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The paper discusses the problem of rule weight tuning in neuro-fuzzy systems with parameterized consequences in which
rule weights and the activation of the rules are not interchangeable. Some heuristic methods of rule weight computation
in neuro-fuzzy systems with a hierarchical input domain partition and parameterized consequences are proposed. Several
heuristics with experimental results showing the advantage of their usage are presented.
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1. Introduction

Neuro-fuzzy systems are widely used due to their ability
of knowledge generalisation in the fuzzy domain. They si-
mulate very important features of the brain—the ability to
generalise the acquired knowledge and the ability to co-
pe with fuzzy and uncertain knowledge. Humans are able
to express the possessed knowledge in the form of fuz-
zy rules. A very common approach of humans (and many
animals) is the assignment of weights to the known rules.
In some cases a more specialised rule may have a higher
weight than general rules. Such a situation is commonly
regarded as an exception to more general rules.

The question of rules in fuzzy systems has not be-
en very widely discussed in the literature. In (Nozaki
et al., 1996), weights are applied to rules in a neuro-fuzzy
system for classification. The tuning of rule weights is ba-
sed on the Reward and Punishment (R&P) approach. After
presenting a training example, the weights of the rules are
modified: the weights of the successful rules are enlarged,
whereas the weights of the rules elaborating false results
are diminished. The idea of the rule weight was critici-
sed in (Nauck and Kruse, 1998; Nauck, 2000). The au-
thors show that, in Mamdani and TSK neuro-fuzzy sys-
tems, rule weights can be substituted by the modification
of membership function values in rule premises. The we-
ights applied to rule consequences lead to the obfuscation
of the model—the fuzzy sets in consequences are shifted
from their original location and their supports are resca-
led, which may lead to the lack of interpretability of the

rule base. The introduction of rule weights may also lead
to negative weights, making the rule base difficult or even
impossible to interpret.

The paper (Ishibuchi and Nakashima, 2001) makes
profit of the remark expressed in (Nauck and Kruse, 1998)
but uses it in an opposite way—instead of modifying the
parameters of the membership function, the rule weights
are tuned. This approach reduces the number of parame-
ters to tune. Additionally, the domain partition may be pie-
cewise oblique although the rules are orthogonal. The esti-
mation of rule weights is based on rule confidence quality
measures (Cordón et al., 1999; Ishibuchi et al., 2001).

A system for binary classification implementing rule
weights is presented in (Berg et al., 2002). It is based on
probabilistic classification. The weight of a rule is calcu-
lated as a difference between the probabilities that the pre-
sented examples belong to the first and the second class.
The paper (Ishibuchi and Yamamoto, 2005) discusses the
assignment of weights upon the confidence measure of the
rules. The authors do not describe the method of rule we-
ight tuning. In (Jahromi and Taheri, 2008), the authors
do not share the opinion presented in (Nauck and Kru-
se, 1998) and treat the correspondence between the rule
weight and the membership function as an advantage po-
inting

(i) reduction of the rule’s premise parameters from se-
veral to one,

(ii) improvement of the classification ability of the sys-
tem.
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Fig. 1. Scheme of the fuzzy inference system with parametrized consequences with two rules and two-attribute objects.

The authors present a hill-climbing search method for the
tuning of the rule weights.

The equivalence of rule weights and the modifica-
tion of the membership function stated in (Nauck and Kru-
se, 1998) is not valid for a neuro-fuzzy system with para-
meterized consequences (Łęski and Czogała, 1997; 1999)
In this system the rule weight cannot be shifted into a
membership function in the rule premise. This paper di-
scusses the rule weight problem in a neuro-fuzzy system
with parameterized consequences.

The paper is organised in the following way. Sec-
tion 2 describes the fuzzy system with parameterized con-
sequences. Section 3 describes methods of rule weight as-
signment. Sections 4 describes the experiments and pre-
sents their results. Section 5 sums up the elaborated re-
sults.

