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We consider stabilizing a discrete-time LTI (linear time-invariant) system via state feedback where both the quantized state
and control input signals are involved. The system under consideration is stabilizable and stabilizing state feedback has been
designed without considering quantization, but the system’s stability is not guaranteed due to the quantization effect. For
this reason, we propose a hybrid quantized state feedback strategy asymptotically stabilizing the system, where the values of
the quantizer parameters are updated at discrete time instants. We also extend the result to the case of static output feedback.
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1. Introduction

In classical feedback control theory, various signals or
data in the control loop have been assumed to be passed
directly without information loss, except in saturated sys-
tems. However, this is not true in many real applica-
tions. For example, in networked control systems (Bush-
nell, 2001), where all signals are transferred through a net-
work, package dropouts or data transfer rate limitations
always happen. Another important aspect, which is well
known in the signal processing area, is signal quantiza-
tion. Since quantization always exists in computer-based
control systems, many researchers have begun to consider
the analysis and design problems for control systems in-
volving various quantization methods. Delchamps (1990)
addressed the problem of stabilizing an unstable linear
system by means of quantized state feedback, i.e., the state
feedback where the measurements of the system state are
quantized. The quantizer in (Delchamps, 1990) takes val-
ues in a countable set. Brockett and Liberzon (2000) de-
fined a quantizer taking values in a finite set and consid-
ered quantized feedback stabilization for linear systems.

It was shown that if it is possible to change the sensitivity
of the quantizer on the basis of the available quantized
measurements, then a hybrid control strategy, for both
continuous- and discrete-time systems, can be designed
to guarantee global asymptotic stability. Noting that the
approach in (Brockett and Liberzon, 2000) exploits the
possibility of making discrete online adjustments of quan-
tizer parameters, Liberzon (2003) extended the approach
to more general nonlinear systems with general types of
quantizers affecting the system state, the measured output,
or the control input.

Motivated by the above works, we consider the sta-
bilization problem for a discrete-time LTI system via state
feedback involving both quantized states and control in-
puts, see Fig. 1 for the structure of the closed-loop feed-
back system. The system under consideration is sup-
posed to be stabilizable and stabilizing state feedback has
been designed without taking the quantization into ac-
count. However, the system’s states are quantized by the
first quantizer before they are passed on to the controller,
and the control inputs are quantized by the second quan-
tizer before they are passed on to the system. This is a
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Fig. 1. Feedback Control Systems with Quantized
States and Control Inputs.

natural setting in networked control systems, where all
information (reference inputs, plant outputs, control in-
puts, etc.) is exchanged through a network among control
system components (sensors, controller, actuators, etc.).
Due to the quantization effects, the desired degree of
system stability cannot be guaranteed, and in the worst
case the system may become unstable. For example, if a
discrete-time system is stabilized by the constant feedback
u(k) = 1.995 with a very small decay rate due to some
constraints, then the very simple “round-off” quantizer on
the control input results in u(k) = 2.000, which will cer-
tainly affect the system’s stability (a detailed discussion
of the analysis and design of the generalized “round-off”
quantizer can be found in Brockett and Liberzon, 2000).
To overcome such a difficulty, we adopt the two quan-
tizers in a general form as in (Liberzon, 2003), and then
propose a hybrid quantized state feedback strategy where
the values of the quantizer parameters are updated at dis-
crete time instants. It should be noted that the results and
proofs in this paper are not a trivial extension of those in
(Liberzon, 2003), where hybrid quantized feedback stabi-
lization was dealt with for continuous-time systems with
a single quantizer.

The rest of this paper is organized as follows: Sec-
tion 2 gives the definition and the property of the general-
ized quantizer, and Section 3 describes the control prob-
lem at hand. Section 4 presents a result concerning in-
variant regions for the closed-loop system when the quan-
tizers’ parameters are fixed. Section 5 then establishes a
hybrid stabilization strategy, and Section 6 is an illustra-
tive example. Section 7 extends the consideration to the
case of output feedback, and, finally, Section 8 gives some
concluding remarks.

