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In order to approximate discrete-event systems in which there exist considerable states and events, David and Alla define
a continuous Petri net (CPN). So far, CPNs have been a useful tool not only for approximating discrete-event systems but
also for modelling continuous processes. Due to different ways of calculating instantaneous firing speeds of transitions,
various continuous Petri net models, such as the CCPN (constant speed CPN), VCPN (variable speed CPN) and the ACPN
(asymptotic CPN), have been proposed, where the continuous flow is specified uniquely by maximal firing speeds. However,
in applications such as chemical processes there exist situations where the continuous flow must be above some minimal
speed or in the range of minimal and maximal speeds. In this paper, from the point of view of approximating a time Petri
net, the CPN is augmented with maximal and minimal firing speeds, and a novel continuous model, i.e., the Interval speed
CPN (ICPN) is defined. The enabling and firing semantics of transitions of the ICPN are discussed, and the facilitating of
continuous transitions is classified into three levels: 0-level, 1-level and 2-level. Some policies to resolve the conflicts and
algorithms to undertake the behavioural analysis for the ICPN are developed. In addition, a chemical process example is
presented.
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1. Introduction

Petri nets (PN), as graphical and mathematical tools, pro-
vide a powerful and uniform environment for the mod-
elling, analysis, and control of discrete event systems,
such as computer systems, discrete manufacturing sys-
tems, and communication systems (Murata, 1989). In
order to handle time, classical Petri nets have been ex-
tended, resulting in two basic models—timed Petri nets
(Ramchandani, 1974) and time Petri nets (Merlin and Far-
ber, 1976). The timed Petri nets are derived by associat-
ing a finite time duration with a transition or place, and
the classic firing rule is modified to account for time. In a
time Petri net, the transition or place has one time interval
with two bounds of time. When the time interval is asso-
ciated with transitions, the first bound denotes the mini-
mal time that must elapse, starting from the time at which
the transition is enabled until this transition can fire. The
second bound represents the maximum time during which
that the transition can be enabled, and before which the
transition must fire. The time Petri nets are more general
than the timed ones since a timed Petri net can be mod-
elled using a time Petri net, but the converse is not true.
Time Petri nets have been proved very convenient for ex-
pressing most temporal constraints while some of these

constraints are difficult to express only in terms of time
duration.

In order to efficiently handle discrete event systems
in which there exist considerable states and events, David
and Alla defined a continuous Petri net (CPN) (David and
Alla, 1987). The main differences between the CPN and
the classic Petri nets are nonnegative real number mark-
ings (or tokens) of places and continuous firing of tran-
sitions at some speed. Instantaneous firing speeds (IFSs)
of transitions play an important role in the evolution of
a CPN, which is specified uniquely by either a maximal
constant speed or a maximal variable speed (a maximal
speed function in time) (Duboiset al. 1994). Due to dif-
ferent ways of calculating IFSs of transitions, various con-
tinuous Petri net models, such as the CCPN (the constant
speed CPN), the VCPN (the variable speed CPN) and the
ACPN (the asymptotic CPN) (Bail Leet al., 1992; David
and Alla, 2001) were developed. Balduzziet al. (2000)
presented a first-order hybrid Petri net (FOHPN), where
instantaneous firing speeds are specified by minimal and
maximal speeds, and calculated iteratively by linear pro-
gramming. However, the minimal speed is always sup-
posed to be zero. Gu and Parisa discussed one typical
application of sugar milling systems, where the continu-
ous flow is specified by minimal and maximal speeds, and
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developed a hybrid time Petri net model (Gu and Bahri,
2002; Guet al.2002).

Owing to the fact that the dynamics of time Petri nets
can also be approximated continuously, a general CPN
formalism, i.e., the Interval speed CPN (ICPN) is defined
here. Due to constraints on maximal and minimal firing
speeds, the ICPN requires more subtle and complicated
semantics for enabling and firing transitions. In an ICPN,
enabling of transitions is then classified into three levels:
0-level, 1-level and 2-level. In order to analyze the dy-
namic behaviour of ICPNs, conflicts are resolved by ei-
ther priority or proportional rules. In addition to that, as a
novel tool for modelling and analyzing discrete or contin-
uous systems, several illustrative examples are given.

