 100:18, theL2 compression errors for 4-
point, even ternary, and odd ternary wavelets are 13.30%,

13.60% and 12.79% respectively, but for compression ra-
tio 100:17, theL2 compression error for ternary wavelets
is 6.50%. Figure 4 shows the compression results.

Signal 2. Taking a fractal-like signal, for a fixed com-
pression ratio of 100:3, the compression error for 4-point,
even ternary, and odd ternary wavelets are 0.76% , 0.77%
and 0.75%, respectively, while the compression error for
ternary wavelets is 0.08%. The compressed signals with
w = 0.05 and µ = 0.066 are shown in Fig. 5.

Signal 3. By taking a regular signal generated by the
function

F (x) =
10∑

j=1

r(j−r)cos(r(j−r)x), r = 1.5,
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(a) original signal (b) 4-point wavelets

(c) ternary wavelets (d) even ternary wavelets

(e) odd ternary wavelets

Fig. 4. Compression results: (a) Original signal,r = 1.5 and
s = 1.3 (b) Signal compressed by 4-point wavelets with
weight parameterw = 0.05, L2 error being 13.30% (c)
Signal compressed by ternary wavelets with tension pa-
rameterµ = 0.066, L2 error being 6.50%. Moreover,
(d) and (e) show the compression result by even ternary
and odd ternary wavelets withµ = 0.066, L2 errors
being 13.6% and 12.79%, respectively.

we compress it by 4-point, odd ternary, and even ternary
wavelets with compression ratio 100:4 and get the penalty
of errors 4.35%, 4.25% and 6.21%, respectively. Figure 6
shows the comparison of the compression results.

Signal 4. Here we compress the regular signal 7(a) by
4-point, odd ternary, and even ternary wavelets. The com-
pression errors with compression ratio 100:50 are 0.33%,
0.25% and 0.46%, respectively. The results are shown in
Fig. 7.

From the demonstration of Signals 1 and 2, we have
shown that the error in compressing fractal-like signals by
ternary wavelets is at least half less than that of the error
given by 4-point wavelets.

(a) original signal

(b) four-point wavelets, 0.76% error

(c) ternary wavelets, 0.08% error

(d) even ternary wavelets, 0.77% error

(e) odd ternary wavelets, 0.75% error

Fig. 5. Signal compression: (a) Original signal (b) Signal com-
pressed by 4-point wavelets, 0.76% level ofL2 error (c)
Signal compressed by ternary wavelets, 0.08% level of
L2 error. Moreover, (d) and (e) show the compression
results by even ternary and odd ternary wavelets, with
errors 0.77% and 0.75%, respectively.

(a) original signal (b) 4-point wavelets,
4.35% error

(c) odd ternary wavelets, (d) even ternary wavelets,
4.25% error 6.25% error

Fig. 6. Compression of a regular signal: (a) Original signal (b)
Signal compressed by 4-point wavelets, 4.35% level of
error (c) Signal compressed by odd ternary wavelets,
4.25% level of error. Moreover, (d) shows the compres-
sion result by even ternary wavelets, level of 6.25%.
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(a) original signal (b) 4-point wavelets,
0.33% error

(c) odd ternary wavelets, (d) even ternary wavelets,
0.25% error 0.46% error

Fig. 7. Compression ratio 100:50: (a) Original signal (b) Com-
pression results by 4-point wavelets, 0.33% level of er-
rors. Moreover, (c) and (d) show compression results by
odd ternary and even ternary wavelets with 0.25% and
0.46% errors, respectively.

5. Summary and Future Work

In this paper, based on an interpolating 4-pointC2

ternary stationary subdivision scheme (Hassanet al.,
2002), we have introduced ternary wavelets. They are
designed for compressing fractal-like signals because of
their tightly squeezing property. The error in compressing
fractal-like signals by ternary wavelets constitutes at most
half of the error produced by 4-point wavelets (Wei and
Chen, 2002). However, for compressing regular signals
we have further classified these wavelets into ‘odd ternary’
and ‘even ternary’ wavelets. Our odd ternary wavelets
are better than 4-point wavelets in the sense of compress-
ing both regular and fractal-like signals. There are still
some problems for further investigation such as how to
find suitable values of the parameter for compressing par-
ticular signals. The generalization of this work to higher
dimensions for compressing images, fingerprint compres-
sion, denoising images, etc. can be considered as a possi-
ble direction of future work. As wavelets are widely used
in computer graphics and many other areas, we may inves-
tigate some other applications of ternary wavelets in these
areas.
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