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We propose a new type of Proportional Integral (PI) state observer for a class of nonlinear systems in continuous time
which ensures an asymptotic stable convergence of the state estimates. Approximations of nonlinearity are not necessary to
obtain such results, but the functions must be, at least locally, of the Lipschitz type. The obtained state variables are exact
and robust against noise. Naslin’s damping criterion permits synthesizing gains in an algebraically simple and efficient
way. Both the speed and damping of the observer response are controlled in this way. Model simulations based on a Sprott
strange attractor are discussed as an example.
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1. Introduction

State observers have been intensely exploited since
the work of Luenberger (1966) to model, control, or
identify linear and nonlinear systems, as in the studies
by Krener and Isidori (1983), Zeitz (1987), Bastin and
Gevers (1988), Boutat et al. (2009), and Zheng et al.
(2009), relating to nonlinear systems transformable into
a canonical form. The key idea in such approaches
is to produce approximate measures of nonlinearity
of the order 1, as in Extended Luenberger Observers
(ELOs) (Ciccarella et al., 1993). The approximation
of nonlinearities in the canonical form (which results
in an ELO) has already been suggested (Bestle and
Zeitz, 1983), and this approach can be extended to higher
order approximations (Röbenack and Lynch, 2004). An
observer using a Partial nonlinear Observer Canonical
Form (POCF) (Röbenack and Lynch, 2006) has weaker
observability and integrability existence conditions than
the well-established nonlinear Observer Canonical Form
(OCF).

Nonlinear sliding mode observers use
a quasi-Newtonian approach, applied after
pseudo-differentiation of the output signal (Hui
and Żak, 2005; Veluvolu et al., 2007; Efimov and
Fridman, 2011). State observers using Extended Kalman
Filters (EKFs) provide another method of transforming
nonlinear systems (Boutayeb and Aubry, 1999; 2010;
Khémiri et al., 2011). In particular, Besançon et al. (2010)
exploit an adaptive observer based on Kalman filters for
physical systems to which Liénard transformations can
be applied. Finding an appropriate method for parameter
synthesis remains one of the major difficulties with
state observers for nonlinear systems (cf. the works of
Tornambè (1992), Besançon et al. (2004), Boizot et al.
(2010) and Farza et al. (2011), where high-gain state
observers to deal with this problem were proposed).
High-gain state observers reduce observation errors for
a range of predetermined amplitudes or fluctuations by
making the observations independent from parameters. A
weak point of this method is its sensitivity to noise and
uncertainty.
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In network identification and encryption, observers
with delays are used to synchronize chaotic oscillators, as
shown in several studies (Feki, 2009; Ibrir, 2009; Ghosh
et al., 2010). Noise and uncertainty are not critical
factors in such a context. This can be very different in
the case of industrial processes, as shown in a recent
study by Bodizs et al. (2011), where the performances
of observers using ELOs, EKFs or Integrated Kalman
Filters (IKFs) are compared. The influence of noise
and uncertainty on these observer types was emphasized,
with more reliable results produced by ELOs, which
permits the exact state reconstruction of highly perturbed
systems. For PI and ELO observer classes, Söffker
et al. (1995) as well as Morales and Ramirez (2002)
demonstrated a compensation effect on measurement
errors. Abdessameud and Khelfi (2006) as well as Chen
et al. (2011) addressed the problem of uncertainty of
nonlinear models.

In the present study here, we deal with a specific class
of nonlinear SISO (Single Input Single Output) systems,
described by Fliess (1990), called the generalized
controller canonical form. In principle, every uniformly
observable (Hermann and Krener, 1977; Gauthier and
Bornard, 1981) sufficiently smooth SISO system with
input u and output y can be transformed into this normal
form,

ẋ(t) = A x(t) + f(t), (1a)

y(t) = cT x(t) + Φ [ u(t) ] , (1b)

A =

⎡
⎢⎢⎣

0 1 0 . . .
0 0 1 . . .

. . . 0 0 1
−a1 −a2 . . . −an

⎤
⎥⎥⎦ , (1c)

cT =
[
c1 . . . cn

]
, (1d)

fT (t) =
[
0 . . . Ψ [ x(t), u(t)]

]
, (1e)

with the following definitions.