The remainder of the paper is organized as follows:
In Section 2, the formalism of ICPNs is presented and the
semantics of firing and enabling are discussed. Section 3
deals with the computation of IFSs and conflict resolu-
tion policies, and two algorithms to undertake ICPN be-
havioural analysis are developed. The illustrative exam-
ple of a chemical process is given in Section 4. The paper
concludes in Section 5.

2. Interval Speed Continuous Petri Net

2.1. Intuitive Examples

Time Petri nets constitute general models for time depen-
dent systems. In a time Petri net, time intervals can be as-
sociated with places (called thetime places) or transitions
(called thetime transitions). A time Petri net with time
transitions can be transformed into a time Petri net with
time places, and vice versa. In the following, time transi-
tions are assumed to exist in a time Petri net. Normally, a
time interval djmin, djmax is specified by two bounds of
time: a maximum timedjmax and a minimal timedjmin

(djmin ≤ djmax). When the maximum timesdjmax of
time transitions are set to+∞, the time Petri net reduces
to a timed Petri net.

Consider the time Petri net in Fig. 1(a). Time inter-
vals (David and Alla, 1987; Murata, 1989; Ramchandani,
1974) are associated with transitionst1 and t2, respec-
tively, and the marking in Fig. 1(a) corresponds to time
τ = 0. Obviously, transitiont1 is enabled at timeτ = 0,
and one token is reserved in placep1 in order to fire tran-
sition t1. From the semantics of time Petri nets, transi-
tion t1 can be fired after timeτ = 1, and must be fired
before timeτ = 4. Suppose that each transition works
in the earliest firing mode, i.e., each enabled transition is
fired as soon as its minimal time elapses. Then, at time
τ = 1 transition t1 is fired, and the reserved token inp1

is taken away, and a nonreserved token is put intop2. At
time τ = 1, transitionst1 and t2 are enabled. At time

τ = 2 transition t1 is fired again, and one reserved token
in p1 is taken away, and one nonreserved token is put into
p2. At time τ = 3, transitiont2 is fired, and one reserved
token in p2 is taken away, and one nonreserved token is
put into p1. At time τ = 3, transitionst1 and t2 are en-
abled again, and they are fired at timesτ = 4 and τ = 5,
respectively, and so on. The corresponding markingsm1

and m2 are illustrated by dashed lines in Fig. 1(c). At
time τ = 1, periodical behaviour with periodµ = 2 is
reached.

Similarly, the markingsm1 andm2 for different fir-
ing modes of transitionst1 and t2 can be derived, re-
spectively. Under the latest firing modes of both transition
t1 and transitiont2 (i.e., the enabled transition is fired
when its maximum time elapses), at timeτ = 4 period-
ical behaviour is reached, as shown in Fig. 1(d). For the
earliest firing mode of transitiont1 and the latest firing
mode of transitiont2, at time τ = 1 periodical behaviour
with period µ = 4 in Fig. 1(e) is reached. Figure 1(f) is
the dynamic evolution of markings under the latest firing
mode of transitiont1 and the earliest firing mode of tran-
sition t2, where periodical behaviour with periodµ = 4
is reached at timeτ = 1.

From the time Petri net of Fig. 1(a), it is possible
to construct a continuous model by replacing time values
djmin and djmax with maximum firing speedsVjmax =
1/djmin and minimal firing speedsVjmin = 1/djmax, re-
spectively. This results in the continuous time Petri net of
Fig. 1(b). In the continuous model, transitionst1 and t2
will be fired at IFSsv1(τ) and v2(τ), respectively, after
time τ . At initial time τ = 0, transition t1 is strongly
enabled, and transitiont2 is weakly enabled (Balduzzi
et al., 2000; David and Alla, 2001). The evolution of the
markings in two places is governed by the following equa-
tions in interval (0, τ1) (in this interval, v1(τ) = 1 and
v2(τ) = 0.5):{

m1(τ) = 2 + (1− 0.5)τ,
m2(τ) = (1− 0.5)τ.

These equations remain true until placep1 becomes
empty at timeτ1 = 2/0.5 = 4. During all times τ ≥
τ1(= 4), transitionst1 and t2 are fired at speedsv1(τ) =
v2(τ) = 0.5 since transitiont1 is weakly enabled andt2
is strongly enabled. Thus, a steady state is reached at time
τ = τ1, and the evolution of markings is illustrated in
Fig. 1(c). According to the firing and enabling semantics
of time Perti nets, the continuous time Petri net might have
different kinds of behaviour shown in Figs. 1(d)–(f), and
so on.

