
Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 4, 609–617
DOI: 10.2478/v10006-009-0048-9

ZEROS IN LINEAR SYSTEMS WITH TIME DELAY IN STATE
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The concept of invariant zeros in a linear time-invariant system with state delay is considered. In the state-space framework,
invariant zeros are treated as triples: complex number, nonzero state-zero direction, input-zero direction. Such a treatment
is strictly related to the output-zeroing problem and in that spirit the zeros can be easily interpreted. The problem of zeroing
the system output is discussed. For systems of uniform rank, the first nonzero Markov parameter comprises a certain amount
of information concerning invariant zeros, output-zeroing inputs and zero dynamics. General formulas for output-zeroing
inputs and zero dynamics are provided.
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1. Introduction

The problem of zeroing the output of a standard linear sys-
tem S(A,B,C) is, as is known (Isidori, 1995; MacFarlane
and Karcanias, 1976; Tokarzewski, 2002; 2006), strictly
connected with the notion of the zeros of the system.
These zeros are defined in many, not necessarily equiv-
alent, ways. For a survey of these definitions, see (Mac-
Farlane and Karcanias, 1976; Schrader and Sain, 1989;
Tokarzewski, 2002; 2006). The most commonly used
definition of zeros employs the Smith canonical form of
the system matrix and determines these (Smith) zeros as
the roots of diagonal (invariant) polynomials of the Smith
form. Equivalently, Smith zeros are defined as the points
of the complex plane where the rank of the system matrix
drops below its normal rank. Another group of defini-
tions employs the module-theoretic setting (Bourles and
Fliess, 1997; Schrader and Sain, 1989).

All the above mentioned definitions consider zeros
merely as complex numbers and for this reason may cre-
ate certain difficulties in their dynamical interpretation.
MacFarlane and Karcanias (1989), added to the notion of
Smith zeros the notions of state-zero and input-zero direc-
tions and formulated the so-called output-zeroing prob-
lem. Another definition of zeros (called invariant), em-
ploying the system matrix and zero directions, was used
in (Tokarzewski, 2002; 2006). These zeros are treated
there as triples: complex number, non-zero state-zero di-
rection, and input-zero direction and are defined as fol-

lows. A complex number λ is an invariant zero of a sys-
tem S(A, B, C), where A, B, C are real matrices of di-
mensions n × n, n × m and r × n, respectively, if there
exist vectors 0 �= xo ∈ Cn and g ∈ Cm such that

P (λ)
[

xo

g

]
=

[
0
0

]
,

where

P (s) =
[

sI − A −B
C 0

]

denotes the system matrix for S(A, B, C). Invariant zeros
constitute an extension of the notion of Smith zeros. The
latter are involved in several problems of linear control
systems, such as zeroing the output, tracking the refer-
ence output, disturbance decoupling, noninteracting con-
trol or output regulation (Isidori, 1995; Marro, 1996; Son-
tag, 1990).

Unfortunately, for systems with delays the concept of
invariant zeros is not extensively discussed in the relevant
literature (Pandolfi, 1982; 1986).

The paper is organized as follows: A system
S(A, A1e

−sh, B, C) of the form (1) below is discussed.
We introduce first the concept of invariant zeros. In Sec-
tion 3, a dynamical interpretation of those zeros is
given. We show also that for an asymptotically stable
system (1) an output-zeroing input (if such inputs ex-
ist), when applied to the system under an arbitrary ini-
tial condition, yields an asymptotically vanishing sys-
tem response. In Section 4, we extend the results of
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(Tokarzewski, 2002; 2006) by providing a general expres-
sion for output-zeroing inputs as well as a general form
of the so-called zero dynamics for a particular case of the
system (1) with uniform rank. Simple numerical examples
are presented in Section 5.

Consider a system of the form (Górecki, et al., 1989;
Richard, 2003)

ẋ(t) = Ax(t) + A1x(t − h) + Bu(t),
y(t) = Cx(t), t ≥ 0, h > 0,

(1)

where h is a known delay, for x(θ) = ϕ(θ) for θ ∈ [−h, 0]
and x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rr; A, A1, B, C
are real matrices of appropriate dimensions. By U we
denote the set of admissible inputs which, for simplicity,
consists of all continuous real-valued vector functions of
time u(·) : [0, +∞) → Rm. It is assumed that the initial
condition ϕ(·) : [−h, 0] → Rn is continuous or, more pre-
cisely, the set of initial conditions is the Banach space of
continuous vector functions mapping the interval [−h, 0]
into Rn with the supremum norm

‖ϕ‖∞ = max
θ∈[−h,0]

‖ϕ(θ)‖ .