2. Quantizer

First, we give the definition of a quantizer in a general
form as in (Liberzon, 2003). Let z ∈ R

l be the variable
being quantized. A quantizer is defined as a piecewise
constant function q : R

l → D, where D is a finite subset

of R
l. This leads to a partition of R

l into a finite number
of quantization regions of the form {z ∈ R

l : q(z) = i},
i ∈ D. These quantization regions are not assumed to
have any particular shapes. We assume that there exist
positive real numbers M0 and Δ0 such that the following
conditions hold: (1) if |z| ≤ M0, then |q(z) − z| ≤ Δ0;
(2) if |z| > M0, then |q(z)| > M0−Δ0. Throughout this
paper, we denote by | · | the standard Euclidean norm in
the n-dimensional vector space R

n, and let ‖·‖ stand for
the corresponding induced matrix norm in R

n×n. Condi-
tion (1) gives a bound on the quantization error when the
quantizer does not saturate. Condition (2) provides a way
to detect the possibility of saturation. We will refer to
M0 and Δ0 as the range of q and the quantization er-
ror, respectively. We also assume that q(x) = 0 for x
in some neighborhood of the origin. An example satisfy-
ing the above requirements is the quantizer with rectangu-
lar quantization regions given in (Brockett and Liberzon,
2000; Liberzon, 2000).

In the control strategy to be developed below, we will
use quantized measurements of the form

qμ(z)
�
= μq

( z

μ

)
, (1)

where μ > 0 is the quantizer parameter. The range
of this quantizer is M0μ and the quantization error is
Δ0μ. We can view μ as a “zoom” variable: increasing
μ corresponds to zooming out and essentially obtaining a
new quantizer with a larger range and a larger quantiza-
tion error, while decreasing μ corresponds to zooming in
and obtaining a quantizer with a smaller range but also a
smaller quantization error.

As can be seen later, we will consider two general
quantizers in the feedback control system, one dealing
with the system state (or the measured output) and the
other dealing with the control inputs. As was also pointed
out in (Liberzon, 2003), the quantizers can be viewed as
devices which convert a real-valued signal into a piece-
wise constant one taking values in a finite set. We will
propose updating the value of the quantizer parameters at
discrete time instants, depending only on time, and thus
they can be regarded as another discrete state of the resul-
tant closed-loop system, which may be implemented inde-
pendently inside the quantizers. In this sense, we view the
whole system (depicted in Fig. 1) as a hybrid dynamical
system.

3. Problem Description

Consider the discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k), (2)

where x(k) ∈ R
n is the state, u(k) ∈ R

m is the con-
trol input, and A, B are constant matrices of appropriate
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dimensions. Throughout this paper, we assume that the
system (2) is stabilizable via state feedback, and the sta-
bilizing state feedback u(k) = Kx(k) has been designed
so that A + BK is Schur stable. Then, by the standard
Lyapunov stability theory, there exist positive definite ma-
trices P and Q such that

(A + BK)T P (A + BK) − P = −Q. (3)

We will let λm(·) and λM (·) denote the smallest and
the largest eigenvalue of a symmetric matrix, respectively.
Since P is positive definite, the inequality

λm(P ) |x(k)|2 ≤ xT (k)Px(k) ≤ λM (P ) |x(k)|2 (4)

holds for any x(k).
As is explained above, we deal with the situation

where only quantized measurements of the state x(k) are
available in the controller and, furthermore, only quan-
tized data of the input u(k) are available in the system.
Assume that the two quantizers q1 and q2 are character-
ized by quantization ranges M1, M2 and quantization er-
rors Δ1, Δ2, respectively, and for the two quantizers we
use parameters (“zoom” variables) μ1 and μ2, respec-
tively. Therefore, the input to the controller is

x̄(k) = μ1q1

(
x(k)
μ1

)
, (5)

and thus the input to the system is

u(k) = μ2q2

(
ū(k)
μ2

)
= μ2q2

(
Kx̄(k)