Definition 1.

n order of differential equation
u1(t) input of system
ui(t) (i − 1)-th temporal derivative of

u1(t)
uT (t) input vector [u1(t), . . . , un(t)]
xi(t) (i − 1)-th temporal derivative of

x1(t)
xT (t) state vector [x1(t), . . . , xn(t)]
ai, ci model parameters
c output vector of dimension n
Ψ [ x(t), u(t)] a nonlinear function of the type C1

Φ [ u(t) ] function of inputs u(t)
y(t) output variable

θ ≤ n index of last coefficient ci �= 0
ω0 = n√a1 eigenfrequency of the system.

We introduce a PI observer with a modified high gain
observer, which includes nonlinear functions and linear
parameters. This approach has two advantages:

• it permits an asymptotic stable reconstruction of state
representations without having to increase gains to
infinity;

• it obtains the limiting conditions of the observer
stability in a systematic way, without making
approximations on the nonlinearities, and without
having to employ optimization algorithms (e.g., by
solving Riccati equations).

The proposed approach is completely deterministic
and allows controlling the speed and damping of the
dynamic response of the observer, according to its
requirements, without having to search for a minimum
to guarantee its stability. The only requirement is
that the nonlinear functions be at least locally of the
Lipschitz type, which can be satisfied for many practical
applications (Düffing, Van der Pol, Bernoulli equations,
inverted penduli, nonlinear friction models for DC motors
or valve actuators (Shuang et al., 2010)).

To achieve this, the mathematical representation of
the physical system is normalized with regard to the
eigenfrequency ω̃, with r̃ = ω̃/ω0. This has the
considerable advantage of giving a normalized space that
is independent of the temporal constants of the system,
and fulfills an important function in the observer gain
synthesis. Such a normalized representation is possible in
time (Gille et al., 1988) as well as in the frequency domain
(Gißler and Schmid, 1990) for linear systems.

Definition 2. We define the following scaled state repre-
sentation:

ẋ(τ) = Â x(τ) + f̃(τ), (2a)

y(τ) = c̃T x(τ) + Φ [ u(τ) ] , (2b)

Â =

⎡
⎢⎢⎣

0 1 0 . . .
0 0 1 . . .

. . . 0 0 1
−ã1 −ã2 . . . −ãn

⎤
⎥⎥⎦ , (2c)

c̃T =
[
c̃1 . . . c̃n

]
, (2d)

f̃(τ)
T

=
[
0 . . . Ψ̃ [ x(τ), u(τ)]

]
, (2e)

τ = ω̃t, ω̃ = r̃ ω0 (2f)

ui(t) = ui(τ)ω̃ i−1, xi(t) = xi(τ) ω̃ i−1,

ãi = ai/ω̃ n−i+1, c̃i = ci ω̃ i−1, (2g)

ẋn(τ) = ẋn(t)/ω̃ n, i = 1, . . . , n, (2h)
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f̃(τ) being a vector with dimension n.
Equations (2f)–(2h) define time dilation of the state

representation and its new parameters, allowing for
dilatation or retraction of the temporal scale and the
amplitude of derivatives from the order from 1 to n
without changing the pattern of the signal xi(τ). In the
function Ψ (1e), the terms ui(t) and xi(t) are replaced
by ui(τ) ω̃ i−1 and xi(τ) ω̃ i−1, and each expression is
divided by ω̃ n to obtain the normalized function Ψ̃.

In the following paragraphs, we will define
the observer structure (Section 2.1), characterize the
observation error (Section 2.2), and prove that the
observer state vector uniformly converges toward the
state vector of the physical system (Section 2.3). Then
the problem of parameters synthesis will be discussed
(Section 2.4) and model simulations for a strange attractor
system (Sprott, 1994) will be shown (Section 3).