In other words, we consider this Banach space as a state
space for the system (see, e.g., Richard, 2003).

Throughout this paper we use the Euclidean norm for
vectors and the induced matrix norm for matrices, both
denoted by ‖·‖. Recall (Hale, 1977) that for a given
initial condition ϕ(·) and for a given input u(·) ∈ U
by the solution of 1 we understand a continuous curve
x(t) = x(t, ϕ(·), u(·)), x(·) : [−h, +∞) → Rn, such
that x(·) coincides with ϕ(·) on the interval [−h, 0] and
x(·) satisfies the first equation in (1) for all t ≥ 0. Such a
solution is unique.

The system (1) is asymptotically stable if and only
if its characteristic equation det(sI − A − A1e

−sh) = 0
has no roots with nonnegative real parts. As is known
(Hale, 1977; Kharitonov, 1999; Kharitonov and Hinrich-
sen, 2004), if (1) is asymptotically stable, it is also ex-
ponentially stable, i.e., there exist positive constants α, γ
such that for each solution x(t, ϕ(·)) of the equation
ẋ(t) = Ax(t)+A1x(t−h) the inequality ‖x(t, ϕ(·))‖ ≤
γ ‖ϕ‖∞ e−αt holds for all t ≥ 0.

Besides the above infinite-dimensional model, many
classes of models have been proposed for the analy-
sis of delay systems, e.g., models defined over the ring
of polynomials (or the field of rational functions) in
the delay operator ∇, over the ring of rational causal
transfer functions in ∇, or over the ring of quasi-
polynomials (see (Richard, 2003) for an overview and
(Kamen et al., 1985)).

2. Invariant zeros and the output-zeroing
problem

Definition 1. A number λ ∈ C is an invariant zero of (1)
if and only if there exist vectors 0 �= xo ∈ Cn and g ∈ Cm

such that

P (λ)
[

xo

g

]
=

[
0
0

]
,

where

P (s) =
[

sI − A − A1e
−sh −B

C 0

]
. (2)

By ZI we denote the set of invariant zeros of (1).
The set ZI may be countable (empty, finite or infinite)
or equal to the whole complex plane (i.e., ZI = C).
In the latter case, the system (1) is called degenerate.
Directly from Definition 1 it is clear that ZI is invari-
ant under any change of coordinates x′ = Hx. The
point of departure for dynamical interpretation of invariant
zeros is the following formulation of the output-zeroing
problem (borrowed from (Isidori, 1995)): Find all pairs
(ϕo(θ), uo(t)) consisting of an admissible initial condi-
tion ϕo(.) : [−h, 0] → R

n and an admissible input uo(t)
such that the corresponding output of (1) is identically
zero, i.e., y(t) = 0 for all t ≥ 0. Any nontrivial pair of this
kind, i.e., such that ϕo(θ) and/or uo(t) is not identically
zero, is called the output-zeroing input. In each output-
zeroing input (ϕo(θ), uo(t)), uo(t) should be understood
as an open-loop real-valued control signal which, when
applied to (1) exactly under the initial condition ϕo(θ),
yields y(t) = 0 for all t ≥ 0. The internal dynamics of (1)
consistent with the constraint y(t) = 0 for all t ≥ 0 are
called zero dynamics.

The set of all output-zeroing inputs for (1) comple-
mented with the trivial pair (ϕo(θ) ≡ 0, uo(t) ≡ 0)
forms a linear space over R. In fact, if (ϕ1

o(θ), u1
o(t))

and (ϕ2
o(θ), u2

o(t)) are output-zeroing inputs and give re-
spectively solutions of the state equation x1

o(t) and x2
o(t),

then, from the linearity of (1) and the uniqueness of solu-
tions as well as from the fact that the set U of admissible
inputs forms a linear space over R, it follows that each
pair of the form (αϕ1

o(θ) + βϕ2
o(θ), αu1

o(t) + βu2
o(t)),

with arbitrarily fixed α, β ∈ R, is an output-zeroing input
and yields the solution αx1

o(t) + βx2
o(t). In this space,

we can distinguish a subspace consisting of all pairs of
the form (ϕo(θ) ≡ 0, uo(t)), where uo(t) ∈ kerB for
all t ≥ 0. Each pair of this kind affects system equations
in the same way as the trivial pair, i.e., it gives the identi-
cally zero solution and y(t) = 0 for all t ≥ 0. We do not
associate this subspace with invariant zeros because it can
exist independently of these zeros (cf. Example 1).