If we change times specification of the time Petri net
in Fig. 1(a), an unexpected situation occurs. Consider the
time Petri net in Fig. 2(a), for which the corresponding
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Fig. 1. Approximating time Petri net.
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Fig. 2. An unexpected situation.

continuous time Petri net is shown in Fig. 2(b). The evo-
lution of markingsm1 and m2 of the time Petri net is
illustrated by dashed lines in Fig. 2(c), while assumming
that the earliest firing mode for transitionst1 and t2 is
adopted. At timeτ = 1, periodical behaviour with the
period µ = 3 is reached.

In the continuous time Petri net, at initial timeτ = 0
transition t1 is strongly enabled, and transitiont2 is
weakly enabled (Balduzziet al., 2000; David and Alla,
2001). Clearly, we could not derive one feasible IFS
v2(τ) for transition t2 becausev2(τ) must be in the in-
terval [0.5, 1], and its input placep2 can receive the sup-
ply flow only at speedv1(τ) = 1/3. However, when any
time delay δ elapses, placep2 will not be empty, and
there will exist feasible IFSv2(τ) for transition t2. For
this situation, we could assume that the weakly enabled
transitiont2 has a time delay (δ = dj = 1/Vjmax). Then,
at time τ1 = δ, we can have a feasible IFSv2(δ) = 1. In
this way, the evolution of markings in this continuous time
Petri net can be continued, as shown in Fig. 2(c).

Remark 1. Obviously, the semantics of continuous Petri
nets (David and Alla, 2001) is not sufficient to explain the
situation, and neither is the FOHPN semantics (Balduzzi
et al., 2000). More reasonable semantics are required for
continuous time Petri nets.

2.2. Formalism of Interval Speed Continuous PNs

This section formalizes some concepts which were pre-
sented intuitively in the previous section, and the interval
speed continuous Petri net is defined here. The common
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formalism and notation of PNs and CPNs are adoped, and
a comprehensive introduction can be found in (David and
Alla, 2001; Merlin and Farber, 1976; Murata, 1989).

Definition 1. An interval speed continuous Petri net is the
quintupleN = (P, T,Pre,Post ,F ), where

P = {p1, p2, p3, . . . , pn} is a set of continuous places,

T = {t1, t2, t3, . . . , tm} is a set of continuous transi-
tions,

P ∩ T = ∅, i.e., the setsP and T are disjointed,

Pre: T × P → R+ (or P × T → R+) (R+ is a set
of non-negative real number) is the transition (or
place) input incidence mapping,

Post: T × P → R+ (or P × T → R+) is the transition
(or place) output incidence mapping,

F : T → R+ × (R+ ∪∞) is the flow or speed interval
function.

In an ICPN, the functionF specifies firing speeds
associated with continuous transitions. For any contin-
uous transitiontj ∈ T , F (ti) = [Vjmin, Vjmax] with
Vjmin ≤ Vjmax, where Vjmin represents the minimal
speed andVjmax denotes the maximum speed. Here,
the speed specificationF (ti) = [Vjmin, Vjmax] of each
continuous transition approximates the time specifica-
tion D(ti) = [djmin, djmax] of its discrete version, by
Vjmin = 1/djmax and Vjmax = 1/djmin.

Definition 2. A marked ICPN is formalized as
(N,m(τ0)) = (P, T,Pre,Post , F, m(τ0)), where the
quantity m(τ0) represents the initial marking vector, and
m : P → R+, is a marking function that assigns to each
continuous place a nonnegative real token. For any place
pi ∈ P , its token at timeτ is denoted bymi(τ) or mi.

Remark 2. An ICPN reduces to a CPN whenVjmin = 0
for all continuous transitionstj ∈ T . Thus ICPNs can
be considered as a general formalism of continuous Petri
nets.

2.3. Enabling and Firing Semantics

The enabling of continuous transitions in ICPNs depends
not only on the current marking, but also on the feeding
flow of all its input places. We use the similar notation
•x (x•) to denote the input (resp. output) set of element
x ∈ P ∪ T .