2. Fuzzy system with parameterized
consequences

The fuzzy system parameterized consequences (Łęski and
Czogała, 1997; Łęski and Czogała, 1999; Czogała and Łę-
ski, 2000) combines the Mamdani-Assilian (Mamdani and
Assilian, 1975) and the Takagi-Sugeno-Kang (Takagi and
Sugeno, 1985; Sugeno and Kang, 1988) approach. The
fuzzy sets in consequences are isosceles triangles (as in
the Mamdami-Assilian system) but are not fixed—their
location is calculated as a linear combination of attribu-
te values (as the localisation of singletons in the Takagi-
Sugeno-Kang system).

The system with parameterized consequences is an
MISO one. The rule base comprises fuzzy rules in the
form of fuzzy implications:

R(i) : x is a(i) ⇒ y is b(i)(p, w), (1)

where x = [x1, x2, . . . , xN ]T and y are linguistic varia-
bles, a and b are fuzzy linguistic terms (values), p and w
are the parameters of the consequence linguistic term. The
linguistic variable ak (a for the k-th attribute) is described
with the Gaussian membership function:

μak
(xk) = exp

(
− (xk − ck)2

2s2
k

)
, (2)

where ck is the core location for the k-th attribute and sk

is this attribute’s Gaussian bell deviation. Each region in
the domain is represented by a linguistic variable a. The
term b is represented by an isosceles triangle with the base
width w, whose height is equal to one. The localisation y
of the core of the triangle membership function is deter-
mined by a linear combination of input attribute values:

y(i) (x) = p(i)T · [1,xT
]T

=
[
p
(i)
0 , p

(i)
1 , . . . , p

(i)
N

]
[1, x1, . . . , xN ]T.

(3)

Thus the consequence of each rule has two parameters: the
width w of the support and the vector p for localisation.

The firing strength of the i-th rule is a T-norm of
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memberships of input attributes:

F (i)(x) = μa(i)(x)
= μ

a
(i)
1

(x1) �T · · · �T μ
a
(i)
N

(xN ),
(4)

where �T denotes the T-norm and N stands for the number
of attributes.

The fuzzy output of the system, fuzzy set B′, can be
expressed as an aggregation of fuzzy implications (rules):

μB′(x) =
I⊕

i=1

[
μa(i) (x) � μb(i)

(
y(i) (x)

)]
, (5)

where
⊕

denotes the aggregation, the squiggle arrow (�)
stands for fuzzy implication, i is the rule’s index and I is
the number of rules.

The result of aggregation, output fuzzy set B′, is de-
fuzzified in order to get the crisp output with the MICOG
method, which cuts off the noninformative part of the de-
fuzzified set (Czogała and Łęski, 2000). In (Czogała and
Łęski, 2000) it was shown that the crisp output can be
expressed as

y0 (x) =

I∑
i=1

g
(
F (i) (x) , w(i)

)
y(i)(x)

I∑
i=1

g
(
F (i) (x) , w(i)

) , (6)

where y(i)(x) stands for the location of the core of the
consequent fuzzy set (cf. Eqn. (3)), F (i) is the firing
strength of the i-th rule, w(i) is the width of the base of
the isosceles triangle consequence function of the i-th ru-
le. The function g depends on the fuzzy implication; in
the system the Reichenbach one is used, so for the i-th
rule function g is

g
(
F (i) (x) , w(i)

)
=

w(i)

2
F (i) (x) . (7)

The function g for the Łukasiewicz implication is defined
by the formula (8).

Figure 1 (taken from (Łęski, 2008) and modified)
shows the fuzzy inference system with parameterized con-
sequences for two-attribute objects and two fuzzy rules.
For each rule the Gaussian membership values for attri-
butes are determined. The membership values for attribu-
tes are T-normed (in the figure it is a minimum T-norm)
in order to determine the rule’s firing strength. This va-
lue is the premise of the fuzzy implication, the conse-
quent being the fuzzy triangle set. The values of the ob-
ject’s attributes are used to calculate the location of the
triangle fuzzy set core. In Fig. 1 these are y(1) for the
first rule and y(2) for the second one. The fuzzy sets re-
presenting the results of implications are aggregated (cf.