Lemma 1. If (ϕo(θ), uo(t)) is an output-zeroing input
for (1) and xo(t) denotes the corresponding solution, then
the input uo(t) when applied to the system under an arbi-
trary initial condition ϕ(θ) yields the solution of (1) of the
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form

x(t, ϕ(·), uo(·)) = xh(t, ϕ(·) − ϕo(·)) + xo(t), (3)

where xh(t, ϕ(·) − ϕo(·)) denotes the solution of the ho-
mogeneous (unforced) state equation in (1) corresponding
to the initial condition ϕ(θ)−ϕo(θ), and gives the system
response

y(t) = Cxh(t, ϕ(·) − ϕo(·)). (4)

Proof. A simple proof that the right-hand side in (3) sat-
isfies the initial condition ϕ(θ) and fulfills the state equa-
tion at u(t) = uo(t) follows by verification. Hence, the
equality in (3) follows by the uniqueness of solutions. The
equality in (4) follows by assumption (i.e., Cxo(t) = 0 for
t ≥ 0). �

Remark 1. In order to show that each invariant zero gen-
erates an output-zeroing input, it is convenient to treat the
system (1) as a complex one, i.e., admitting complex val-
ued initial conditions, inputs, solutions and outputs which
are denoted respectively by ϕ̃, ũ, x̃ and ỹ. Naturally, if
x̃(t) is a solution of (1) (treated as a complex system)
corresponding to an input ũ(t) and to an initial condi-
tion ϕ̃(θ), then its real part Re x̃(t) is a solution which
corresponds to the initial condition Re ϕ̃(θ) and to the
input Re ũ(t). Analogously, Im x̃(t) (i.e., the imaginary
part of x̃(t)) is a solution of (1) which corresponds to
Im ϕ̃(θ) and Im ũ(t). Furthermore, if a pair (ϕ̃(θ), ũ(t))
is such that it gives also ỹ(t) = 0 for all t ≥ 0, then
the pairs (Re ϕ̃(θ), Re ũ(t)) and (Im ϕ̃(θ), Im ũ(t)) are
output-zeroing inputs and give respectively the solutions
Re x̃(t) and Im x̃(t).

3. Geometric interpretation of invariant
zeros

As we show below (Lemma 3), Definition 1 clearly relates
invariant zeros (even in the degenerate case) to the output-
zeroing problem. To this end we first need the following.

Lemma 2. If λ ∈ C is an invariant zero of (1), i.e.,
a triple λ, xo �= 0, g satisfies (2), then the input ũ(t) =
geλt, when applied to (1) (treated as a complex system)
under the initial condition ϕ̃(θ) = xoeλθ , θ ∈ [−h, 0],
yields the solution x̃(t) = xoeλt and the system response
ỹ(t) = 0 for all t ≥ 0.

Proof. By Definition 1, we have

λxo − Axo − A1e
−λhxo = Bg.

Postmultiplying both sides of this equality by eλt, we ob-
tain

˙̃x(t) − Ax̃(t) − A1x̃(t − h) = Bũ(t)

for all t ≥ 0. Moreover, from Definition 1, we also have
Cxo = 0. Hence, ỹ(t) = Cxoeλt = 0 for all t ≥ 0. �

Lemma 3. Let λ ∈ C be an invariant zero of (1), i.e., let
a triple λ, xo �= 0, g satisfy (2). Write λ = σ + jω, xo =
Re xo + jIm xo and g = Re g + jIm g. Then the pair
(ϕo(θ), uo(t)), where

ϕo(θ) = eσθ(Re xo cosωθ−Im xo sin ωθ), θ ∈ [−h, 0]

and

uo(t) = eσt(Re g cosωt − Im g sin ωt), t ≥ 0,

is an output-zeroing input and yields the solution

xo(t) = eσt(Re xo cosωt − Im xo sin ωt).

Similarly, the pair (ϕo(θ), uo(t)), where

ϕo(θ) = eσθ(Re xo sin ωθ + Im xo cosωθ)

and

uo(t) = eσt(Re g sin ωt + Im g cosωt),

is an output-zeroing input and yields the solution

xo(t) = eσt(Re xo sin ωt + Im xo cosωt).

Proof. Of course, since in (1) all matrices are real, the
complex conjugate of λ is also an invariant zero, i.e., the
triple λ̄ = σ − jω, x̄o = Re xo − jIm xo and ḡ = Re g −
jIm g satisfies (2). The proof of Lemma 3 follows easily
from Lemma 2 and Remark 1. �

The following result shows in particular that if
the system (1) is asymptotically stable and a pair
(ϕo(θ), uo(t)) is an output-zeroing input, then the input
signal uo(t), when applied to the system under an arbi-
trary initial condition ϕ(θ), yields an asymptotically van-
ishing system response, i.e., y(t) → 0 as t → ∞.