Definition 3. A place pi ∈ P is supplied or fed if and
only if there is at least one of its input transitionstj ∈ •pi

which is being fired at a positive speedvj(τ)(> 0).

Definition 4. Transition tj ∈ T is enabled at timeτ if
all input placespi ∈ •tj satisfy that eithermi(τ) > 0 or
pi is supplied, and otherwise the transition is disabled.

Definition 5. An enabled transitiontj ∈ T is called
strongly enabled or 2-level enabled at timeτ if all input
placespi ∈ •tj satisfy mi(τ) > 0.

Definition 6. An enabled transitiontj ∈ T is called
weakly enabled at timeτ if at least one of its input places
pi ∈ •tj does not satisfymi(τ) > 0.

Definition 7. A weakly enabled transitiontj ∈ T is
called 1-level enabled at timeτ if all the supplied places
pi ∈ •tj satisfy the condition∑

k

Pre(pi, tk)vk(τ)−
∑
k 6=j

Post(pi, tk)vk(τ) ≥ Vjmin.

Definition 8. A weakly enabled transitiontj ∈ T is
called 0-level enabled at timeτ if one of the supplied
placespi ∈ •tj satisfies the condition

0 <
∑

k

Pre(pi, tk)vk(τ)

−
∑
k 6=j

Post(pi, tk)vk(τ) < Vjmin.

It is clear that either a 2-level or a 1-level enabled
continuous transition can be fired once it is enabled. How-
ever, 0-level enabled continuous transitions can be fired
only after a time delay elapses, since there exists no feasi-
ble IFS at the moment.

Property 1. A 2-level enabled transitiontj ∈ T can be
fired at IFSvj(τ) ∈ (Vjmin, Vjmax).

Property 2. A 1-level enabled transitiontj ∈ T can be
fired at IFSvj(τ) satisfying the relations

Vjmin ≤ vj(τ) ≤ Vjmax,

vj(τ) ≤
∑

k

Pre(pi, tk)vk(τ)

−
∑
k 6=j

Post(pi, tk)vk(τ),

for all places pi ∈ •tj .

Property 3. A 0-level enabled transitiontj ∈ T can
be fired after time delaydj = 1/Vjmax at IFS vj(τ) ∈
[Vjmin, Vjmax], unless the transition is disabled before
time (τ + dj) elapses.
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3. Behavioural Analysis of ICPNs

3.1. Conflict Resolution

In an ICPN, a conflict may arise if a unique place has to
supply two or more transitions. When the unique place
holds positive tokens or has proper feed flows, the conflict
is not effective.

Definition 9. A conflict occurs when placepi ∈ P has
at least two output transitions. We denote a conflict by
K = 〈pi, t|t ∈ p•i 〉. A conflict is effective if the following
conditions are met:

mi(τ) = 0,∑
j

Post(pi, tj)Vjmin ≤
∑

k

Pre(pi, tk)vk(τ)

≤
∑

j

Post(pi, tj)Vjmax.

Property 4. An effective conflictK = 〈pi, t|t ∈ p•i 〉 can
be resolved by one of the following policies:

Priority policy:

vj(τ) =



min
(
Vjmax,

( ∑
k

Pre(pi, tk)vk(τ)

−
∑
r>j

Post(pi, tr)Vrmax

))
if

( ∑
k

Pre(pi, tk)vk(τ)

−
∑
r>j

Post(pi, tr)Vrmax

)
≥ Vjmin,

0 otherwise.

Proportional policy:

vj(τ) = min
(
Vjmax,max

(
Vjmin, Vjmax∑

k

Pre(pi, tk)vk(τ)/
∑

r

Post(pi, tr)Vrmax

))
.

(Here r > j corresponds to all transitions that are inp•i
and have priority overtj).

Proposition 1. If there exist feasible IFSs for an effective
conflict K = 〈pi, t|t ∈ p•i 〉 by the priority policy, then∑

r

Post(pi, tr)vr(τ) ≤
∑

k

Pre(pi, tk)vk(τ),

∀tk ∈ •pi,∀tr ∈ p•i .