Eqn. (5)) and the crisp output is determined with the MI-
COG procedure (cf. Eqn. (6)). The aggregated fuzzy set
has two parts: informative (mountain-like shape in Fig. 1)
and non-informative (gray part in the figure). The latter
one is discarded as carrying no useful information.

Neuro-fuzzy systems are able to tune the parameters
of the model. In this system two different methods are
used for tuning. The parameters of the premises (c and
s in Eqn. (2)) and the widths of the supports w of the sets
in consequences are tuned with the gradient method. The
linear coefficients p for the calculation of the location of
the consequence sets are optimised with the recursive le-
ast square mean error (LSME) algorithm (Larminat and
Thomas, 1983). The minimised criterion in tuning is the
root mean square error (RMSE) of output system values.

Fig. 2. PAHSID system.

2.1. Domain partition in neuro-fuzzy systems.
Neuro-fuzzy systems differ in the method of rule extrac-
tion. Two essential approaches are used: the extraction of
rules starts with the construction of premises, or first the
consequences are created and then the premises (Sugeno
and Yasukawa, 1993). The first approach splits the input
domain into regions. The splitting methods can be gathe-
red into three classes (Almeida, 2004; Łęski, 2008):

1. grid split,

2. scatter split, and

3. hierarchical split,

depicted in Fig. 3.
The advantage of the grid split is the partition of the

whole domain. There are no areas in the domain with a ve-
ry low membership to all regions. A weakness is the fact
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Fig. 3. Three essential ways of domain partitioning: grid, scatter and hierarchical partition.

that some region may have only few or even no exam-
ples. Thus the reduction of superfluous, redundant regions
is necessary. The major drawback of the grid split is the
curse of dimensionality. In this approach each attribute is
split into an a priori established number of intervals, and
thus the number of regions grows exponentially with the
number of dimensions. This approach is used in the AN-
FIS system (Jang, 1993). The grid split is also described
in (Wang and Mendel, 1992).

The scatter split (clustering) avoids the curse of di-
mensionality. But two problems appear: first the question
of the number of clusters, then the lack of rules in some
part of the input domain (the problem of areas that ha-
ve very low values of membership to all clusters). The
unseen cases may fall into these parts of the domain and
the results elaborated by the system may be far from cor-
rect. This approach has been used in many systems, such
as ANNBFIS (Czogała and Łęski, 2000; Łęski and Czo-
gała, 1999), ANBLIR (Łęski, 2008)—the FCM cluste-
ring algorithm (Dunn, 1973); in (Abonyi et al., 2002), the
Gath-Geva (Gath and Geva, 1989) a clustering algorithm
is applied. Chiu (1994) proposed a subtractive clustering
and system based on this partition method. A similar ap-
proach was applied by (Priyono et al., 2005). The SANFIS
system (Wang and Lee, 2002) applies the MCA clustering
algorithm.

The hierarchical approach has the advantages of both
clustering and the grid split: an easier way of determi-
ning the numbers of clusters, the reduction of low mem-
bership regions and no curse of dimensionality. Some at-
tempts have been made to apply the hierarchical doma-
in in neuro-fuzzy systems: LOLIMOT (Nelles and Iser-
mann, 1996; Nelles et al., 2000) and binary space par-
titioning (Souza et al.,2002a; 2002b; Almeida, 2004). In
these systems the regions are always split into two equal
subregions. The system with a hierarchical split of the in-
put domain, (HSID) splits hierarchically the input doma-
in not necessarily into twin regions (Simiński, 2008a). A
patch augmented hierarchically split input domain (PAH-
SID) neuro-fuzzy system is a developement of HSID. It is

a hybrid system that comprises the hierarchical input do-
main partition with creating patch rules for areas with the
highest error (Simiński, 2009a). The algorithm is presen-
ted in Fig. 2. The regions the input domain is split into
are defined by Eqn. (2). The first action of the partitio-
ning procedure is the creation of an initial region. The rule
for this region is tuned. Then the algorithm forks into two
branches: either the worst region (with the highest contri-
bution to the error of the model) is split into two subre-
gions or a patch rule is proposed. In both cases the new
rule bases are tuned and errors are calculated. For further
stages only one model is selected—that with a lower error
rate. Some attempts have been made at finding an efficient
and robust heuristics for deciding without tuning whether
to split the worst region or to add the patch. Many appro-
aches have been tested but none of them has resulted in
any reasonable heuristics.