Lemma 4. Let (ϕo(θ), uo(t)) be an output-zeroing in-
put for an asymptotically stable system (1) and let xo(t)
be the corresponding solution. By x(t) denote a solution
of (1) corresponding to uo(t) and to an arbitrary initial
condition ϕ(θ). Then the Laplace transform of x(t) can
be written in the form

X(s)

= (sI − A − A1e
−sh)−1[(ϕ(0) − ϕo(0))

+ A1e
−sh

∫ 0

−h

e−sθ(ϕ(θ) − ϕo(θ)) dθ] + Xo(s),

(5)

where

Xo(s) = L(xo(t)) :=
∫ ∞

0

e−stxo(t) dt,
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while the Laplace transform of the corresponding system
response, i.e., y(t) = Cx(t), can be written as

Y (s) = CX(s)

= C(sI − A − A1e
−sh)−1

[
(ϕ(0) − ϕo(0))

+ A1e
−sh

∫ 0

−h

e−sθ(ϕ(θ) − ϕo(θ)) dθ
]
.

(6)

Moreover, y(t) → 0 as t → ∞.

Proof. By assumption we have ẋo(t) = Axo(t) +
A1xo(t−h)+Buo(t) for t ≥ 0. Using the Laplace trans-
formation for both sides of the above equality and taking
into account that

L(xo(t − h))

=
∫ ∞

0

e−stxo(t − h) dt

=
∫ h

0

e−stϕo(t − h) dt +
∫ ∞

h

e−stxo(t − h) dt

= e−sh

∫ 0

−h

e−sθϕo(θ) dθ + e−shXo(s),

we obtain

Xo(s) = (sI − A − A1e
−sh)−1

·
[
ϕo(0) + A1e

−sh

∫ 0

−h

e−sθϕo(θ) dθ
]

+ (sI − A − A1e
−sh)−1BUo(s).

(7)

Analogously, for the Laplace transform of x(t) we get

X(s) = (sI − A − A1e
−sh)−1

·
[
ϕ(0) + A1e

−sh

∫ 0

−h

e−sθϕ(θ) dθ
]

+ (sI − A − A1e
−sh)−1BUo(s).

(8)

Subtracting by sides (7) from (8), we get (5), i.e.,
(8) can be expressed as in (5). The relation (6) fol-
lows from (5) and CXo(s) = 0. The last claim of the
lemma follows from Lemma 1 and the stability assump-
tion (cf. Section 1). In fact, by virtue of (4), we can write

‖y(t)‖ =
∥∥Cxh(t, ϕ(·) − ϕo(·))

∥∥
≤ ‖C‖ ∥∥xh(t, ϕ(·) − ϕo(·))

∥∥
≤ ‖C‖ γ ‖ϕ − ϕo‖∞ e−αt.

�

4. Zeros and the output-zeroing problem for
systems of uniform rank

In this section we consider a particular case of the sys-
tem (1), namely, a square m-input m-output system of the

form

ẋ(t) = A1x(t − h) + Bu(t), y(t) = Cx(t), t ≥ 0
(9)

of uniform rank, i.e., such that its first nonzero Markov
parameter is nonsingular. We denote such a parameter by
CAk

1B, where 0 ≤ k ≤ n − 1, i.e., we assume CB =
· · · = CAk−1

1 B = 0, CAk
1B �= 0 and rankCAk

1B = m.

Remark 2. Recall that the transfer function matrix
for (9) equals C(sI − A1e

−sh)−1B. In the half-plane
Re s > ‖A1‖ of the complex plane, it can be expanded in
the power series

C(sI − A1e
−sh)−1B

= CBs−1 + CA1Bs−2e−sh + . . .

+ CAk
1Bs−(k+1)e−ksh + . . . .

By analogy to the standard case, the matrices CAl
1B,

l = 0, 1, 2, . . . are called Markov parameters for the sys-
tem (9).

Lemma 5. (Tokarzewski, 2006, p. 67) Define a matrix

Kk := I − B(CAk
1B)−1CAk

1 . (10)

Then Kk has the following properties:

(i) K2
k = Kk,

(ii) Σk := {x : Kkx = x} = ker (CAk
1),

dimΣk = n − m,

(iii) Ωk := {x : Kkx = 0} = im B, dimΩk = m,

(iv) Cn(Rn) = Σk ⊕ Ωk.

Moreover,

(v) KkB = 0, CAk
1Kk = 0,

(vi) C(KkA1)l =
{

CAl
1 for 0 ≤ l ≤ k,

0 for l ≥ k + 1.