Proposition 2. If there exist feasible IFSs for an ef-
fective conflict K = 〈pi, t|t ∈ pi•〉 by the proportional

policy, then∑
r

Post(pi, tr)Vrmin

≤
∑

r

Post(pi, tr)vr(τ) ≤
∑

k

Pre(pi, tk)vk(τ),

∀tk ∈ •pi, ∀tr ∈ p•i .

Proof. By the proportional policy, any feasible IFSvr(τ)
for every tr ∈ pi• must satisfy

vr(τ) ≤ max
(
Vjmin, Vjmax

∑
k

Pre(pi, tk)vk(τ)

/
∑

r

Post(pi, tr)Vrmax

)
.

Thus∑
r

Post(pi, tr)vr(τ)

≤ max
(∑

j

Post(pi, tj)Vjmin,
(∑

j

Post(pi, tj)Vjmax

)
×

∑
k

Pre(pi, tk)vk(τ)/
∑

r

Post(pi, tr)Vrmax

)
= max

( ∑
j

Post(pi, tj)Vjmin,
∑

k

Pre(pi, tk)vk(τ)
)
.

From Definition 9, we have∑
j

Post(pi, tj)Vjmin ≤
∑

k

Pre(pi, tk)vk(τ).

Hence∑
r

Post(pi, tr)vr(τ) ≤
∑

k

Pre(pi, tk)vk(τ).

If

Vrmin ≥ Vrmax

∑
k

Pre(pi, tk)vk(τ)

/
∑

r

Post(pi, tr)Vrmax,

then
vr(τ) = min(Vrmax, Vrmin) = Vrmin.

Thus∑
r

Post(pi, tr)vr(τ) =
∑

r

Post(pi, tr)Vrmin.

If

Vrmin ≤ Vrmax

∑
k

Pre(pi, tk)vk(τ)

/
∑

r

Post(pi, tr)Vrmax,
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then

vr(τ) = min
(
Vrmax, Vrmax

∑
k

Pre(pi, tk)tk(τ)

/
∑

r

Post(pi, tr)Vrmax

)
≥ Vrmin.

Thus∑
r

Post(pi, tr)vr(τ) ≥
∑

r

Post(pi, tr)Vrmin.

Some typical conflicts are shown in Fig. 3. Fig-
ures 3(a), (b) and (c) illustrate conflicts, but not effective
ones. Figures 3(d), (e) and (f) correspond to conflicts, and
effective conflicts.

(a)

  t1           [0.5, 1.0]

       2         p1

 t2                             t3
[0.25,  0.6]       [0.25,  0.6]

   t1          [0.5, .0.6]

                p1

 t2                             t3
  [0.8, 1.0]          [0.7,  0.9]

(b)

   t1           [0.5, 1.0]

            p1

  t2                            t3
[0.2,  0.5]           [0.1,  0.3]

(c)

   t1            
 [0.5,  0.8]

                  p1

 t2                             t3
  [0.6, 1.0]            [0.6,  1.0]

(d)

(e)

   t1          [0.5, 1.0]

           p1

 t2                             t3
 [0.5,  0.8]           [0.5,  0.8]

(f)

   t1          [0.5, 1.2]

                p1

 t2                             t3
 [0.5, 0.8]           [0.3,  0.8]

Fig. 3. Typical conflicts.

Transitions t2 and t3 in Figs. 3(a) and (c) can be
fired in the maximal speed mode, i.e., their IFSs can be set
as v2(τ) = v3(τ) = 0.6 and v2(τ) = 0.5, v3(τ) = 0.3,
respectively. In Fig. 3(b), neither of transitionst2 and t3
can be fired at the moment, i.e.,v2(τ) = v3(τ) = 0, since
there do not exist feasible IFSs for them.

The conflict in Fig. 3(d) can be resolved only by the
priority policy, and IFSs arev2(τ) = 0.8 and v3(τ) = 0

if transition t2 has priority over transitiont3. If transition
t3 has priority over transitiont3, IFSs arev2(τ) = 0 and
v3(τ) = 0.8.

In Figs. 3(e) and (f), either of resolution policies can
be used, resulting in different IFSs. In terms of the priority
policy, we havev2(τ) = 0.8 and v3(τ) = 0.0, v2(τ) =
0.8 and v3(τ) = 0.4, respectively, if transitiont2 has
priority over transitiont3. When transitiont3 has priority
over transitiont3, we havev2(τ) = 0.0 and v3(τ) =
0.8, v2(τ) = 0 and v3(τ) = 0.8, respectively. Using the
proportional policy, IFSs arev2(τ) = v3(τ) = 0.5 and
v2(τ) = v3(τ) = 0.6, respectively.