The stopping criterion is set true if the RSME for test
data starts increasing (the knowledge generalisation abili-
ty declines).

3. Rule weights in a system with
parameterized consequences

In systems with parameterized consequences the rule we-
ights are introduced implicitly. The g function in Eqn. (6)
is linearly dependent on w in all applied implications
(Łęski, 2008; Nowicki, 2006). Thus the support widths w
of fuzzy sets in rule consequences can be interpreted as ru-
le weights. In systems described in the papers cited in the
introductory section the output of a rule is a function of
the product w · F (where w stands for the rule weight and
F for the firing strength), which enables switching betwe-
en the rule weight and its firing strength. This equivalence
of rule weights and the modification of the membership
function stated in (Nauck and Kruse, 1998) is not valid
for a neuro-fuzzy system with parameterized consequen-
ces. In this system the rule weight cannot be shifted into a
membership function in the rule premise. The formula (6)
uses the function g for determining the system output. The
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Table 1. Result for time series datasets. ‘RMSE’ stands for the
‘root mean square error’ and ‘R’ is the ‘number of ru-
les’. Various methods of rule weight calculation deno-
ted with labels ‘linear’, ‘square’ and ‘card.’ for ‘reci-
procal cardinality’.

gas furnace chaotic milk
RMSE R RMSE R RMSE R

ANNBFIS 0.2031 3 0.000648 37 0.6135 10
HSID 0.2166 3 0.010149 40 0.5970 2

PAHSID 0.2079 3 0.000570 40 0.5970 2
linear 0.1782 3 0.000694 40 0.5970 2
card. 0.1759 3 0.000541 38 0.5603 3

square 0.1789 3 0.000647 40 0.6180 2
m. card. 0.1758 3 0.000667 38 0.5258 3
Fib. asc. 0.2175 3 0.5327 4
Fib. des. 0.2176 2 0.5515 3

WPAHSID 0.1992 3 0.5701 3

form of the function g depends on the fuzzy implication
applied. The value of the function g is linearly dependent
on w. It is non-linearly dependent on the firing strength F
in the Łukasiewicz, Fodor, Kleene-Dienes and Gödel im-
plications. For example, for the Łukasiewicz implication
the function g is (Łęski, 2008; Nowicki, 2006)

gL

(
F (i) (x) , w(i)

)
= w(i)F (i) (x)

(
1− 1

2
F (i) (x)

)
,

(8)
so there is no linear transformation between the rule we-
ight w and its firing strength F . Thus there is no danger of
rescaling and dislocating fuzzy sets in the rule premises
while using the rule weights. The interpretability of the
model is preserved. What is more, the hierarchical doma-
in partition enables some heuristics impossible to apply in
the grid split (as in (Ishibuchi et al., 2001)).

Systems with a grid partition need some rule quality
measures (as confidence) to estimate the rule importance
and its weight (Cordón et al., 1999; Ishibuchi et al., 2001).
The hierarchical domain partition may lead to easier rule
weight assignment. In this approach a new rule is added
when needed. The idea arises to assign a higher weight to
the latest rules. The oldest (first created) rule is the most
general one and it is to some extent overridden by recent
rules.