A general characterization of output-zeroing inputs
and the corresponding solutions as well as zero dynamics
for the system (9) is given in the following.

Theorem 1. A pair (ϕo(θ), uo(t)) is an output-zeroing
input for the system (9) of uniform rank if and only if

ϕo(θ) ∈
k⋂

l=1

ker CAl
1 (11)

for each θ ∈ [−h, 0] and ϕo(0) ∈ ker C, and uo(t) is
such that its Laplace transform has the form

Uo(s)

= −(CAk
1B)−1CAk+1

1

[
e−sh(sI − KkA1e

−sh)−1

·
{

ϕo(0) + s

∫ 0

−h

e−sθϕo(θ) dθ
}]

.

(12)



Zeros in linear systems with time delay in state 613

Moreover, if xo(t) is a solution corresponding to the
output-zeroing input (ϕo(θ), uo(t)), then its Laplace
transform has the form

Xo(s) = (sI − KkA1e
−sh)−1

[
ϕo(0)

+ KkA1e
−sh

∫ 0

−h

e−sθϕo(θ) dθ
] (13)

and xo(t) is entirely contained in
k⋂

l=0

kerCAl
1, i.e.,

xo(t) ∈
k⋂

l=0

kerCAl
1 for all t ≥ 0.

Finally, the zero dynamics of the system have the form

ẋo(t) = KkA1xo(t − h) (14)

with the initial condition ϕo(θ), θ ∈ [−h, 0].

Proof. For the proof of necessity, let us suppose that
(ϕo(θ), uo(t)) is an output-zeroing input and xo(t) is the
corresponding solution. Thus we have y(t) = Cxo(t) = 0
for all t ≥ 0 and, consequently, Cϕo(0) = 0. Moreover,
since ẏ(t) = Cẋo(t) = CA1xo(t − h) + CBuo(t) and
ẏ(t) ≡ 0 as well as CB = 0, we get CA1xo(t − h) = 0
for all t ≥ 0. This last equality yields CA1ϕo(θ) = 0
for θ ∈ [−h, 0] and CA1xo(t) = 0 for t ≥ 0. Next,
we have 0 = CA1ẋo(t) = CA2

1xo(t − h) + CA1Buo(t)
and, since CA1B = 0, we obtain CA2

1xo(t − h) = 0 for
t ≥ 0. Consequently, CA2

1ϕo(θ) = 0 for θ ∈ [−h, 0]
and CA2

1xo(t) = 0 for t ≥ 0. Proceeding analogously,
we obtain, after a finite number of steps, the following
relations:

ϕo(θ) ∈
k⋂

l=1

kerCAl
1 for θ ∈ [−h, 0],

ϕo(0) ∈
k⋂

l=0

kerCAl
1,

xo(t) ∈
k⋂

l=0

kerCAl
1, ẋo(t) ∈

k⋂
l=0

kerCAl
1 for t ≥ 0.

(15)

From (15) and from Lemma 5 (see (10)), we obtain

Kkxo(t) = xo(t),
Kkẋo(t) = ẋo(t),
Kkϕo(θ) = ϕo(θ).

(16)

In the last step, we can write

0 = CAk
1 ẋo(t) = CAk+1

1 xo(t − h) + CAk
1Buo(t),

which yields

uo(t) = −(CAk
1B)−1CAk+1

1 xo(t − h). (17)

On the other hand, premultiplying both sides of the
equality ẋo(t) = A1xo(t−h)+Buo(t) by Kk and taking
into account (15) and Lemma 5(v), we get the relation

ẋo(t) = KkA1xo(t − h) with ϕo(θ), θ ∈ [−h, 0],
(18)

which represents the zero dynamics of the system. Thus,
uo(t) in (17) is determined by xo(t− h), where xo(t−h)
follows from the solution of (18) under the initial con-
dition ϕo(θ). Taking the Laplace transform of both sides
of (18), we obtain Xo(s) as in (13). Finally, we shall show
that uo(t) (or, more precisely, its Laplace transform) can
be determined merely by the initial condition. To this end,
we take the Laplace transform of both sides of (17) and,
after simple calculations, we get Uo(s) in the form (12).
This ends the proof of necessity.

For the proof of sufficiency, we assume that ϕo(θ)
satisfies the conditions (11) and uo(t) is such that its
Laplace transform has the form (12). We are to show that
(ϕo(θ), uo(t)) is an output-zeroing input and the corre-
sponding solution has the Laplace transform as in (13).
To this end, we first search for a solution x(t) of (9) cor-
responding to ϕo(θ) and to Uo(s) as in (12). Thus, for the
Laplace transform of this solution, we can write

X(s) = (sI − A1e
−sh)−1

·
[
ϕo(0) + A1e

−sh

∫ 0

−h

e−sθϕo(θ) dθ
]

+ (sI − A1e
−sh)−1BUo(s).

