
Int. J. Appl. Math. Comput. Sci., 2005, Vol. 15, No. 1, 73–88

UNCERTAINTY MODELS OF VISION SENSORS
IN MOBILE ROBOT POSITIONING

PIOTR SKRZYPCZYŃSKI
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This paper discusses how uncertainty models of vision-based positioning sensors can be used to support the planning and
optimization of positioning actions for mobile robots. Two sensor types are considered: a global vision with overhead
cameras, and an on-board camera observing artificial landmarks. The developed sensor models are applied to optimize
robot positioning actions in a distributed system of mobile robots and monitoring sensors, and to plan the sequence of
actions for a robot cooperating with the external infrastructure supporting its navigation.
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1. Introduction

Reliable localization is a fundamental problem for mobile
robots. Wheeled mobile robots use odometry, which is
able to provide the robot with an estimate of its pose (posi-
tion and orientationXR = [xr yr θr]T ) at any time. This
method alone is insufficient, and the pose has to be cor-
rected by using measurements from exteroceptive sensors.
There are numerous approaches to sensor-based localiza-
tion known from the literature (Fenget al., 1996). Unfor-
tunately, self-localization methods require expensive on-
board sensors (Castellanos and Tardòs, 1999). Currently,
CCD cameras are the most compact and low cost sensors
for mobile robots (DeSouza and Kak, 2002). However,
most vision-based localization methods fail under com-
mon environmental conditions, due to occlusions, shad-
ows, etc.

A solution for limited environments such as ware-
houses or factories is to develop an external infrastruc-
ture, which provides pose estimates to robots. Such an
infrastructure was proposed by (Ishiguro, 1997) as a dis-
tributed vision system consisting of multiple cameras em-
bedded in an environment. Stationary external cameras
have also been successfully used to navigate experimental
AGVs (Kruseet al., 1998).

The modification of the environment is an obvious
disadvantage. However, when a group of mobile robots
shares a limited number of cameras mounted in carefully
chosen locations (e.g., at corridor junctions, docking sta-
tions), the use of the external sensors is justified. Also
artificial landmarks, which improve operational character-

istics of on-board vision sensors, become more acceptable
when a minimal number of cheap and unobtrusive visual
cues is used (Bączyket al., 2003).

Localization based on the external infrastructure pro-
posed here uses both fixed and on-board cameras, and ex-
ploits artificial visual cues in the form of passive, printed
landmarks and active LED markers on robots. Due to
these visual cues, simple and fast image processing meth-
ods could be employed, resulting in reliable and accurate
positioning of mobile robots with respect to the global ref-
erence frame.

In a system with many robots performing their indi-
vidual tasks, possibly along many very different routes,
an optimal placement of stationary cameras and artificial
landmarks, ensuring a complete coverage of the environ-
ment within the given uncertainty bounds, becomes in-
feasible. When artificial navigation aids are sparsely dis-
tributed in the environment and shared by several robots,
an important issue is to ensure an appropriate strategy of
positioning for particular robots.

This paper discusses methods used to ensure a re-
liable estimation of the mobile robot pose from artifi-
cial navigation aids sparsely distributed in the workspace,
and shared by several robots working in a distributed sys-
tem. The workspace is a closed environment and its gen-
eral layout is known to the robots, so there is no need
for exploration. Unexpected or moving obstacles (other
robots) are handled by reactive navigation procedures. It
is assumed that wheeled robots move in 2D on a flat
floor. This work builds upon the author’s previous re-
sults in distributed sensing (Kasiński and Skrzypczýnski,
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Fig. 1. Overhead camera system geometry.

1998; 2001) and sensor uncertainty modelling (Bączyk
and Skrzypczýnski, 2003; Skrzypczýnski, 2004b). The
main contributions of this paper are two methods aimed
at minimizing the whole cost of positioning actions un-
dertaken by robots, while ensuring the best available posi-
tioning quality (lowest uncertainty), or keeping the uncer-
tainty bounded to the required value.

2. Vision-Based Sensors for Positioning

2.1. Distributed Overhead Cameras

The global vision system uses CCD cameras mounted to
the ceiling. The cameras are equipped with wide an-
gle (fish-eye) lenses, and their optical axes are orthogo-
nal to the ground plane (Fig. 1). Low-costAverMedia
BT848 frame grabbers are used to digitize frames from
standard B/W industrial cameras connected to PC com-
puters being nodes of a LAN in the laboratory (Bączyk
and Skrzypczýnski, 2001). The entire image processing

A B C
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Fig. 2. Main stages of overhead camera images processing.

is performed in software on PCs. The extraction of robot
characteristic points from grey-level images is hard and
unreliable due to the complex shapes of the robots and
the varying illumination conditions (Kasiński and Hamdy,
2003). Because of that, theLabmaterobots have been
equipped with active LED markers attached symmetri-
cally to the corners. The detection of a robot is performed
on the difference image, which is computed from a pair of
images taken when the robot LEDs are on, and then off.

The procedure for the computation of the position
and orientation of a mobile robot from overhead camera
images consists of the following steps:

• Acquisition of two images, with the diodes on
(Fig. 2A) and off, respectively.

• Elimination of the uneven natural lighting.

• Computation of the difference image and tresholding
of this image (Fig. 2B).

• Cluster labelling and pruning of too small and too
large clusters (Fig. 2C).

• Computation of the centres of the remaining clusters
(Fig. 2D).

• Correction of the fish-eye distortions for the found
points (Fig. 2E).

• Search for the pattern of points in the image, which
matches the layout of the diodes on the robot
(Fig. 2F).

• Computation of the position and orientation of the
robot in the camera coordinates.

• Conversion of the found robot pose to the global co-
ordinates.



Uncertainty models of vision sensors in mobile robot positioning 75

All operations in the robot recognition procedure are ap-
plied to the part of the whole image which is defined by
the region of interest (ROI) (Bączyk and Skrzypczyński,
2001). The position of this ROI is computed from the pre-
vious estimate of the robot pose.