In ANNBFIS, ANBLIR, HSID and PAHSID, the ru-
les weights (fuzzy set supports w) are initialised with a
value of 2. The experiments show that the gradient me-
thod used to tune these values modifies the values very
little and the final values of set supports w are not far
from the initial values. The problem of hardly perceptible
modification of rule weights in parameter tuning attracts
special attention. A modification of the PAHSID system
is proposed. The modification, the WPAHSID (weighted
PAHSID) system, tries to modify the rule weights in or-
der to better fit the data. The WPAHSID system splits al-

so the input domain hierarchically and also applies patch
rules when needed. Two paradigms of rule weight modi-
fications are applied. One is trivial: the rule weights are
not explicitly modified (they are modified in the gradient
based procedure of parameter tuning as in PAHSID), the
latter being more complicated. For each rule i tuned in the
previous iteration, the output error ei is calculated with the
formula

ei =

√√√√ 1
K̂(i)

K∑
k=1

[
g(xk)(y(i)(xk)− yk)

]2
, (9)

where y(i) (x) is the location of the i-th rule’s consequ-
ence set for the tuple x (cf. Eqn. (3)), yk is the desired
output, K is the number of examples in the training set,
K̂(i) is the sum of the values of the membership function
of all examples for the i-th rule:

K̂(i) =
K∑

k=1

μa(i)(xk). (10)

The errors are normalised to the values b ∈ [0, 1], so
that the maximum error value is mapped into 1 and the
minimum one into 0. The rule weights are then modified
using the formula

w(i) ← w(i) + η
(
1− b(i)

)
, (11)

where η ∈ [0, 1] is a modifying parameter. If the rule has
a smaller error ei (if the rule is better), then its weight
is augmented most. The weight of the worst rule is not
modified at all.

When the worst region is split into two subregions,
they inherit the value of rule weights from the parent re-
gion. If the patch rule is applied, its weight is the maxi-
mum weight of hitherto existing rules.

In each algorithm iteration, four candidate models
are created: with split, patch, split with weight modifica-
tion and patch with rule weight modification. From these
four models only the one with the least error is selected
for further development. This makes the algorithm more
time consuming in comparison with the PAHSID algori-
thm. Thus some heuristics are proposed. The following
paradigms of assigning the weight of the new rule are on-
ly applied to new patch regions. When splitting the re-
gion is more advantageous, the weight of the split region
is assigned to both new subregions. In this paper some pa-
radigms of weight modification for PAHSID systems are
presented:

1. Linear increase in rule weights. The i-th rule has the
weight equal to

wi = 1 + max{w1, w2, . . . , wi−1}. (12)
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Table 2. Results of 10-fold cross-validation for the ‘NewSin-
Cos’ and ‘Hang’ datasets.

NeoSinCos Hang
RMSE RMSE

ANNBFIS 0.008165 0.082576
HSID 0.002792 0.047177
PAHSID 0.002180 0.028677
linear 0.001028 0.031321
card. 0.000948 0.027278
square 0.001715 0.035199
mult. card. 0.000946 0.031404
Fib. asc. 0.002255 0.026794
Fib. des. 0.006393 0.044812

2. Square increase of rule weights. The i-th rule has the
weight equal to

wi = (max{w1, w2, . . . , wi−1})2. (13)

3. Reciprocal cardinality of the rule. The fewer exam-
ples the rule recognises, the less general it is, so the
weight of the rule should be high:

wi =
M

M∑
m=1

F (i) (Xm)
, (14)

where F is defined in Eqn. (4).

4. Multiplied reciprocal cardinality of the rule. This is
very similar to the above case, but the weight is mul-
tiplied by the number of rules:

wi =
iM

M∑
m=1

F (i) (Xm)

. (15)

5. Fibonacci search (Ferguson, 1960; Knuth, 1998).
This method is used for finding a minimum of the
unimodal function in a given interval [a1, b1]. The
precision of the method is assumed as a length of
the last interval and is less than ε. The characteristic
feature of this method is a priori estimation of the
required optimising steps. The number of steps k is
calculated with the formula (b1−a1)/Fk ≤ ε, where
Fk is the k Fibonacci number.