(19)

Substituting (12) into (19) and using the definition of
Kk (see (10)) as well as the identities

I − B(CAk
1B)−1CAk+1

1 e−sh(sI − KkA1e
−sh)−1

= (sI − A1e
−sh)(sI − KkA1e

−sh)−1, (20)

A1e
−sh

− B(CAk
1B)−1CAk+1

1 se−sh(sI − KkA1e
−sh)−1

= (sI − A1e
−sh)KkA1e

−sh(sI − KkA1e
−sh)−1,

(21)

we transform the right-hand side of (19) into the
form (13), i.e., we have obtained X(s) = Xo(s).

Now, we shall show that Xo(s) ∈
⋂k

l=0 kerCAl
1. To

this end, the above obtained solution Xo(s) (13) is ex-
pressed in the form of the following identity:

sXo(s) − KkA1e
−shXo(s)

= ϕo(0) + KkA1e
−sh

∫ 0

−h

e−sθϕo(θ) dθ. (22)

Then, premultiplying both sides of (22) subsequently by
C(KkA1)k, C(KkA1)k−1, . . . , C(KkA1), C and using
CB = · · · = CAk−1

1 B = 0, (11) and Lemma 5(vi),
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we obtain CAk
1Xo(s) = 0, CAk−1

1 Xo(s) = 0, . . . ,
CA1Xo(s) = 0, CXo(s) = 0, i.e., we have the rela-
tion Xo(s) ∈ ⋂k

l=0 kerCAl
1. This means that xo(t) ∈⋂k

l=0 kerCAl
1. Since, in particular, xo(t) ∈ kerC, we

infer that (ϕo(θ), uo(t)) is an output-zeroing input. �
In the remaining part of this section we characterize

invariant zeros as the roots of some quasi-polynomial. To
this end we first need the following result.

Lemma 6. A number λ ∈ C is an invariant zero of the
system (9) with uniform rank if and only if there exists a
vector 0 �= xo ∈ Cn such that

λxo − KkA1e
−λhxo = 0, Cxo = 0. (23)

Proof. If λ ∈ C is an invariant zero, then, by Defi-
nition 1, there exist 0 �= xo ∈ Cn and g ∈ Cm such
that λxo − A1e

−λhxo = Bg, Cxo = 0. Premultiply-
ing successively the first equality by C, CA1, . . . , CAk−1

1

and taking into account CB = . . . = CAk−1
1 B = 0 and

Cxo = 0, we get xo ∈ ⋂k
l=0 kerCAl

1, i.e., xo ∈ Σk (see
Lemma 5(ii)) and, consequently, Kkxo = xo. Now, pre-
multiplying the equality λxo − A1e

−λhxo = Bg by Kk

and using Lemma 5(v), we get the first equality in (23).
Conversely, if (23) holds, then, using the definition of
Kk (10) and taking g = −(CAk

1B)−1CAk+1
1 e−λhxo, we

can write the first equality in (23) as λxo − A1e
−λhxo =

Bg. �
With the system (9) of uniform rank we as-

sociate the triple of matrices (KkA1, B, C). Con-
sider the pair of matrices (KkA1, C). As is known
(Tokarzewski, 2006, p. 140), the observability matrix for
(KkA1, C) has the rank m(k + 1), i.e.,

rank

⎡
⎢⎢⎣

C
C(KkA1)

.
C(KkA1)n−1

⎤
⎥⎥⎦ = m(k + 1).

To the triple (KkA1, B, C) we can apply a decomposition
(ō/o) into an unobservable ō and an observable (o) part.
Let x′ = Hx denote a change of coordinates which leads
to the (ō/o) decomposition with the matrices

(KkA1)
′
=

[
(KkA1)

′
ō (KkA1)

′
12

0 (KkA1)
′
o

]
,

B
′
=

[
B

′
ō

B
′
o

]
,

C
′
=

[
0 C

′
o

]
,

x
′
=

[
x

′
ō

x
′
o

]
, dim x

′
ō = n − m(k + 1),

(24)

where the pair ((KkA1)
′
o, C

′
o) is observable, i.e., its ob-

servability matrix has the rank m(k + 1). Now, with the
notation used above, we can formulate the following re-
sult.

Theorem 2. Consider the system S(A1e
−sh, B, C) (9)

with uniform rank. Then a number λ ∈ C is an invariant
zero of the system if and only if λ is a root of the equation
det(sIō − (KkA1)

′
ōe

−sh) = 0.