μ2

)

= μ2q2

(
Kμ1q1(

x(k)
μ1

)

μ2

)
. (6)

Then, for any fixed positive scalars μ1 and μ2, the
closed-loop system composed of the system (2) and the
controller (6) is given by

x(k + 1) = Ax(k) + Bμ2q2

(
Kμ1q1(

x(k)
μ1

)

μ2

)

= (A + BK)x(k) − Bd(k), (7)

where

d(k) = μ2

(
Kx(k)

μ2
− q2

(
Kμ1q1(

x(k)
μ1

)

μ2

))
. (8)

Now, the control problem is very natural. When the above
closed-loop system is not asymptotically stable for any
fixed positive scalars μ1 and μ2, we wish to adjust them
appropriately on-line so that the entire system is asymp-
totically stable.

4. Invariant Regions

In this section, we characterize the behavior of the tra-
jectories of the system (7) with fixed μ1 and μ2 in the
following result.

Lemma 1. Fix an arbitrary scalar ε ∈ (0, 1) and assume
that √

λm(P )M >
√

λM (P )Θ‖K‖Δ 1
1− ε

, (9)

where

M = M2 − ‖K‖μ1

μ2
(Δ1 + M1),

Δ =
‖K‖μ1

μ2
Δ1 + Δ2,

Θ =
α +

√
α2 + βλm(Q)(1 − ε)

λm(Q)
,

α = ‖(A + BK)T PB‖, β = ‖BT PB‖. (10)

Then, the ellipsoids

R1(μ1, μ2)

�
=
{

x(k) : xT (k)Px(k)≤ λm(P )M2μ2
2

‖K‖2

}
(11)

and

R2(μ1, μ2)

�
=
{
x(k) :xT (k)Px(k)≤ λM (P )Θ2Δ2μ2

2

(1 − ε)2
}

(12)

are invariant regions for the system (7). Moreover, all so-
lutions of (7) that start in the ellipsoid R1(μ1, μ2) en-
ter the smaller ellipsoid R2(μ1, μ2) in a finite number of
steps.

Proof. When |x(k)/μ1| ≤ M1, it is easy to see that∣∣∣∣q1

(
x(k)
μ1

)∣∣∣∣−
∣∣∣∣x(k)

μ1

∣∣∣∣≤
∣∣∣∣q1

(
x(k)
μ1

)
− x(k)

μ1

∣∣∣∣≤Δ1,

(13)
and thus∣∣∣∣q1

(
x(k)
μ1

)∣∣∣∣ ≤ Δ1 +
∣∣∣∣x(k)

μ1

∣∣∣∣ ≤ Δ1 + M1. (14)

Furthermore, using the definition of M , we obtain∣∣∣∣∣
Kμ1q1(

x(k)
μ1

)

μ2

∣∣∣∣∣ ≤ ‖K‖μ1

μ2

∣∣∣∣q1

(
x(k)
μ1

)∣∣∣∣
≤ ‖K‖μ1

μ2
(Δ1 + M1)

= M2 − M < M2, (15)
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(M > 0 is guaranteed by (9)), and thus∣∣∣∣∣q2

(
Kμ1q1(

x(k)
μ1

)

μ2

)
− Kμ1q1(

x(k)
μ1

)

μ2

∣∣∣∣∣ ≤ Δ2, (16)

according to the quantizer property. Then, using the defi-
nition of Δ, we get∣∣∣∣∣Kx(k)

μ2
− q2

(
Kμ1q1(

x(k)
μ1

)

μ2

)∣∣∣∣∣
≤
∣∣∣∣Kμ1

μ2

(
x(k)
μ1

− q1(
x(k)
μ1

)∣∣∣∣
+

∣∣∣∣∣q2

(
Kμ1q1(

x(k)
μ1

)