3.2. Enabled Transitions and Their IFS

The behavioural evolution of ICPNs depends on both en-
abled transitions and IFSs. Due to recursive definitions, it
is not trivial to know whether or not a transition is enabled
and to calculate IFSs. The algorithm to determine enabled
transitions and IFSs is presented as follows. It is assumed
that 2-level enabled transitions function in the maximal
speed mode.

Algorithm 1. (Calculation of enabled transitions and
IFSs)

1. Initialization: ET0 = ET1 = ET2 = ∅; time(tj) =
0, ∀tj ∈ T .

2. For pi ∈ P with mi(τ) > 0, find all 2-level enabled
transitionstj ∈ p•i . Let ET2 := ET2∩{tj}, vj(τ) =
Vjmax, time(tj) := τ and T := T − {tj}.

3. For pi ∈ P with mi(τ) = 0, find all disabled transi-
tions tj ∈ T ∩ p•i . Let vj(τ) = 0, time(tj) := τ and
T := T − {tj}.

4. Find all 0-level enabled transitionstj ∈ T . Let
vj(τ) = 0, time(tj) := τ + 1/Vjmax, ET0 :=
ET0 ∩ {tj} and T := T − {tj}.

5. By conflict resolution policies, calculate the IFSs of
transition tj ∈ T . Let time(tj) := τ , ET1 := ET1 ∩
{tj} and T := T − {tj}.

3.3. Behavioural Analysis

Similarly to CCPNs, the marking of a place in ICPNs is
a time continuous function. A characteristic quantity of
the dynamic evolution of ICPNs is the IFS vector, which
remains constant in a regional state.

Definition 10. A regional state is defined as
(m, V, [τ1, τ2]), where m is the marking vector of all
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continuous places, andV is the IFS vector of all contin-
uous transitions which remain unchanged in time interval
[τ1, τ2].

The behavioural evolution of ICPNs is driven by dis-
crete events of empting continuous place. However, a re-
gional state occurs when: (a) a continuous place becomes
empty, or (b) a 0-level enabled transition is fired after
some delay elapses. Thus the duration of time interval
[τ1, τ2] in a regional state is determined by the first place
whose marking becomes zero, or the first 0-level enabled
transition which will be fired, i.e.,∆k = τk − τk−1 is
given by

∆k = min
{

min
i

{
mi(τk−1)/

∑
r

Post(pi, tr)

vr(τk−1)
}

,min
j
{1/Vjmax|tj ∈ ET0}

}
.

Algorithm 2. (Behavioural analysis of ICPN)

1. Initialization: k = 1, τk = 0, m(τk).

2. If V (τk+1) = V (τk), then STOP. Otherwise, using
Algorithm 1, calculateET0, ET1, ET2, vector V ,
and time vector time.

3. Calculate
∆k = mini{mi(τk−1)/

∑
r Post(pi, tr)vr(τk−1)}.

4. If ET0 = ∅, then apply updateτk := τk +
∆k, mi(τk) := mi(τk) +

∑
r Pre(pi, tr)vr(τk) −∑

r Post(pi, tr)vr(τk), and go to Step 2.

5. Find transition tj ∈ ET0 satisfying 1/Vjmax =
minr{1/Vrmax|tr ∈ ET0}.

6. If 1/Vjmax ≥ ∆k, then updateτk := τk +
∆k,mi(τk) := mi(τk) +

∑
r Pre(pi, tr)vr(τk) −∑

r Post(pi, tr)vr(τk), and go to Step 2.

7. Updateτk := τk +1/Vjmax andmi(τk) := mi(τk)+∑
r Pre(pi, tr)vr(τk) −

∑
r Post(pi, tr)vr(τk),

V (τk) := V (τk), vj(τk) := Vjmax and go to Step 2.