Proof. With the system S(A1e
−sh, B, C) (9) of uniform

rank we associate an auxiliary closed-loop state feedback
system S(KkA1e

−sh, B, C) obtained from (9) by intro-
ducing the control law

u(t) = v(t) + Fx(t − h),

where the state-feedback matrix equals

F = −(CAk
1B)−1CAk+1

1 .

To S(KkA1e
−sh, B, C) we apply a change of coordinates

which leads to the decomposition (24). The system ob-
tained in this way is denoted as S((KkA1)

′
e−sh, B

′
, C

′
).

Moreover, consider the system S(A
′
1e

−sh, B
′
, C

′
) ob-

tained from S(A1e
−sh, B, C) by the same change of

coordinates. Note that forming for S(A
′
1e

−sh, B
′
, C

′
)

the auxiliary closed-loop state feedback system of
the form S(K

′
kA

′
1e

−sh, B′, C′), where, by definition,
K

′
k := I − B

′
(C

′
(A

′
1)

kB
′
)−1C

′
(A

′
1)

k, we obtain
S((KkA1)

′
e−sh, B

′
, C

′
). This fact follows from the re-

lation (KkA1)
′
= K

′
kA

′
1 (Tokarzewski, 2006, p. 142). Of

course, the set of invariant zeros of S(A
′
1e

−sh, B
′
, C

′
) is

the same as that of S(A1e
−sh, B, C). Moreover, to the

systems S(A
′
1e

−sh, B
′
, C

′
) and S(K ′

kA
′
1e

−sh, B
′
, C

′
)

(or, which is the same, to S((KkA1)
′
e−sh, B

′
, C

′
) (24))

we can apply Lemma 6, i.e., a number λ ∈ C is an invari-
ant zero of S(A

′
1e

−sh, B
′
, C

′
) if and only if there exists a

vector 0 �= x
′o ∈ Cn such that λx

′o−(KkA1)
′
e−λhx

′o =
0 and C

′
x

′o = 0. Now, for the proof of Theorem 2, we
only need to show that a number λ is a root of the equation
det(sIō − (KkA1)

′
ōe

−sh) = 0 if and only if there exists a
vector 0 �= x

′o ∈ Cn such that λx
′o−(KkA1)

′
e−λhx

′o =
0 and C

′
x

′o = 0. Using (24), the last two relations can be
written as

λx
′o
ō − (KkA1)

′
ōe

−λhx
′o
ō − (KkA1)

′
12e

−λhx
′o
o = 0,

λx
′o
o − (KkA1)

′
oe

−λhx
′o
o = 0,

C
′
ox

′o
o = 0.

.

(25)

Suppose now that

det(λIō − (KkA1)
′
ōe

−λh) = 0.

Then there exists an x
′o
ō �= 0 such that (λIō −

(KkA1)
′
ōe

−λh)x
′o
ō = 0. Of course, (25) will be satisfied

for

x
′o =

[
x

′o
ō

0

]
.
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In order to prove the converse, suppose that (25) is
satisfied and λ is not a root of the equation det(sIō −
(KkA1)

′
ōe

−sh) = 0. Then, however, λ must be a root
of det(sIo − (KkA1)

′
oe

−sh) = 0. We shall discuss sep-
arately two cases. In the first one, suppose that in (25)
there is x

′o
o �= 0, i.e., (λIo − (KkA1)

′
oe

−λh)x
′o
o = 0,

C
′
ox

′o
o = 0. Since the pair ((KkA1)

′
o, C

′
o) is observ-

able, i.e., its observability matrix has full column rank
(m(k + 1)), it is easy to show by reductio ad absurdum
that the pair ((KkA1)

′
oe

−sh, C
′
o) is spectrally observable

(Lee and Olbrot, 1981), i.e.,

rank
[

sIo − (KkA1)
′
oe

−sh

C
′
o

]
= m(k + 1)

for each s ∈ C.

This yields, however, the contradiction x
′o
o = 0. In

the second case, suppose that in (25) is x
′o
o = 0. Then, we

must have x
′o
ō �= 0, which contradicts the assumption that

λ is not a root of the equation det(sIō−(KkA1)
′
ōe

−sh) =
0. �

5. Examples

Example 1. Consider the system (1) with the matrices

A = A1 =
[ −1 0

0 −2

]
,

B =
[ −2 1 0

0 0 1

]
,

C =
[

1 0
0 1

]
.