μ2

)
−

Kμ1q1(
x(k)
μ1

)

μ2

∣∣∣∣∣
≤ ‖K‖μ1

μ2
Δ1 + Δ2 = Δ. (17)

Therefore, whenever |x(k)/μ1| ≤ M1, the increment in
the Lyapunov function candidate V (k) = xT (k)Px(k)
along the solutions of the closed-loop system (7) can be
computed as

V (k + 1) − V (k)

= xT (k + 1)Px(k + 1) − xT (k)Px(k)

= −xT (k)Qx(k) − 2xT (k)(A + BK)T PBd(k)

+ dT (k)BT PBd(k)

≤ −λm(Q) |x(k)|2 + 2 |x(k)|αΔμ2

+ βΔ2μ2
2, (18)

where the Lyapunov equation (3) is used.

Furthermore, it is easy to deduce that whenever

|x(k)| >
ΘΔμ2

1 − ε
(19)

holds for a positive scalar ε, we obtain

V (k + 1) − V (k) ≤ −λm(Q) |x(k)|2 + 2 |x(k)|αΔμ2

+ βΔ2μ2
2

< −ελm(Q) |x(k)|2 , (20)

which means that the Lyapunov function candidate de-
creases exponentially in the region defined by (19).

Define the balls

B1(μ1, μ2)
�
=
{

x(k) : |x(k)| ≤ Mμ2

‖K‖
}

(21)

and

B2(μ1, μ2)
�
=
{

x(k) : |x(k)| ≤ ΘΔμ2

1 − ε

}
. (22)

In view of the assumption (9), we can easily confirm the
relation

B2(μ1, μ2) ⊂ R2(μ1, μ2)

⊂ R1(μ1, μ2) ⊂ B1(μ1, μ2), (23)

which is described in Fig. 2.

B1(μ1, μ2)

R1(μ1, μ2)

R2(μ1, μ2)

B2(μ1, μ2)

Fig. 2. The inclusion relation of B1,B2,R1,R2.

Using the fact that V (k) decreases for any x(k) in
the exterior of B2(μ1, μ2), we immediately see that the
ellipsoids R1(μ1, μ2) and R2(μ1, μ2) are both invariant
regions for the system (7).

Now, we use the inequality (20) concerning the in-
crement in xT Px to show that the trajectories starting in
R1(μ1, μ2) reach R2(μ1, μ2) in a finite number of steps.

Suppose that at some time instant k0, x(k0) ∈
R1(μ1, μ2), but x(k0) �∈ R2(μ1, μ2). According to the
definition of R1(μ1, μ2), we have

V (k0) = xT (k0)Px(k0)≤ λm(P )M2μ2
2

‖K‖2
. (24)

Then, using (20), we obtain

V (k0 + 1) − V (k0) < −ε
λm(Q)
λM (P )

V (k0)

⇐⇒ V (k0 + 1)<
(

1 − ε
λm(Q)
λM (P )

)
V (k0). (25)

By induction, for any S > 1,

V (k0 + S)<
λm(P )M2μ2

2

‖K‖2

(
1−ε

λm(Q)
λM(P )

)S

. (26)
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Therefore, if S is large enough so that

(
1 − ε

λm(Q)
λM (P )

)S

≤ λM (P )Θ2‖K‖2Δ2

λm(P )M2(1 − ε)2
, (27)

then we obtain

V (k0 + S) <
λm(P )M2μ2

2

‖K‖2

(
1 − ε

λm(Q)
λM (P )

)S

≤ λM (P )Θ2Δ2μ2
2

(1 − ε)2
, (28)

and thus x(k0 + S) ∈ R2(μ1, μ2). Noting that S is
an integer denoting the number of steps from the time in-
stant k0, we obtain the following estimate of the number
of steps for moving from R1(μ1, μ2) to R2(μ1, μ2) as

S0 =

⎡
⎢⎢⎢

log(λM (P )Θ2‖K‖2Δ2)

log
(
1 − ε λm(Q)

λM (P )

)

− log(λm(P )M2(1 − ε)2)

log
(
1 − ε λm(Q)

λM (P )

)
⎤
⎥⎥⎥ (29)

by using (27). Here, 
r� denotes the minimum integer
greater than r. This completes the proof.