To eliminate the uneven scene illumination, a ho-
momorphic filter was used (Kasiński and Hamdy, 2003).
Thanks to this filter the illumination component of the im-
ages was suppressed. In many realistic situations the illu-
mination component varies slowly, while the reflectance
component changes rapidly. Using a high-pass filter, one
can eliminate the illumination component, and obtain an
image with an emphasized reflectance component. The
separation of the components is not perfect since the
reflectance component contains low-frequency residuals
from the illumination component, but the difference im-
age computed from two frames treated with the filter has
much less noise than without the homomorphic filtration.
The computation of the binary imageIB(u, v) from a pair
of framesI1(u, v) and I2(u, v) is described by

IB(u, v) =

{
1 for |I1(u, v)− I2(u, v)| ≥ IT ,

0 for |I1(u, v)− I2(u, v)| < IT ,
(1)

where u and v are the image coordinates of the pixel,
and IT is a given threshold of the pixel value. A group
of connected pixels (cluster) in the image is potentially a
representation of the sought object (a LED in this case).
The labelling algorithm finds all connected pixels of an
object, and assigns to them a unique value, called the label
(Jain et al., 1995). The groups of pixels which are too
small or too large to represent a LED are deleted. The
centres of the found clusters are established by computing
the centre of mass:

ũ =

n∑
i=1

m∑
j=1

iIB(i, j)

n∑
i=1

m∑
j=1

IB(i, j)
, ṽ =

n∑
i=1

m∑
j=1

jIB(i, j)

n∑
i=1

m∑
j=1

IB(i, j)
, (2)

where ũ and ṽ are first-order moments, which define the
centre of a cluster in then×m pixel image. In the above
computations only the pixels which belong to a given clus-
ter are taken into account.

To use a distorted image from the fish-eye camera
for robot pose computation, this image has to be corrected
by using a geometry transformation. The camera has to
be internally calibrated (to exactly know its focal length
(Heikkilä, 2000)), and calibrated with respect to the global
coordinate system. The geometry correction procedure
transforms image coordinates of the pixels to the positions
these pixels would have if the picture was taken from a
much greater distance, but by using idealized lenses (of a
very long focal length), which do not introduce any ge-
ometric distortions (Fig. 3). There exist methods for the

B

A

Fig. 3. Image geometry for a normal (A) and a fish-eye (B) lens.

fish-eye effect correction (Shah and Aggarwal, 1994), but
here an original approach proposed by (Bączyk, 2001),
called the spherical transformation, was used. In this sim-
ple method the image coordinates are expressed in the po-
lar coordinate system, and only the distance of the given
pixel from the centre of the image (the optical axis of the
camera) is corrected.

In spite of its simplicity, the fish-eye correction of
a full-frame image is quite time consuming. However,
when the camera is used to detect positions of few clus-
ters, which represent the robot LEDs, the correction can
be applied after the initial stages of image processing, only
to the remaining points being potentially the centres of
the LEDs. Performing the correction only on few points
makes the whole processing much faster.

When the corrected coordinates of the points being
the centres of the found clusters are known, the set of four
points, which is a representation of the robot diodes, is
sought. To find the LED pattern, it is checked which of
the corrected points fulfil the geometric constraints of the
known dimensions of the LED pattern. Three LEDs must
be visible to form a minimal detectable pattern (triangle).
The distances between the found points are checked, as
well as the angles between the line segments defined by
the points. If the distance and angle conditions are ful-
filled, the three found points form a right-angled trian-
gle. All the found triangles are then checked whether or
not they belong to the same rectangle defined by the four
diodes on the robot. Depending on the number of the vis-
ible diodes (one of them can be occluded by the robot
itself), the number of triangles is either 1 (three LEDs
found) or 4 (all diodes visible).

The vector of the position and orientation of the robot
in the image coordinatesUR = [ur vr ϑr]T is computed
from the known positions of the LEDs. The centre of the
LED pattern is computed for each found right-angled tri-
angle:

ur =
1
2
(uA + uB), vr =

1
2
(vA + vB), (3)
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where UA = [uA vA]T and UB = [uB vB ]T are the
image coordinates of the end points of the triangle’s hy-
potenuse. The image coordinates of the centre can be av-
eraged over all found triangles.

To compute the orientation of the rectangle consti-
tuted by LEDs, the coordinates of only two points are nec-
essary:

ϑr = arctan
(

vB − vA

uB − uA

)
. (4)

When uA = uB , the robot orientation is 90o. If all four
diodes are visible, the orientation can be computed also
with respect to the remaining two points, and the results
can be averaged. The transformations (3) and (4) can be
written in a compact vector form:

UR = fuv(UA,UB). (5)

Once the position and orientation in image coordi-
nates are known, the robot pose in the camera coordinates
X

′

R = [x
′

k y
′

k θ
′

k]T can be computed by using the known
dependence between the dimensions in the image and in
the reality:

x
′

r =

(
ur − w

′

2

)
w

w′ , y
′

r =

(
vr − h

′

2

)
h

h′ , (6)

θ
′

r = ϑr,

wherew
′

and h
′

are the dimensions of the CCD matrix,
w and h are the dimensions of the field of view. The
robot orientation remains unchanged. Then the robot pose
XR in global coordinates is computed by using the fol-
lowing equations:

xr = xk + x
′

r cos θk − y
′

r sin θk,

yr = yk + x
′

r sin θk + y
′

r cos θk, (7)

θr = θk + θ
′

r,

where XK = [xk yk θk]T is the vector of the camera
position and orientation in the global frame. The above
relationship can be written in the following general form:

XR = fkx(XK ,X
′

R). (8)

2.2. On-Board Vision with Artificial Landmarks

The on-board vision system of the robot works on colour
images. The artificial landmarks are made of A4 paper
sheets. They have black orthogonal frame and bright
green filling (Kasínski and Bączyk, 2001). There is
a chessboard-like pattern placed inside. The particular
fields of the chessboard are black or green according to
the unique code of the given landmark. Up to 256 unique
landmarks may co-exist in the environment.

X

Y

j1

X

j2

l

Y

mobile robot

with camera

uncertain
distance

landmark

uncertain
angle

uncertain
angle

Fig. 4. Positioning with the landmark.

The landmark recognition process consists of three
steps: the detection of ROIs in the image, the recognition
of landmarks in particular ROIs, and the determination of
image-coordinates of their reference points. ROIs, hav-
ing the forms of rectangular windows, are determined by
using colour segmentation methods (see (Bączyket al.,
2003) for details). Further processing is restricted only
to ROIs and based on the grey-scale image. The internal
edges of the landmark frame are searched by computing
gradient maxima. Straight lines are fitted to those max-
ima. Their crossections determine the picture-location of
potential frame-corners with subpixel accuracy. Having
determined the image coordinates of the landmark frame
corners, one can establish the centres of chessboard fields,
and read the landmark code.