The Fibonacci search narrows the interval [a1, b1]
to one point. This is done in an iterative way. For
more generality, let the interval in the i-th itera-
tion be [ai, bi]. The iterations are numbered in de-
scending order. Two internal values are calculated,
βi−1 = ai + (Fi−1/Fi)(bi − ai) and αi−1 = bi −
(Fi−1/Fi)(bi − ai). Then the values of the optimi-
sed function f are calculated. If f(αi−1) < f(βi−1),
then the part [βi−1, bi] of the interval is neglected for

the further search, thus ai−1 ← ai and bi−1 ← βi−1.
Otherwise, interval [ai, αi−1] is no further analy-
sed and new values are assigned: bi−1 ← bi and
ai−1 ← αi−1. The algorithm stops when i = 3.

The weights of the rules are optimised in two ways.

(a) Ascending. The oldest (more general) rule is
optimised first, the latest is optimised as the last
one. The initial value of the weight of the first
rule is assigned 2. When a new rule is added,
only the weight wi of this rule is optimised wi-
thin the interval [wi−1, 2wi−1].

(b) Descending. The latest rule that is optimised is
assigned the value wI = 1. The weight of the i-
th rule is optimised in the interval [0, wi+1] and
finally the oldest rule’s weight w1 is optimised
as the last one in the interval [0, w2].

Table 3. Comparision of the data approximation ability of va-
rious systems for the ‘gas furnace’ data set. The ’R’
abbreviation stands for the number of rules.

author/system R RMSE

ARMA (Box and Jenkins, 1970) – 0.8426
Tong (Tong, 1980) 19 0.6848
Lee (Lee et al., 1994) 25 0.6380
Pedrycz (Pedrycz et al., 1995) 25 0.6285
Xu-Lu (Xu and Lu, 1987) 25 0.5727
Pedrycz (Pedrycz, 1984) 81 0.5656
Yoshinari (Yoshinari et al., 1993) 6 0.5468
Box-Jenkins (Box and Jenkins, 1970) 1 0.4494
Sugeno (Sugeno and Yasukawa, 1993) 6 0.4348
Nie (Nie, 1995) 45 0.4111
Joo (Joo et al., 1997) 6 0.4074
Surmann (Surmann et al., 1993) 25 0.4000
EST3 (Gómez-Skarmeta et al., 1999) 2 0.3937
Oh (Oh and Pedrycz, 2000) 4 0.3507
Chen (Chen et al., 1998) 3 0.2678
Lin (Lin and Cunningham, 1995) 4 0.2664
Kim-Park-Ji (Kim et al., 1997) 2 0.2345
Kim-Park (Kim et al., 1998) 2 0.2190
Byun (Byun et al., 2001) 4 0.2141
ANBLIR (Czekalski, 2006) 2 0.1892
ANNBFIS (Simiński, 2008b) 6 0.1537
HSID (Simiński, 2009a) 6 0.1455
Rantala (Rantala and Koivisto, 2002) 5 0.1350
HSID (Simiński, 2009a) 8 0.1344
Czekalski (Czekalski, 2006) 8 0.1280
PAHSID (Simiński, 2009a) 6 0.1247
PAHSID (Simiński, 2009a) 8 0.1044
WPAHSID (η = 0.1) 8 0.1015
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Table 4. Rule weights elaborated by the PAHSID system with different paradigms of rule weights assignment for the 4-th ‘NewHang’
set used in cross-validation.

PAHSID linear card. square mult. card. Fib. asc. Fib. des.

1.993 3.002 3.296 6.312 6.999 2.033 0.002
1.999 2.005 2.445 8.312 20.300 2.353 0.002
2.005 3.060 4.005 7.305 6.619 2.920 0.004
1.991 8.044 3.313 4.303 6.808 3.513 0.011
2.000 5.031 3.510 9.312 9.092 4.200 0.016
2.002 6.043 4.055 6.312 33.814 5.038 0.049
2.004 9.044 3.359 7.312 21.444 6.043 0.148
2.002 8.037 3.551 8.307 15.894 7.252 0.222
2.002 9.041 3.530 10.311 18.185 8.702 0.667
2.002 10.041 3.344 10.312 32.473 15.664 2.000

4. Experiments

The experiments were conducted on synthetic and real-life
datasets. Among them the data series were also used.