Remark 1. By analogy with continuous-time systems,
we used the same name “invariant region” in Lemma 1.
However, special attention is needed to deal with the spe-
cial case where some state x(k) in the region B2 jumps
out of R2 at x(k + 1). Since such x(k + 1) goes back
to R2 quickly according to (20) (which means that V (x)
decreases outside B2), we did not make a clear distinction
between this case and other cases precisely in the proof
and regarded it as a discrete-time version of the invariant
region. Simulation examples also show that this treatment
will not affect the whole system stability.

5. Hybrid Stabilization Strategy

In this section, we describe constructively our hybrid state
feedback strategy, where the quantizer parameters μ1 and
μ2 are updated at discrete time instants. As will be seen
later, an open-loop “zooming-out” stage is followed by a
closed-loop “zooming-in” stage.

We consider a strategy which always satisfies

μ1 = ζμ2, (30)

where ζ is a positive constant. Although in the present
discussion ζ can be arbitrary, it should be adjusted in real

applications. According to (10) and (30), we obtain

M = M2 − ‖K‖ζ(Δ1 + M1),

Δ = ‖K‖ζΔ1 + Δ2.
(31)

Now, we state and prove the first main result in this
paper.

Theorem 1. If M is large enough compared with Δ in
(31) so that√

λm(P )
λM (P )

M >
α +

√
α2 + βλm(Q)
λm(Q)

‖K‖Δ (32)

holds with some positive scalar ζ, then there exists a hy-
brid quantized state feedback strategy assuring that the
system (7) is globally asymptotically stable.

Proof. “Zooming-out” stage. Set the control input u
equal to 0. Let μ1(0) = ζμ2(0) = 1. Then increase
μ1(k) (and thus μ2(k)) in a “piecewise” constant manner
(when viewed in a continuous-time domain), fast enough
to dominate the rate of growth of ‖Ak‖. For example, one
can fix a positive integer κ > 1 and let

μ1(k) = ζμ2(k) = 1 when k∈ [0, κ),

μ1(k) = ζμ2(k) = κ‖A‖2κ when k∈ [κ, 2κ),

μ1(k) = ζμ2(k) = 2κ‖A‖4κ when k∈ [2κ, 3κ),

(33)

and so on.

Let us observe the norm change in x(k)/μ1(k).
When k ∈ [κ, 2κ), from |x(k)| ≤ ‖A‖k|x0|, μ1(k) =
κ‖A‖2κ we obtain

|x(k)|
μ1(k)

≤ |x0|
κ‖A‖2κ−k

≤ |x0|
κ

. (34)

When k ∈ [2κ, 3κ), μ1(k) = 2κ‖A‖4κ,

|x(k)|
μ1(k)

≤ |x0|
2κ‖A‖4κ−k

≤ |x0|
2κ‖A‖κ

. (35)

Thus, we can find an integer k̂ such that, for all k ≥ k̂,∣∣∣∣ x(k)
μ1(k)

∣∣∣∣ ≤ M1. (36)

Next, we fix μ1(k) as μ1(k̂) and increase μ2(k)
until

|x(k)|
μ2(k)M2 − ‖K‖μ1(k)(Δ1+M1)

≤
√

λm(P )
λM (P )

1
‖K‖

is satisfied for some k0. This is possible since

M = M2 − ‖K‖ζ(Δ1 + M1) > 0 (37)
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according to (32). Then, it is easy to see that

|x(k0)| ≤
√

λm(P )
λM (P )

Mμ2(k0)
‖K‖ , (38)

which means that x(k0) belongs to the ellipsoid
R1(μ1, μ2) with μ1 = μ1(k0), μ2 = μ2(k0).
“Zooming-in” stage. For k ≥ k0 we use the control law
(6). In view of (32), we can always choose a scalar 0 <
ε < 1 such that the inequality√

λm(P )
λM (P )

M

>
α+
√

α2+βλm(Q)(1 − ε)
λm(Q)

‖K‖Δ 1
1−ε

(39)

holds. Noting that this inequality is equivalent to (9), we
can apply Lemma 1 right now.