Consider the ICPN in Fig. 4(a). The speed ranges
of transitions and initial markings of places are specified.
The behavioural evolution can be analyzed as follows: At
the initial time τ = 0, m1(0) = 10, m2(0) = 20 and
m3(0) = m4(0) = 0. Obviously, transitiont1 is strongly
enabled or 2-level enabled, andv1(0) = 5. Since place
p4 is supplied by a flow of(5+v2(0)), transitionst3 and
t4 are weakly enabled. By the proportional policy, their
IFSs could bev3(0) = v4(0) = (5 + v2(0))/2 ≥ 2, and
thus transitionst3 and t4 are 1-level enabled. The fired
transition t4 can supply placep3 at a speed of over 2.5.
Then, transitiont2 is 1-level enabled, and fired at speed
v2(0) = 2. Now, the total supply of placep4 can be

determined as(5 + 2) = 7. Therefore, transitionst3 and
t4 can be fired at speedv3(0) = v4(0) = 3. From time
τ = 0, the ICPN’s behaviour is governed by the following
equations: 

m1(τ) = 10− 2τ,

m2(τ) = 20− 2τ,

m3(τ) = m4(τ) = τ.

At time τ = 5, m1(0) = 0, m2(0) = 10 and
m3(0) = m4(0) = 5. Transitions t2, t3 and t4 are
strongly enabled, and their IFSs are reset asv2(5) = 2
and v3(5) = v4(5) = 3, respectively. Since placep1 is
supplied by a flow of 3, transitiont1 is 1-level enabled,
and can be fired atv1(5) = 3. From time τ = 0, the
ICPN’s behaviour is governed by the following equations:

m1(τ) = 0,

m2(τ) = 20− 2τ,

m3(τ) = τ,

m4(τ) = τ.

At time τ = 10, we havem1(0) = 0, m2(0) = 0
and m3(0) = m4(0) = 10. Transition t2 is disabled,
and v2(10) = 0. By the 0+ enabled rule (David and
Alla, 2001), transitionst1 and t1 are 1-level enabled, and
their IFS are reset asv1(10) = v3(10) = 3. From time
τ = 10, the ICPN reaches a steady state which is governed
by the following equations:{

m1(τ) = m2(τ) = 0,

m3(τ) = m4(τ) = 10.

The dynamic evolution of the ICPN’s behaviour is graph-
ically shown in Fig. 4(b), and the markings of the contin-
uous places are presented in Fig. 4(c).

4. Chemical Process Example

A chemical process with 4 units and 4 operations is shown
in Fig. 5(a). Two kinds of material are processed in Unit 1
(Operation 1) and Unit 2 (Operation 2), respectively, and
then fed to Unit 3, where Operation 3 is undertaken. The
feed flow from Unit 1 to Unit 3 is limited within the inter-
val [2, 3], and the feed flow from Unit 2 to Unit 3 is within
the interval[3, 5]. The intermediate product is fed from
Unit 3 to Unit 4 at a flow of[4, 6]. There are two output
flows of Unit 4: one is the final product flow at a speed
of [3, 4], and the other is the recycled flow to Unit 3 at a
speed of[1, 2]. The capacity of Unit 3 is limited by 30,
and its initial volume is 10.

This process can be modelled as the ICPN shown in
Fig. 5(b). From the ICPN model, we can analyze the dy-
namic behaviour as follows:
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   p1                  p2           p3
      10               20

   t1                          t2

       [3, 5]                                 [1,2]

   2

p4

               t3      t4
        [2, 3]    [2, 3]

(a)

M(0) = (10,20,0,0)T 

V(τ) = (5,2,3,3)T

m1(τ) = 10 - 2τ ,   m2(τ) = 20 - 2τ
m3(τ) = m4(τ) = τ

M(5) = (0,10,5,5)T 

V(τ) = (3,2,3,3)T

m1(τ) = 0,   m2(τ) = 20 - 2τ
m3(τ) = m4(τ) = τ

M(10) = (0,0,10,10)T 

  V(τ) = (3,0,3,0)T

m1(τ) = m2(τ) = 0
 m3(τ) = m4(τ) = 10

(b)

m1

20

10

      0       2        4        6        8       10      12       14      16        τ

m2

20

10

      0       2        4        6        8       10      12       14      16        τ

m3

20

10

      0       2        4        6        8       10      12       14      16        τ

(c)

m4

20

10

      0       2        4        6        8       10      12       14      16        τ

(c)

Fig. 4. Illustrative example.