During the robot pose computation, a pin-hole cam-
era model is used. The camera is internally calibrated
(Heikkilä, 2000). The image coordinates are expressed in
[mm] by taking into account the physical dimensions and
vertical/horizontal resolution of the CCD-matrix of the
camera. The elements of the vectorP = [x1 y1 x2 y2]T

containing thex-coordinates (x1 and x2) of the centres
of the left and right frame edge, and the half-lengths (y1

and y2) of the vertical left and right landmark frame edge
are calculated. These data, obtained from the image, are
used to calculate the vectorL = [l ϕ1 ϕ2]T (Fig. 4) de-
termining the robot pose with respect to the landmark:

l = vl

√
λ2 +

(
x1y2+x2y1

y1+y2

)2

2y1y2
y1+y2

, (9)

ϕ1 = − arctan

(
x1y2+x2y1

y1+y2

λ

)
,
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where λ is the focal length, andvl is the half-width of
the landmark frame,

ϕ2 = arctan
(

λ
y1 − y2

−x1y2 + x2y1

)
. (10)

The above transformations can be expressed in a vector
form as

L = fpl(P, λ, vl). (11)

As the locations of the landmarks in the global frame are
knowna priori, the computation of the robot pose in the
global coordinates

XR = flx(XLi
,L), (12)

whereXLi = [xli yli θli ]
T are the coordinates of thei-th

landmark in the global frame, is straightforward:

xr = xli + l cos(θli + ϕ2 − ϕ1),

yr = yli + l sin(θli + ϕ1 − ϕ2), (13)

θr = θli − ϕ2.

3. Uncertainty of Vision-Based Positioning

3.1. Spatial Uncertainty Model

The robot pose uncertainty is described by a covariance
matrix:

CR =

 σ2
x σyx σθx

σxy σ2
y σθy

σxθ σyθ σ2
θ

 . (14)

The uncertainty analysis uses a first-order covariance
propagation (Haralick, 1996), and is focused on the in-
fluence of the relative position and orientation between
the robot and the elements of the external infrastructure
on the uncertainty of the pose estimate. The uncertainty
caused by the quantization error is considered. Errors due
to electronic noise in the image are not taken into account,
because they do not depend on the spatial configuration
of the robot with respect to the landmark or camera. The
covariance propagation is based upon the linearization of
non-linear equations describing dependencies between the
variables in the measurement process by Taylor series ex-
pansions, and the computation of the proper Jacobians.
This is a standard approach in robotics (Smith and Cheese-
man, 1987), used also in computer vision (see (Miura and
Shirai, 1993), for instance).

The analysis enables us to predict pose uncertainty
before any sensing action (i.e., before taking and pro-
cessing an image), and to decide which overhead camera
should provide the pose estimate, and/or which landmark
should be used. Moreover, by evaluating the predicted
uncertainty over a given area, it is possible to construct a

kind of uncertainty map for the given external sensor or
landmark. To construct a 2D grid map, uncertainty must
be expressed as a scalar value describing how “good” a
particular cell in the map is. To this end, the equiprobabil-
ity ellipsoid computed from theCR matrix was adopted.
The ellipse obtained by projecting this ellipsoid on the
floor plane shows the area which contains the robot po-
sition XRxy

= [xr yr]T with the given level of proba-
bility (Smith and Cheeseman, 1987). The whole 3× 3
CR covariance matrix defines an ellipsoid, while the el-
lipse is defined by the 2× 2 sub-matrix which describes
the uncertainty of the robot positionXRxy

. The ellipse
is centred on the nominal[xr yr]T values of the position
vector. If the covariances are non-zero, the angle between
the major axis of the ellipse and thex axis of the coordi-
nate system is computed from

ϕ =
1
2

arctan
2σxy

σ2
x − σ2

y

. (15)

Introducing τ =
√

(σ2
x)2 + (σ2

y)2 − 2σ2
xσ2

y + 4σ2
xy, one

can write the lengths of the major and minor axes of the
ellipse as

amaj =

√
k

2
(σ2

x + σ2
y + τ),

amin =

√
k

2
(σ2

x + σ2
y − τ), (16)

where k is a constant corresponding to the requested
probability level

k = −2 ln (1− P (x, y)) . (17)

For the probability of 95%, we havek = 5.99.

The above positional uncertainty ellipse does not di-
rectly capture the uncertainty of the robot orientationθr,
but an improvement in the orientation estimate (e.g., due
to a positioning action) influences indirectly the posi-
tional uncertainty in the subsequent path points, because
elements of the robot state vectorXR = [xr yr θr]T

are coupled through vehicle kinematics (Crowley, 1996).
Having the positional uncertainty ellipse, one can deduce
how pose uncertainty influences the clearance between the
robot body and the surrounding obstacles, as was shown
by (Moonet al., 1999). However, in the uncertainty maps
presented here the area (measured in [cm2]) of the pre-
dicted ellipse for the 95% probability is employed as the
positioning goodness value. Unlike the uncertainty in the
distance computed along a given direction (e.g., thex or
the y axis of the global coordinate system, which could
be irrelevant to the current configuration of the obstacles),
this area is a convenient overall scalar measure of po-
sitional uncertainty, which can be computed in advance
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Fig. 5. Distribution of errors inu (a) andv (b) of a corrected fish-eye image.

without full knowledge about the geometry of the envi-
ronment, and can be used later to decide where position-
ing actions should be undertaken to obtain the best results.

Uncertainty maps are similar in concept to the sen-
sory uncertainty field (SUF) proposed by (Takedaet al.,
1994), and then used by others, also for vision sensors
(Adam et al., 2001). However, the SUF is obtained by
simulating the sensing many times. The uncertainty anal-
ysis presented below enables us to obtain a closed-form
formula expressing the covariance matrix as a function of
the robot configuration[xr yr θr]T with respect to a given
external navigation aid. Therefore, it is possible to pre-
dict uncertainty at run time or while planning using these
equations. Such an approach is more flexible than the
use of a pre-computed uncertainty field. Particularly, it is
not necessary to define a constant grid resolution for un-
certainty maps and, instead, the uncertainty measure can
be computed for any instantaneous robot configuration.

3.2. Overhead Cameras

The spatial uncertainty of a robot localized by the over-
head camera depends mainly on the uncertainty of the
location of the points of the LED-pattern in the camera
image. The correction of the fish-eye distortion results
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Fig. 6. Distribution of errors due to the 1o non-vertical camera mounting, inu (a) and inv (b).

in shifting pixels from their original positions (Bączyk,
2001). Errors arise also because the assumption about the
orthogonality of the optical axis to the floor plane is not
perfectly satisfied. The spatial distribution of the errors in
the pixel location (after correction) was evaluated by com-
paring the image of a calibration pattern with the ground
truth. This experimental assessment of errors in the over-
head camera images provides the primary uncertainty for
the calculation of the estimated spatial uncertainty of the
robot.