4.1. Datasets. The NewSinCos dataset is a synthetic
two input, one output dataset. One hundred points from
the range x, y ∈ [0, 1] were randomly selected. These po-
ints created the tuples 〈x, y, z〉, where

z = 5 + x + y + sin 5x− cos 5y. (16)

All tuples were divided into 10-fold cross-validation sets.

The Hang dataset is described in (Sugeno and Yasu-
kawa, 1993). It is a synthetic dataset with a two-input and
one-output value calculated with the formula

z =
(
1 + x−2 + y−1.5

)2
, (17)

where x and y are evenly distributed grid points from the
interval [1, 5]. There were 100 〈x, y, z〉 prepared points.

The Chaotic time series dataset contains the data on
concentration x of leukocytes in blood described with the
Mackey-Glass equation (Glass and Mackey, 1988)

dx(t)
dt

=
ax(t− τ)

1 + (x(t − τ))10
− bx(t),

where a, b and τ are constants. The data set containing
1000 tuples was split into training (1–500) and test (501–
1000) sets.

The Milk production dataset (Makridakis et al.,
1998)1 describes the monthly milk production per cow
over 14 years. The normalised (to the zero mean and unit
standard deviation) time series data were organised in the
following manner: [t − 5, t− 3, t − 2, t− 1, t, t + 5]. Of
159 tuples, the first 90 were used as a training set and fol-
lowing 69 as a test set (Simiński, 2009b).

Gas furnace is a real life dataset depicting the con-
centration of methane and carbon dioxide in the gas furna-
ce used by (Box and Jenkins, 1970) and many researchers.

1http://www.robjhyndman.com/forecasting/.

It contains 290 tuples organised according to the template
[x, y] = [y(n − 1), . . . , y(n − 4), x(n − 1), . . . , x(n −
6), y(n)]. The tuples are divided into training (tuples 1–
100) and test (tuples 101–290) sets for knowledge gene-
ralisation tests. For data approximation, all 290 tuples are
used in training and test sets.

4.2. Experiments. The results of random 10-fold
cross-validation for the ‘NewSinCos’ i ‘Hang’ datasets are
presented in Table 2. The rule weights for various appro-
aches for the 4-th cross-validation set in the ‘Hang’ data
set are presented in Table 4.

The experiments on the ‘chaotic time series’, ‘milk
production’ and ‘gas furnace’ dataset were conducted with
separate training and test sets. The results are presented in
Table 1. The results for ‘gas furnace’ represent data ap-
proximation (DA), whereas the results for ‘chaotic time
series’ and ‘milk production’—knowledge generalisation
(KG).

In each experiment the number of iterations is con-
stant and equal to 100 (the only exception with the num-
ber of iterations equal to 250 is the data approximation
test, whose results are presented in the Table 3, in order
to keep the same experiment conditions with other resear-
ches).

The selection of the most efficient value of the η pa-
rameter (cf. Eqn. (11)) is not easy. The best values are
selected after numerous tests. Thus for knowledge gene-
ralisation for the ‘gas furnace’ dataset (Table 1) η = 0.2,
for the ‘milk’ dataset η = 0.6. For data approximation
(Table 3) the parameter η is 0.1.

Figure 4 presents the expected output values and va-
lues elaborated by the PAHSID system with multiplied
cardinality rule weight assignment for the ‘milk produc-
tion’ dataset. The first 90 examples constitute the training
set, the following 69—the test set.

Figure 5 presents the surface elaborated by the PAH-
SID system with multiplied reciprocal cardinality weight
assignment and the original surface defined with the for-
mula (16) (‘NewSinCos’ dataset).

http://www.robjhyndman.com/forecasting/.
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Fig. 4. Values of the output (dotted) and values elaborated by the system (solid) with multiplied cardinality rule weight assignment for
training data (1–90) and test data (91–159) of the ‘milk production’ dataset.