At τ = 0 we havem1(0) = 10, m2(0) = 20 and
m3(0) = 0. Then ET2 = t1, t2, t3, ET1 = t4, t5, and
v1(0) = 3, v2(0) = 5, v3(0) = 6, v4(0) = 4, v5(0) =
2. From time τ = 0, the ICPN’s behaviour is governed
by the following equations:

m1(τ) = 10 + 4τ,

m2(τ) = 20− 4τ,

m3(τ) = 0.

At time τ = 5 we havem1(5) = 30, m2(5) = 0
andm3(5) = 0, and transitiont3 is still strongly enabled,
and ET2 = t3, ET1 = t2, t4, t5, ET0 = t1, v1(5) =
0, v2(5) = 3, v3(5) = 6, v4(5) = 4, v5(5) = 1.2.
From time τ = 5, the ICPN’s behaviour is governed by

the following equations:
m1(τ) = 39− 1.8τ,

m2(τ) = 1.8τ − 9,

m3(τ) = 0.8τ − 4.

At time τ = 5.5, the 0-level enabled transitiont1
is fired at v1(5.5) = 2. The IFSs of other transitions
remain unchanged, andm1(5.5) = 29.1, m2(5.5) =
0.9, m3(5.5) = 0.4. Thus, from timeτ = 5.5, the equa-
tions governing the ICPN’s behaviour are changed to

m1(τ) = 28 + 0.2τ,

m2(τ) = 2− 0.2τ,

m3(τ) = 0.8τ − 4.
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1   [2, 3]                            [1, 2]

                   3                     4
2   [3, 5]                            [4, 6]                 [3, 4]

(a)

  t1                                     p2
[2, 3]                                           20

                                                                         [3, 4]
         10     

                            [4, 6]

         t2

       [3, 5]                             t5        [1, 2]

p1         t3                             p3       t4

(b)

Fig. 5. Chemical process.

At time τ = 10 we havem1(10) = 30, m2(10) =
0 and m3(10) = 4. Then ET2 = {t3, t4}, ET1 =
{t2, t5}, ET0 = {t}, and v1(10) = 0, v2(10) =
3, v3(10) = 6, v4(10) = 4, v5(10) = 1.2. Thus, from
time τ = 10, the marking equations of the ICPN are

m1(τ) = 48− 1.8τ,

m2(τ) = 1.8τ − 18,

m3(τ) = 0.8τ − 4.

At time τ = 10.5, the 0-level enabled transitiont1
is fired at v1(10.5) = 2. The IFSs of other transitions
remain unchanged, andm1(10.5) = 29.1, m2(10.5) =
0.9, m3(10.5) = 4.4. Thus, from timeτ = 5.5, the
equations governing the ICPN’s behaviour are changed to

m1(τ) = 28 + 0.2τ,

m2(τ) = 2− 0.2τ,

m3(τ) = 0.8τ − 4.

Obviously, after timeτ = 5.5, the ICPN reaches the
following periodical behaviour:

v1(τ) = 0, v2(τ) = 3, v3(τ) = 6, v4(τ) = 4,

v5(τ) = 1.2 when τ ∈ [5k, 5k + 0.5],
k = 1, 2, . . .

v1(τ) = 2, v2(τ) = 3, v3(τ) = 6, v4(τ) = 4,

v5(τ) = 1.2 when τ ∈ [5k + 0.5, 5(k + 1)],
k = 1, 2, . . .

5. Conclusions

Continuous flows with maximal and minimal bounds are
important characteristic quantities in either approximating
discrete event systems or describing continuous processes.
Aiming at approximating time Petri nets, the concept of
an Interval Speed Continuous Petri Net is developed in
this paper. The ICPN can be considered as a general for-
malism of continuous processes. When the minimal speed
limit is relaxed, the ICPN reduces to a CPN.

Associating maximal and minimal firing speeds with
continuous transitions implies that the dynamics and prop-
erties in ICPNs are much more complicated than in tradi-
tional CPNs. Further efforts are required to establish a
more theoretical foundation regarding net dynamics and
structural properties of ICPNs. In addition to that, a
formal proof to compare the ICPN with the original net
model is under way, as the optimization and control of
continuous and hybrid processes via ICPNs are interest-
ing topics.
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