The input to the uncertainty computation procedure
are the positions of the found diodes in the CCD matrix of
the overhead cameraUD = [ud vd ]T , and their covari-
ance matrices:

CD =

[
σ2

u 0
0 σ2

v

]
. (18)

Because the centre of the robot is computed from (3),
the coordinates of two diodesUDA

and UDB
are taken

into account. The covariance matricesCDA
and CDB

are computed on the basis of the known errors of a single
pixel location, which depend on the position of the given
pixel in the CCD matrix:

CD(u, v) = Cmount(u, v) + Cfish_eye(u, v), (19)
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where the matrixCfish_eye represents the errors due to
the fish-eye geometric transform, andCmount represents
the errors resulting from an imperfect vertical mounting
of the camera to the ceiling. The elements of these matri-
ces are evaluated upon primary uncertainty maps, which
contain standard deviationsσu and σv (in pixels) for all
pixels of the CCD matrix, obtained experimentally. The
experimental procedure was reported in detail in (Bączyk,
2001). The resulting primary uncertainty maps are de-
picted in Figs. 5 and 6 as 3D plots of the standard devia-
tion values taken from the worst-case experimental results
(Bączyk and Skrzypczýnski, 2001).

To compute the covariance matrixCUR
of the robot

position and orientation in the image coordinatesUR, the
following expression is used:

CUR
= JUA

CDA
JT

UA
+ JUB

CDB
JT

UB
, (20)

where JU = ∂fuv/∂UR is the Jacobian of the transfor-
mation (5) with respect toUR. The robot position and
orientation are computed from the positions of two LEDs,
by using three equations. Therefore, the Jacobian is a 3
× 2 matrix.

The above computations describe the uncertainty of
the robot pose in image coordinates. Then the resulting
covariance matrixCUR

has to be converted to a matrix
describing uncertainty in terms of the camera coordinate
system. Because the transformation (7) is linear, there is
no need for an approximation:

C
′

R =

 σ2
x′ σy′x′ σθ′x′

σx′y′ σ2
y′ σθ′y′

σx′θ′ σy′θ′ σ2
θ′

 (21)

=


w
w′ 0 0
0 h

h′ 0
0 0 1

 ·
 σ2

u σvu σθu

σuv σ2
v σθv

σuϑ σvϑ σ2
ϑ

 .

The uncertainty of the poseCR in the global coor-
dinates is computed from

CR = JKC
′

RJT
K , (22)

where JK = ∂fkx/∂X
′

R is a 3 × 3 Jacobian matrix
of the transformation (8) with respect to the vectorX

′

R.
It is assumed that the camera position and orientation in
the global frame are exactly known. Therefore, the un-
certainty due to the pose vectorXK is not taken into ac-
count.

The use of several independent pose measurements
(when all LEDs are visible) may lead to an improved pose
estimate, which has smaller uncertainty when compared
with that obtained from uncertain positions of only two

diodes (according to (3)). If four diodes have been ob-
served, and two different right-angled triangles have been
built, then also two independent pose vectors and two co-
variance matrices can be computed. Using a simple static
Kalman filter, one can fuse the pose estimatesXR1 and
XR2 , taking into account their uncertaintiesCR1 and
CR2 :

K = CR1(CR1 + CR2)
−1,

XR = XR1 −K(XR1 −XR2), (23)

CR = (I−K)CR1 ,

whereXR is the fused pose,CR is its covariance matrix,
and K is the filter gain.

The resulting pose uncertainty in the global frame
can be evaluated over the field of view of the overhead
camera to build an uncertainty map. Figure 7 shows the
positional uncertainty map computed in this way.
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Fig. 7. Positional uncertainty as a function of robot location
with respect to the overhead camera optical axis.

3.3. On-Board Cameras

The distances and angles between the camera and the
landmark are computed from the relations between the
known dimensions of the landmark pattern, and the di-
mensions of the image of this pattern appearing in the
CCD matrix. The camera is a tool for measuring image
dimensions. Measurement resolution is bounded by the
CCD matrix pixel size. Although the positions of land-
mark reference points are computed with sub-pixel reso-
lution, the standard deviation of this measurement equals
the size of a pixel. This is the primary uncertainty, intro-
duced by the limited resolution of the camera, and it is
then propagated to the uncertainty of the vectorL param-
eters, and then to the uncertainty of the robot poseXR. It
is assumed that primary uncertainty depends on the errors
in the computation of the coordinatesP = [x1 y1 x2 y2]T

in the image, and is expressed by the standard deviations
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positional uncertainty

[cm ]
2 heading uncertainty

[rad.]A B

0

1

2

3

4

-4

-2

0

2

4

0

200

400

600

800

0

1

2

3

4

-4

-2

0

2

4

0

0.1

0.2

0.3

0.4

[m]
[m]Xl

Yl

[m]Xl

[m]Yl
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[σx1 σy1 σx2 σy2]T . Thus, primary uncertainty is repre-
sented by the 4× 4 matrix

CP =


σ2

x1 0 0 0
0 σ2

y1 0 0
0 0 σ2

x2 0
0 0 0 σ2

y2

 . (24)

The standard deviationσy in the y coordinate is defined
as the vertical discretization error

σy =
h

′

Rh
, (25)

where Rh is the vertical resolution of the CCD matrix,
and h

′
is its height (hereRh=480, h

′
=3.6 mm). Sim-

ilarly, the standard deviationσx in the x coordinate is
defined as

σx =
w

′

Rw
, (26)

whereRw is the horizontal resolution of the CCD matrix,
and w

′
is its width (hereRw=640,w

′
=4.8 mm). For the

case under study,σx=σy, and thus all primary uncertain-
ties are equivalent.

The uncertainty ofL is described by the covariance
matrix

CL =

 σ2
l σϕ1l σϕ2l

σlϕ1 σ2
ϕ1

σϕ2ϕ1

σlϕ2 σϕ1ϕ2 σ2
ϕ2

 . (27)

This matrix is computed from the primary uncertainty ma-
trix CP of the vectorP. The parameters of this vec-
tor constitute input data for the procedures calculatingL.
The transformation (11) betweenP and L contains only
the parameters ofP and constants being the parameters
of the landmark and the camera. Because this transforma-
tion is nonlinear, the covariance matrixCL is computed
as a first order approximation:

CL = JP CP JT
P , (28)

where JP = ∂fpl/∂P is the 3× 4 Jacobian matrix of
the transformation (11) with respect toP.