We know that x(k0) belongs to R1(μ1, μ2) with
(μ1, μ2) = (μ1(k0), μ2(k0)). Since μ1(k) and μ2(k)
are proportional to each other, we only describe how
to change the value of μ2(k). Let μ2(k) = μ2(k0)
for k ∈ [k0, k0 + S0), where S0 is given by (29).
Then, according to Lemma 1, x(k0 + S0) belongs to
the ellipsoid R2(μ1, μ2) given by (12) with (μ1, μ2) =
(μ1(k0), μ2(k0)). For k ∈ [k0 + S0, k0 + 2S0), let

μ2(k) = Ωμ2(k0), (40)

where

Ω :=

√
λM (P )ΘΔ‖K‖√
λm(P )M(1 − ε)

. (41)

We have Ω < 1 by (9) or (39), and hence μ2(k0 + S0) <
μ2(k0). The ellipsoid R2(μ1, μ2) with the old value
μ2 = μ2(k0) is the same as the ellipsoid R1(μ1, μ2)
with the new value μ2 = μ2(k0 + S0). This means
that we can continue the analysis for k > k0 + S0 as
before. Namely, x(k0 + 2S0) belongs to the ellipsoid
R2(μ1, μ2) defined by (12) with μ2 = μ2(k0 + S0). For
k ∈ [k0 + 2S0, k0 + 3S0), let μ2(k) = Ωμ2(k0 + S0) =
Ω2μ2(k0). Repeating this procedure, we obtain the de-
sired control strategy. In fact, since Ω < 1, we have
μ2(k) → 0, and thus μ1(k) → 0 as k → ∞. In view
of the definitions of R1(μ1, μ2) and R2(μ1, μ2), we see
that x(k) → 0 as k → ∞. The detailed proof of the
asymptotic stability of the equilibrium x = 0 of the sys-
tem in the Lyapunov sense is similar to the final part of
the proof of Theorem 1 in (Liberzon, 2003), and thus it is
omitted.

Remark 2. In the proof of Theorem 1, we updated the
values of μ2 at the time instants k0, k0 + S0, k0 + 2S0,
· · · . Since the ellipsoids in the proof are invariant regions

for the closed-loop system, we can also choose the time
instants k1, k2, . . . of updating μ2 satisfying ki−ki−1 ≥
S0, i ≥ 1. The constant S0 is usually referred to as a
lower bound of dwell time (Hespanha and Morse, 1999;
Zhai et al., 2001) in the analysis and design of hybrid and
switched systems.

Remark 3. As is shown in the proof of Theorem 1, the
switching strategy (determining the time instants of updat-
ing μ1 and μ2) is time-based, in the sense that the values
of the quantizer parameters are updated at pre-computed
time at which the system state is guaranteed to enter a cer-
tain region. Alternatively, an event-based switching strat-
egy, i.e., using the quantized measurements to determine
when x enters the desired region, can be employed for
the same purpose, cf. (Liberzon, 2000)

6. Simulation

Consider the system (2) for

A =

[
1.11 0.60
0.50 −1.31

]
, B =

[
0.50

−0.70

]
, (42)

together with the pre-designed stabilizing state feedback
gain

K = [−2.00 − 1.00] . (43)

We set

Q =

[
3.00 0.00
0.00 1.00

]
(44)

in the Lyapunov equation (3) to obtain

P =

[
3.2552 −0.8566

−0.8566 23.4705

]
. (45)

Then we use
ε = 0.50, κ = 5.00 (46)

in our hybrid stabilization strategy, and find that μ1(k) is
fixed when k = 34, the “zooming-out” stage is finished
when k0 = 124. After that, repeating the procedure in the
“zooming-in” stage, we see that the norm of the system
state |x(k)| varies between B1(k) = M2μ2(k)2/‖K‖2

and B2(k) = Θ2Δ2μ2(k)2/(1 − ε)2, and converges to
zero quickly, as depicted in Fig. 3 (x(0) = [4.0 6.0]T ).