This system has no invariant zeros since the matrix C is
nonsingular and for this reason Definition 1 cannot be sat-
isfied for any triple λ, xo �= 0, g. On the other hand,
output-zeroing inputs of the form (ϕo(θ) ≡ 0, uo(t)),
where uo(t) ∈ kerB for all t ≥ 0, exist. �

Example 2. The following result characterizes the in-
variant zeros of a certain class of systems of the form (1).
If in a square system (1) (i.e., m = r) the matrix B has
full column rank, then
(a) λ ∈ ZI if and only if detP (λ) = 0;
(b) the system (1) is degenerate if and only if

detP (s) ≡ 0,

where

P (s) =
[

sI − A − A1e
−sh −B

C 0

]
.

The proof of this result is completely analogous to that
given in (Tokarzewski, 2006, p. 55). �

Example 3. In a system of the form (9), let

A1 =

⎡
⎣ 0 1 0

0 0 1
−1 −2 −1

⎤
⎦ ,

B =

⎡
⎣ 0 0

0 1
1 0

⎤
⎦ ,

C =
[ −2 −1 0

0 1 0

]
.

As follows from Example 2, this system is degenerate
since det P (s) ≡ 0. �

Example 4. In a system of the form (9), let

A1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

1 0
0 0
0 0
0 1

⎤
⎥⎥⎦ ,

C =
[

1 0 0 0
0 0 1 0

]
.

Since detP (s) = se−sh, by virtue of Example 2, the sys-
tem has exactly one single invariant zero λ = 0. �

Example 5. Consider a system (9) of uniform rank with
the matrices

A1 =

⎡
⎣ −1 1 1

0 −1 1
0 0 −1

⎤
⎦ ,

B =

⎡
⎣ 0 0

0 1
1 0

⎤
⎦ ,

C =
[

0 0 1
1 1 0

]
.

Using Theorem 2, we first find the invariant zeros of
the system. The first nonzero Markov parameter is CB,
hence, according to Lemma 5, k = 0 and

K0 =

⎡
⎣ 1 0 0

−1 0 0
0 0 0

⎤
⎦ ,

K0A1 =

⎡
⎣ −1 1 1

1 −1 −1
0 0 0

⎤
⎦ .

In order to obtain an (ō/o) decomposition of the
triple (KoA1, B, C), we take the change of coordinates
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x
′
= Hx, where

H =

⎡
⎣ 1 0 0

0 0 1
1 1 0

⎤
⎦ .

Then

(K0A1)′ =

⎡
⎣ −2 1 1

0 0 0
0 0 0

⎤
⎦ ,

where (K0A1)
′
ō = −2. Thus the invariant zeros of the

system are the roots of the equation s + 2e−sh = 0.
Of course, it is easy to verify (see, e.g., (Hale, 1977,

Theorem A5)) that the system is stable if and only if 0 <
h < π/2, whereas all its invariant zeros remain in C

− =
{s ∈ C : Re s < 0} if and only if 0 < h < π/4. Finally,
in the new coordinates, the zero dynamics of the system
have the form (Theorem 1)

ẋ′(t) = (K0A1)′x′(t − h),

where

x′ =

⎡
⎣ x′

1

x′
2

x′
3

⎤
⎦ ,

i.e.,

ẋ′
1(t) = −2x′

1(t − h) + x′
2(t − h) + x′

3(t − h),
ẋ′

2(t) = 0,
ẋ′

3(t) = 0,

where the initial condition ϕ′(θ), θ ∈ [−h, 0], must sat-
isfy the condition (see (11))

ϕ′(0) ∈ ker C′,

where

C′ =
[

0 1 0
0 0 1

]
.

�

6. Concluding remarks

In this paper we introduced the concept of invariant ze-
ros for an LTI system with time delay in state (Defini-
tion 1). The problem of zeroing the system output as well
as the output zeroing inputs are defined. The relationship
between invariant zeros and the output-zeroing problem
was presented (Lemmas 2 and 3). It was also shown that
for an asymptotically stable system (1) the output-zeroing
control signal, when applied to the system under an ar-
bitrary initial condition, yields an asymptotically vanish-
ing system response (Lemma 4). For systems with uni-
form rank, a necessary and sufficient condition for output-
zeroing inputs was formulated (Theorem 1). Finally, it
was shown that for such systems invariant zeros can be

characterized as the roots of a certain quasi-polynomial
(Theorem 2). Further research concerning invariant ze-
ros and the output-zeroing problem can be focused on
extending the obtained results to rectangular systems of
the form (9) by using the Moore-Penrose pseudo-inverse
and/or singular value decomposition for the first nonzero
Markov parameter. Systems of the form (1) can be ana-
lyzed in this way assuming CB �= 0.
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