The last stage of uncertainty propagation shows how
the uncertain distance and angles to the landmark influ-
ence the position and orientation of the robot in the global
frame. The uncertainty inXR is described by the covari-
ance matrixCR (14), which is a result of the uncertainty
propagation from the vectorL described byCL. Be-
cause the relation (12) betweenL and XR is nonlinear,
the matrix CR is computed from the following approxi-
mation:

CR = JLCLJT
L, (29)

where JL = ∂flx/∂L is the 3× 3 Jacobian matrix of
(12) with respect toL.

Figure 8A shows the positional uncertainty map for
the artificial landmark, while Fig. 8B represents the stan-
dard deviationσθ, being the uncertainty in the robot head-
ing.

4. Negotiation Framework
for the Distributed System

4.1. Distributed System Structure

The vision-based positioning methods described in Sec-
tions 2.1 and 2.2 have been implemented in a dis-
tributed system of mobile robots and monitoring sensors
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(Skrzypczýnski, 2004a) to complete pose tracking meth-
ods relying on range sensing. The mobile robots and sta-
tionary cameras in this system are treated as independent,
autonomous agents (Müller, 1996). The concept of agents
is used to model mobile robots, overhead cameras, and the
human operator interface.

The perception agent (PA) is conceptually similar to
the Vision Agent proposed by (Ishiguro, 1997), which
monitors the environment and provides various informa-
tion to the robot agents (RA). Overhead cameras are the
hardware part of perception agents, which localize robots
with respect to the global reference frame. Perception
agents compete for serving positioning data to robots. A
specific agent in the system is the operator agent (OA),
which initializes, configures and monitors robots and PAs.

Each robot uses its on-board range sensors to keep
track of its own position and orientation. When the spa-
tial uncertainty exceeds the acceptable value, or the robot
fails to update its pose from the range sensing, it either
uses its on-board vision to localize artificial landmarks or
asks for the localization service from external agents. The
on-board sensors are used also for local, reactive naviga-
tion (obstacle avoidance, etc.), which is implemented on
mobile robots in a manner transparent to the positioning
task considered here (Brzykcyet al., 2001).

Each PA knows how positioning uncertainty depends
on position of the robot with respect to the overhead cam-
era of this agent. This type of knowledge is used in the
negotiation mechanism based on the Contract Net Pro-
tocol (CNP) (Smith, 1980). Robot agents use this pro-
tocol to choose the best positioning data from the avail-
able sources. A dedicated, message-passing commu-
nication layer is used to support the information inter-
change between the agents (Kasiński and Skrzypczýnski,
2002). The negotiation framework enables the robots to
address the proper camera agent even if the robot does not
know where the external cameras are placed (Bączyk and
Skrzypczýnski, 2003). This helps to make the distributed
system open to modifications and robust to failures of par-
ticular external sensors.

4.2. Negotiation Protocol

For the positioning task, the message exchange is initi-
ated by the robot which needs to know its position (man-
ager). It sends to all Perception Agents (bidders) a request
message. Whenever a PA is able to satisfy the request,
it sends a bid message with the parameters informing the
robot about the estimated localization uncertainty repre-
sented by the covariance matrixCRA(PA) computed
from the overhead camera uncertainty model presented in
Section 3. It also signals how long it takes to complete the
localization task, as the timeTloc depends on the num-
ber of localization requests already awaiting in the queue.

An agent which is a manager in negotiations on the par-
ticular topic listens for bids, but does not accept requests
with the same topic (i.e., requests for the same type of in-
formation/action), which prevents the protocol from loop-
ing. The manager waits for a prescribed time (depend-
ing on the number of PAs currently active in the system),
to complete bids from all agents interested in pursuing
the localization task (Kasiński and Skrzypczýnski, 2002).
The robot looks at theTloc value, and excludes the bids
from those PAs which are too busy. Then, the robot eval-
uates the uncertaintyCRA(PA) in the remaining bids to
find the perception agent, which can localize it within the
smallest positional uncertainty ellipse, assuming the 95%
probability level. The robot compares proposals from par-
ticular PAs and awards the contract to the one which offers
the best pose estimate, by sending an acknowledgement
message. Next, the RA and the PA communicate in the
peer-to-peer mode to transfer the localization data.

There are some tasks which cannot be executed by
a single agent, because information from several agents
is needed to complete the task. In such cases, the con-
tractor may split up the task and award contracts to some
other agents (such as an overhead camera-based percep-
tion agent). The agents operating in the presented system
are nota priori designated as managers or bidders. Some
of them can take both roles, depending on the current task
context. Agents which cannot process data to yield re-
sults in the requested time (e.g., due to a sensor failure)
are not considered as potential contractors by an agent
that issued that particular task. For example, a robot-
agent which wants localization data from camera-based
perception agents can award the contract to another robot
equipped with the on-board camera, whenever in the par-
ticular situation reliable pose estimate cannot be provided
by the overhead cameras.

The communication mechanism is based on the User
Datagram Protocol (Kasiński and Skrzypczýnski, 2002).
At the start of the system, the address of the operator agent
is known to all agents. An agent entering the system con-
tacts the OA, sending its symbolic name, type (RA or PA),
IP address, and port number. This message also includes a
list of specific tasks the agent can perform. The following
positioning task types have been specified:

• ovr_loc_active – a perception agent can local-
ize robots,

• ovr_loc_passive – a robot with LED markers
can be positioned by a PA,

• cam_loc_active – a robot with a camera can lo-
calize landmarks,

• cam_loc_passive – a robot with a landmark can
be positioned by another RA.
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Fig. 9. Comparison of localization results, with and without negotiations.

The OA sends this information to all agents in the system.
Because the agents know the specification of the tasks
which other agents in the system can perform, it is possi-
ble to use point-to-point messages addressed to a subset of
agents instead of broadcasting. Such an approach reduces
the network traffic (Coulouriset al., 1996) and allows us
to skip the eligibility specification (Smith, 1980) in CNP
announcement messages.