7. Extension to Output Feedback

In this section, we note that since the updating method
of the quantizer parameters is time-based, the approach
can be easily extended to the case of static/dynamic out-
put feedback. Fig. 4 depicts a feedback control system
with quantized measured outputs and control inputs. Here,
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ū

System

Controller

y

+

OutputInput

+

Quantizer 1Quantizer 2

u

Fig. 4. Feedback control system with quantized
measured outputs and control inputs.

with no loss of generality, we only consider static output
feedback. Suppose that for the discrete-time LTI system{

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),
(47)

where y(k) ∈ R
p is the measured output, we have de-

signed a stabilizing static output u = Ky. Here, without
causing confusion, we used the same notation K for the
feedback gain. Then the Lyapunov equation is

(A + BKC)T P̄ (A + BKC) − P̄ = −Q̄. (48)

Since we deal with the situation where only a quan-
tized measured output y(k) is available for the controller,
the control input to the system is

u(k) = μ2q2

(
Kμ1q1(

y(k)
μ1

)

μ2

)
. (49)

Then, for any fixed positive scalars μ1 and μ2, the
closed-loop system composed of the system (47) and the
controller (49) is given by

x(k + 1) = (A + BKC)x(k) − Bd̄(k), (50)

where

d̄(k) = μ2

(
KCx(k)

μ2
− q2

(
Kμ1q1(

Cx(k)
μ1

)

μ2

))
.

(51)
Then it is easy to see that the discussion in Sections 4 and
5 remains valid if we replace ‖K‖ with ‖K‖‖C‖.

To summarize, we define

M̄ = M2 − ‖K‖‖C‖ζ(Δ1 + M1),

Δ̄ = ‖K‖‖C‖ζΔ1 + Δ2.

ᾱ = ‖(A + BKC)T P̄B‖, β̄ = ‖BT P̄B‖,
(52)

and formulate the following theorem.

Theorem 2. If M̄ is large enough compared with Δ̄ in
(52) so that√

λm(P̄ )
λM (P̄ )

M̄ >
ᾱ +

√
ᾱ2+β̄λm(Q̄)
λm(Q̄)

‖K‖‖C‖Δ̄ (53)

holds with some positive scalar ζ, then there exists a hy-
brid quantized static output feedback strategy assuring
that the system (50) is globally asymptotically stable.

Remark 4. Note that the condition (32) (resp. (53)) is
given in terms of P (resp. P̄ ), Q (resp. Q̄), K and the
quantizer parameters. Although in this paper we have fo-
cused our attention on adjusting the quantizer parameters,
we may have to adjust P (resp. P̄ ), Q (resp. Q̄) for fixed
K , or may have to change the feedback again K , so that
the condition (32) (or (53)) is satisfied. Such kind of con-
troller design constitutes an open problem for future re-
search.

8. Conclusion

We have proposed a hybrid stabilization strategy for
discrete-time LTI systems via state feedback (or output
feedback) where both states (or measured outputs) and
control input signals are quantized. In our problem for-
mulation, the quantizers have a general form and their pa-
rameters are updated at discrete time instants. Therefore,
the control method is practical in real computer-based ap-
plications. We also note that the extension to H∞ feed-
back control systems was considered in the case of a sin-
gle quantized signal (a quantized state or a quantized mea-
sured output) (Zhai et al., 2005), and our future research
includes the extension to H∞ feedback control systems
with more than two quantized signals.
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