Fig. 5. Surface elaborated for the first rotation of the ‘NewSinCos’ dataset by the PAHSID system with multiplied reciprocal cardinality
weight assignment—mesh in black—compared with precise surface defined with the formula (16)—mesh in gray.
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5. Discussion

The weights of the rules in a neuro-fuzzy system with pa-
rameterized systems are modified very little in the stan-
dard gradient method (cf. the first column in Table 4) used
in the tuning procedure. So the weights of rules are very
similar. The assignment of rule weights can improve both
data approximation (cf. the results for ‘gas furnace’ in Ta-
ble 1) and knowledge generalisation abilities.

The situations observed in the experiment are as fol-
lows:

1. The WPAHSID system can produce more precise
models than PAHSID and ANNBFIS systems and
PAHSID with simple heuristics. This situation can
be observed in Table 3.

2. WPAHSID can create a model better than PAHSID
and ANNBFIS and similar in precision to systems
with simple heuristics (cf. results for time-series—
Table 1).

3. Finally, WPAHSID system is not able to create a bet-
ter model whereas simple heuristics can produce a
model of better precision (cf. results for the ‘New-
SinCos’ and ‘Hang’ datasets—Table 2).

Table 3 gathers results of data approximation experi-
ments conducted by many researchers in the ‘gas furnace’
data set. The WPAHSID system outperforms other sys-
tems with parameterized consequences (ANNBFIS, PAH-
SID, HSID). The system creates a model with the RMSE
equal to 0.1015, eight rules and the weight modification
parameter η = 0.1. The weights of the rules are w =
[2.2788, 2.7328, 1.7778, 2.4380, 2.3776, 2.5576, 2.5341,
2.6439]T. The modifications of the PAHSID system with
simple heuristics achieve poorer results (e.g., for linear
weights modification RMSE = 0.1219) than WPAHSID.
These heuristics modify the weight too much and the pre-
cision of the model decreases.

The cost of better models constructed by the WPAH-
SID system is the time needed to complete the task. The
construction of the model by WPAHSID takes approxima-
tely twice as much time as simple heuristics systems (the
Fibonacci search being the exception—it is the most time
consuming approach).

One more problem needing a better solution is the
selection of the best value of the η parameter for weight
modification (cf. Eqn. (11)).

The best results in systems with simple heuristics are
achieved for reciprocal cardinality. This means that the hi-
ghest weight is assigned to the rule that covers the least
number of cases.

Fibonacci search based rule weight optimisation re-
quires the most calculation power of all methods resear-
ched in this paper. There are even not all results for all
data sets due to extreme time demands (cf. Table 1). The

results obtained using this method are usually not better
than those elaborated with systems without any rule we-
ight modification. Only for the ‘NewHang’ dataset can the
Fibonacci search approach have good results, too. This
method is suitable for searching the minimum of unimo-
dal functions. Perhaps in this task this assumption is not
true.

6. Summary

The paper presents an implementation of rule weights in
neuro-fuzzy systems with a hierarchical input domain par-
tition and parameterized consequences. In systems with
parameterized consequences, no rule weight can be shi-
fted and incorporated into membership functions in the
rule premises, so there is no explicit equivalence between
rule weights and the rule firing strength. In the hierarchi-
cal domain partition the rules are added when needed—
this feature enables assigning higher weights to later, mo-
re specialistic rules. This approach enables adding a new
feature to coping fuzziness and ability of generalisation—
the exception handling.

The results of experiments on synthetic and real-life
data show that this approach can create more precise mo-
dels both in data approximation and knowledge generali-
sation.
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Krzysztof Simiński received the M.Sc. and Ph.D. degrees in computer
science from the Silesian University of Technology (Gliwice, Poland)
in 2006 and 2009, respectively. His main interests include data mining,
fuzzy reasoning, natural language processing.

Received: 21 January 2009
Revised: 27 August 2009
Re-revised: 10 October 2009


	Introduction
	Fuzzy system with parameterized consequences
	Domain partition in neuro-fuzzy systems

	Rule weights in a system with parameterized consequences
	Experiments
	Datasets
	Experiments

	Discussion
	Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