4.3. Results of Positioning with Negotiations

To show the advantages of negotiations between the robot
agents and the overhead camera-based PAs, the results of
two localization experiments are compared. The robot
followed a predefined path (Fig. 9A), at an average speed
of about 0.6 m/s, relying for localization only on its
odometry and on the external camera agents. Figure 9C
compares localization results as a function of the travelled
distance for the case when the negotiation procedure is
used (solid line), and the case when a simple choice of the
“first available” PA is made (dashed line). The positional
uncertainty ellipse area is used as the performance mea-
sure. When the robot did not use negotiation, but simply
asked the first available camera-based agent to localize it,
the number of localization requests was much bigger, and
many of them were unsuccessful. Positional uncertainty
exceeded at some points 700 cm2 when the robot made
several unsuccessful requests to the same agent. In
many cases the robot requested the localization service
being almost at the border of the field of view of the
contacted PA (Fig. 9B), where positioning uncertainty is

C DBA
A

B

Fig. 10. Uncertainty in vision-based co-operative positioning.

considerably higher (cf. Fig. 7), and occlusions of LED
markers are more possible. The bid evaluation ensures
that the robot uses the best offered localization service,
and initializes localization when its position with respect
to the field of view of the co-operating camera-based agent
is acceptable. However, it should be noted that at some
points of the path in Fig. 9C the uncertainty resulting from
negotiations is higher than the one obtained with the naive
strategy. This is caused by the local nature of optimization
provided by the negotiations. The robot always uses the
best positioning data available at a given point of the path,
but the choice of the point itself is somewhat random – it
depends on the current positional uncertainty, and hence
on the whole sequence of the previous positioning actions.
A robot which obtained a “better” position estimate at a
given point can go for a longer distance without external
positioning, and it could happen that it issues the next po-
sitioning request at a point which is very inconvenient to
all PAs – negotiations do not help much in such a case.
The observation of this problem gave rise to the global
planning of the positioning actions sequence presented in
the next section.

The next experiment demonstrates the ability of the
distributed system to recover from sensing failures. Figure
10A shows a situation in which the robotA is located in a
corner of the field of view of perception agents, while the
robotB is near the centre of this field.

When the robot A needs to know exactly its
pose, it sends a positioning request to the agents
which are able to perform theloc_active tasks.
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The request contains the parameters[x0 y0 θ0]T of the
current pose. One of the overhead-camera perception
agents answers with a bid, but the predicted localiza-
tion quality is low because of the location of the robot
(Fig. 10B).

Another potential contractor is the robotB, equipped
with an on-board camera. It predicts the relative pose
uncertainty according to the model presented in Section
3.3, and estimates the time needed to find and localize the
landmark attached to the robotA. However, to compute
the pose of the robot with a landmark in the global frame,
the robot with the camera needs to know its own pose. Al-
though the robotB can use the artificial landmark attached
to the wall to compute this pose, the predicted positional
uncertainty is quite high, and the robotB sends a position-
ing request to the perception agents. The robotB receives
a bid from the perception agent containing the predicted
positional uncertainty, and accepts it because this uncer-
tainty is small due to the robot position under the over-
head camera. The robot with the camera computes the fi-
nal predicted estimate of the robotA pose, and then sends
the bid. The robot with the landmark evaluates the re-
ceived bids and accepts the one from the robotB by send-
ing an acknowledgement message. The contractor final-
izes the contract with the perception agent receiving the
current pose estimate with uncertainty information. Then
it performs the actual positioning procedure by taking the
image, recognizing the landmark attached to the robotA
(Fig. 10C), and estimating the pose of this robot with re-
spect to its local frame. At the final step, the robotB com-
putes a new pose estimate[xn yn θn]T of the robotA in
the global frame (Fig. 10D).

5. Planning Positioning Actions

5.1. Motivation for Global Action Planning

If a mobile robot has a complete knowledge about the ex-
ternal cameras available in the system, and it also knows
where the artificial landmarks are placed in the environ-
ment, it can compute in advance the optimal positioning
strategy for the given path, which it has to follow. The aim
of optimization is to minimize the time spent by the robot
on communication and sensing actions (requests to Per-
ception Agents and observations of artificial landmarks),
which are necessary to keep pose uncertainty within some
bounds.

In the literature, there are well-known path planning
methods which take into account localization uncertainty
(Latombe, 1991). However, most of these works assume
continuous sensing of the environment (usually by some
range sensors (Takedaet al., 1994) and a complete, static
environment model available to the robot. In most cases
further simplifications are made, such as perfect sensors
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or landmarks providing constant pose uncertainty within
a given region (Lazanas and Latombe, 1995). Few au-
thors consider a probabilistic representation of uncertainty
in planning (Lambert and Fraichard, 2000; Moonet al.,
1999).

Here a different approach is adopted, in which the
sensing is opportunistic (i.e., the robot updates its pose
only when it sees some landmarks or it is seen by an ex-
ternal camera), and the robot knows only the locations
of the elements of the external navigation infrastructure:
cameras and landmarks. Because the path is known in
advance, the planning method yields only the positioning
strategy, i.e., the sequence of positioning actions under-
taken by the robot in order to travel to the goal, keep-
ing pose uncertainty within bounds. The nominal path is
computed in advance by a separate “geometric” planner
taking into account the start point, the goal point, known
obstacles and geometric limitations imposed by vehicle
kinematics. The action sequence planning method relies
on this geometric path planner for providing a feasible,
collision-free route from the start to the goal. In the imple-
mentation an approach based on the generalized Voronoi
diagram has been used (Takahashi and Schilling, 1989).
This method yields reasonably short paths that give the
robot maximal clearance around the obstacles. The geo-
metric planning is performed for a disc-like shaped robot
being able to turn on the spot, to reflects the basic features
of theLabmateplatform used in the experimental part of
the research.

The planned sequence does not minimize the pose
uncertainty over the whole path, but minimizes the overall
cost of the positioning actions, ensuring that the positional
uncertainty at any point of the path is lower than a given
threshold. Such an approach is justified from a practical
point of view: usually the robot needs only to be posi-
tioned with a given accuracy to perform its task (e.g., to
pass a door), while optimal usage of the external naviga-
tion aids, deployed sparsely and shared with other robots,
is of high importance. The optimization of the actions also
enables the robot to achieve its goal position in a shorter
time, because undertaking a positioning action requires to
stop the vehicle – data cannot be gained while the robot is
in motion. For overhead cameras this is caused mostly by
the time needed for the acquisition of images (about 2[s]),
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while for landmark recognition the image processing time
dominates.

5.2. Construction of the Action Space

The proposed action planning framework is based on a
classic approach to the search of a shortest path in a graph.
The first step is to generate a discrete action space. The
concept of this space is shown in Fig. 11A. At first, the
nominal path of the robot is uniformly sampled, and the
possible positioning actions which can be undertaken by
the robot along this path are generated. An action at the
i-th path point is described by the pose of the robotXRi ,
the action type, the covariance matrixCSi describing the
pose uncertainty resulting from a given type of positioning
action performed in this particular configuration, and the
cost of positioningTi.

The covariance matrix is predicted according to the
method described in Section 3, using closed-form formu-
lae. The cost is an integer value generated upon a simple
look-up table holding the experimentally determined time
(in seconds) the robot spends at positioning depending on
the type of sensing and/or communication action and the
position with respect to the external navigation aid. Ac-
tions are nodes of the graphG(V,E), V =

⋃n
i=1 vi

(Fig. 11B).
The nodevi is connected to the nodevj by an edge

ei,j if it is possible for the robot to move fromvi to vj ,
keeping pose uncertainty below a given threshold defined
by the uncertainty ellipse areaCmax (scalar value). As
it is assumed that the robot may update its pose only at
action nodes, the odometry model of a differential drive
robot (Crowley, 1996) is used to compute the maximum
admissible distance between two connected nodes. This
model reflects the kinematics of theLabmaterobot used in
the experiments. If a different kind of robot platform (e.g.,

a synchro-drive) is being used, the odometry model should
be changed to an appropriate one. Because the on-board
camera is fixed to the robot body, several orientations at
each point from which a landmark can be observed must
be considered when the robot is turning (it turns on the
spot). It is also possible that more than one positioning ac-
tion are available at a given(x, y) point, e.g., the robot is
under a ceiling-mounted camera, and it sees a landmark,
or two landmarks are in the field of view of the camera.
As a result, several nodes having the sameXR but dif-
ferent CS and T can be generated. The edges of the
graph are labelled with the costs of positioning actions.
The edgeei,j has the costTj , according to the assump-
tion that moving to a particular node implies the execution
of the positioning action associated with this node. There
is also a covariance matrixCi,j associated with this edge,
which reflects the growth of pose uncertainty while mov-
ing between the two nodes, due to odometry errors.

The sources of the uncertainty of the particular po-
sitioning actions are shown in Fig. 12, where the cap-
ital letters A,. . . ,D denote poses of external infrastruc-
ture elements with respect to the global coordinate sys-
tem, andE,. . . ,H denote the particular poses of the robot
with respect to overhead cameras and landmarks, while
O1,O2,O3 mean robot movements under the odometric
control. The uncertainty evaluation along the robot path
is achieved by compounding (denoted by⊕) the serially
linked uncertainties on the path, and by iterative merg-
ing (denoted by⊗) of the obtained results with the un-
certainties of the positioning actions. The compounding
and merging operations are defined according to the pro-
posals in (Smith and Cheeseman, 1987). For example, for
the j-th action from Fig. 12 robot pose uncertainty before
undertaking this action (i.e., before positioning by the ob-
servation of the landmarkB ) can be in this convention
symbolically denoted by(O1 ⊗ (A⊕ E))⊕O2.

The resulting action space is a directed graph
G(V,E). Because a positioning action can be performed
only once by the robot travelling along a given path, the
graph is acyclic.

5.3. Outline of the Planning Algorithm

Although a simple search in the action space will return
the shortest path in the sense of a minimal action cost
(minimal time), it cannot guarantee that positional uncer-
tainty will be kept all the time below a given threshold.
Some works on planning with uncertainty circumvent the
problem by defining a graph whose edges have a modi-
fied cost being a combination of the actual cost (distance,
time, etc.) and the uncertainty measure, with some scal-
ing factors added (Lambert and Fraichard, 2000). With
such an implicit trade-off (the values have different phys-
ical meanings), uncertainty becomes difficult to control.



Uncertainty models of vision sensors in mobile robot positioning 85

G (V,E )C C

3

2

4 5

1

G (V,E )D D

3

2

4 5

1

Fig. 13. Action graphs generated with two different methods.

The positioning action planning is treated as a con-
strained discrete optimization problem. An obvious solu-
tion is to construct the action space in such a way so that
any path in the graph guarantees the required positioning
precision from the start nodevs to the goalvg. The posi-
tional uncertainty at the nodevk of a particular edgeek,l

depends on the previous positioning actions undertaken
along the path fromvs to vk. However, assuming conser-
vative initial uncertainty of an edge, which is yielded by
the positioning action atvk (known in advance), permits
us to build a “conservative” graphGC(V,EC). Two given
nodes in this graph are connected by an edgeek,l ∈ EC

only if the merged uncertainty of the edge traversal (from
odometry), and the positioning action undertaken atvk is
below Cmax. The Kalman filter used to merge the pose
estimates (Smith and Cheeseman, 1987) guarantees that
the result is not worse than the best estimate taken as an
input, while it is known that one of the input estimates at
vk has the uncertainty ofCSk

. A search by means of the
Dijkstra algorithm (Sysłoet al., 1983) with respect to the
positioning costT yields an optimal sequence of actions
and guarantees pose uncertainty within the given bounds.

However, a robot can traverse between two action
nodes keeping the uncertainty underCmax even if these
nodes are not connected by an edge according to the
above-mentioned conservative approach. The robot can
achieve this by acquiring pose information in other nodes
on its path, thus having the pose estimate atvk (after
merging) better thanCSk

. As a result, the search in the
conservative graph may result in a failure (no safe strat-
egy found), even if a sequence of actions keeping the un-
certainty below the given threshold does exist. An ac-
tion space which permits a search taking into account the
actual accumulated uncertainty can be constructed by us-
ing at the initial nodevk of a given edge the uncertainty
value smaller thanCSk

. The smallest pose uncertainty the
robot can ever achieve is the uncertainty of the best (most

precise) positioning action known to the system, i.e., the
smallestCSi

in the whole action space. When this un-
certainty is used, the resulting graphGD(V,ED) has the
same set of nodesV , but more edgesED, because start-
ing with smaller CS permits the odometry to take the
robot further without violating theCmax constraint.

An initial approach to searching in the new action
space was to modify the classical Dijkstra algorithm by
adding a constraint satisfaction function, which checks
whenever the move from the current node to the next
node chosen by the search algorithm violatesCmax

(Skrzypczýnski, 2004b). However, it turned out soon
that such a method yields paths arbitrary suboptimal with
respect to the cost. From a theoretical point of view,
an effective search inGD(V,ED) is equivalent to the
restricted shortest path problem (RSP). This problem is
known to be NP-complete (Ahujaet al., 1993) but, re-
cently, effective approximate algorithms have been devel-
oped to solve it, due to the importance of this problem
for network routing with the Quality of Services (QoS)
(Kuiperset al., 2002).

Below, a pseudo polynomial dynamic programming
solution to the action planning problem treated as an RSP
is provided, which can be turned into an FPAS (fully poly-
nomial approximation scheme) by using the approxima-
tion from (Lorenz and Raz, 2001). In the following algo-
rithm, C[v, t] denotes a vector associated with each node
v, which stores the minimum uncertainty on any path from
vs to v that has a total cost oft. Tmax is the maxi-
mum cost of a path fromvs to vg in the graph, obtained
by a search with respect to the cost information only. It
is a stop condition for the dynamic program. When the
FPAS is used,Tmax makes sure that the scaling error is
not too large.Cu,v represents the uncertainty evolved by
odometry while traversing the edgeeu,v, Cu is the un-
certainty of the positioning action at nodeu. The notation
|C| means the computation of a scalar value (ellipse area)
from a given covariance matrix.

procedure
ACTIONPLANNING ASRSP(G(V, E), vs, vg, Cmax, Tmax)

1 for each v ∈ V − {vs} C[v, 0]:=∞
2 C[vs, 0]:=0
3 for t := 1 to Tmax do
4 for each v ∈ V do
5 C[v, t]:=C[v, t− 1]

6 P [v, t]:=nil

7 for each eu,v ∈ E do
8 Ctemp:=C[u, t− Tu,v]⊗Cu ⊕Cu,v

9 if |Ctemp| < |C[v, t]| and |Ctemp| ≤ Cmax then
10 C[v, t]:=Ctemp

11 P [v, t]:=u {update sequence}
12 if C[vg, t] ≤ Cmax then RETURNSEQUENCE(P [vg, t])
13 RETURNFAILURE {Tmax has been exceeded}
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Fig. 14. Experimental results – the planned sequence of actions.

5.4. Action Planning Results

To validate the approach, experiments with theLabmate
robot have been performed. The robot followed a pre-
planned path undertaking positioning actions according
to the optimal strategy obtained from the above method.
The experimental environment with two overhead cam-
eras and three artificial landmarks is outlined in Fig. 14.
Figures 14A–D show the simulated robot following the
optimal sequence of positioning actions. For Figs. 14C
and D the corresponding positioning actions of the real
robot are shown in Figs. 14G and H. Figure 14E shows
the predicted positional uncertainty ellipses for the gen-
erated positioning actions, in Fig. 14F the found optimal
sequence of nodes (black dots) is shown – the circles in
this figure have the diameter proportional to the position-
ing action cost, and the shade of grey means the type of
the external localization aid used at this node (landmark,
overhead camera, or both).

The results of the experiment are summarized
in Fig. 15. From this figure it can be observed that
the optimal sequence of positioning actions outperforms
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Fig. 15. Comparison of the results of using the planned actions and a simple positioning strategy.

the simple strategy of using external localization aids. Us-
ing the simple strategy the robot observes its positional
uncertainty. When the uncertainty exceeds the threshold
value, the robot uses the on-board camera to measure the
distance and angle to an artificial landmark or, if there is
no landmark in the field of view, it asks for the positioning
service from the external cameras. In the experiment, the
threshold has been defined as the area of the positional un-
certainty ellipse below 500 cm2, for both strategies. From
Figs. 15A and B it can be seen that the simple strategy
does not guarantee the requested localization quality. In
some areas the robot cannot perform a successful posi-
tioning action. If it enters such an area already with quite
large uncertainty, the constraint is violated. The optimized
strategy protects the robot from such failures by choos-
ing good positioning actions before entering an area with
lesser external aids. From Fig. 15C it is clear that the po-
sitioning cost (in this case it is simply the time) of the
non-optimal strategy is higher, because the robot under-
takes many unsuccessful actions, especially with respect
to the external cameras. In such a case, the positioning
cost grows, while the robot is still at the same point on the
path.



Uncertainty models of vision sensors in mobile robot positioning 87

6. Final Remarks

In this paper, methods of planning and optimizing the
positioning actions of a mobile robot cooperating with
an external navigation infrastructure have been presented.
The infrastructure contains distributed overhead cameras
and artificial landmarks enhancing the capabilities of
on-board vision-based positioning sensors. Other types
of stationary sensors (e.g., wall-mounted cameras) can
be incorporated into this infrastructure if their uncertainty
models are available.

The proposed negotiation protocol addresses the is-
sues of extendability and fault tolerance in distributed sys-
tems, while trying to provide the best available positioning
data to the robots. The global planning procedure sacri-
fices a part of this flexibility (the actual system configura-
tion must be known in advance), but provides a mathemat-
ically solid method for obtaining an optimal sequence of
positioning actions along a given path. This method takes
into account in an exact way both the action cost and the
positioning uncertainty. The action planning algorithm
can be easily generalized to any other type of stationary
sensor if the uncertainty related to positioning with respect
to this sensor is described by closed-form formulae. A
generalization to other types of robot vehicles is also pos-
sible, provided that the same geometric path planner can
be used. The robot kinematics and sensing capabilities in-
fluence the construction of the action space (Section 5.2),
which requires the usage of a proper odometry model, and
an adequate definition of action costs. For example, if a
robot is equipped with a pan/tilt camera, looking around
for artificial landmarks no longer yields additional pose
uncertainty. Because of this, unlike in the case of a fixed-
camera robot considered in this paper, all possible posi-
tioning actions generated by changing the orientation of
the camera will have the same pose uncertainty from the
odometry. However, the costs of these actions can be dif-
ferent, because moving the camera to an angle more dis-
tant from the neutral position usually requires more time.

A more problematic issue is extending the action
planning to a robot with severe kinematic limitations to
maneuverability (e.g., to a car-like robot). The path plan-
ner for such a robot takes into account these limitations
(see, e.g., Lambert and Fraichard, 2000), and produces a
much more complicated geometric path which can contain
also backward motions. Such a path cannot be handled
by the current version of the positioning action planning
method.

A subject of further research is also to extend the ac-
tion planning procedure to a unified positioning action and
a shortest/fastest path planning framework for robots co-
operating with external sensors. This is possible when a
network of collision-free routes is used to build the action
space instead of a single path.
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