2. Structure and synthesis of the observer

2.1. System and observer definitions. To obtain the
variable x1(τ), if θ = 1, we use

x1(τ) =
y(τ) − Φ [ u(τ) ]

c̃1
. (3)

When θ > 1, y(τ) − Φ [ u(τ) ] is filtered using

ẏ(τ) = K y(τ) + k [ y(τ) − Φ [ u(τ) ] ] , (4a)

K =

⎡
⎢⎢⎢⎣

0 1 0 . . .
0 0 1 . . .

. . . 0 0 1

− c̃1

c̃θ
. . . . . . − c̃θ−1

c̃θ

⎤
⎥⎥⎥⎦ , (4b)

y(τ)T =
[
y1(τ) . . . yθ−1(τ)

]
, y(0) = 0, (4c)

kT =
[
0 . . . 1/c̃θ

]
. (4d)

To analyze the effect, we rewrite (2b) in scalar form,
ignoring c̃θ+1, . . . , c̃n, which are all zero:

y(τ) − Φ [ u(τ) ]
c̃θ

= xθ(τ) +
θ−1∑
i=1

c̃i

c̃θ
xi(τ). (5)

In (4a) we insert (5) in the place of ẏθ−1(τ) and after
reducing it to the same denominator it becomes

c̃θ ẏθ−1(τ) +
θ−1∑
i=1

c̃i yi(τ) =
θ∑

i=1

c̃i xi(τ) (6a)

y1(s)
[
c̃1 + . . . + c̃θ sθ−1

]

= x1(s)
[
c̃1 + . . . + c̃θ sθ−1

]
(6b)

with (6b), the Laplace transformation of (6a). The transfer
function y1(s)/x1(s) = 1, and xi(τ) = yi(τ), i =
1, . . . , θ. In the rest of the study, and without limiting the
generality, we will consider solely the case where θ = 1.

Definition 3. To generate state estimates for the
system (2), the following modified high gain observer is
defined:

˙̂x(τ) = Â x̂(τ) + h Δy1(τ) + j(τ) + Â g(τ), (7a)

x̂(τ) =
[
x̂1(τ) . . . x̂n(τ)

]
, (7b)

hT =
[
hn . . . h1

]
, (7c)

Δy1(τ) = x1(τ) − x̂1(τ) (7d)

j(τ)T =
[
0 . . . I0(τ) + I1(τ)

]
, (7e)

g(τ)T =
[
0 . . . I2(τ)

]
, (7f)

İ0(τ) = h0 Δy1(τ). (7g)

Figure 1 shows the functional diagram of an observer
of the order n = 3. The error estimate Δy1(τ) (7d) is used
with gains h1, . . . , hn in (7a) to compensate for distances
between system and observer states. The matrix Â (2c)
used in (7a) retains the generalized controller canonical
form in the observer. The vectors j(τ) and g(τ), of

dimension n, serve to compensate the effects of f̃(τ) and
of possible perturbations or external noise to reduce the
state distance. The nonlinear functions I1(τ) and I2(τ)
used in j(τ) and g(τ) are defined later in (18d)–(18h).
The vector x̂(τ) + g(τ) used in feedback by parameters
ai in the equation x̂n(τ) is also the vector for estimating
x(τ). Apart from controlling the synthesis of gain
parameters hi (Section 2.4), the use of (7) requires setting
the state vector x̂(0) at initial conditions 0. This structure
can be readily applied to the reference examples given in
(40). For the parameters ãi = 0, i = 1, . . . , n, h0 = 0,
and the functions I1(τ) = I2(τ) = 0, (7) becomes
an observer with a high gain for SISO systems. The
functional difference between the two approaches is that
an observer with a high gain works continually to reduce
the error Δy1(τ) to produce state estimations, whilst (7)
no longer takes into account Δy1(τ) after convergence of
the error to zero.

2.2. Characterization of the observer error dynam-
ics. In a first step, we rewrite the system given in (7)
in terms of a single relation depending only on x̂1(τ)
and Δy1(τ) and their successive derivatives. In a second
step, the differential equation for state distances between
system and observer is determined. To achieve this, we
deduce from (7a) the recursive relation used to generate
estimates for successive state characteristics as functions
of the output errors:

x̂i+1(τ) = ˙̂xi(τ) − hn−i+1 Δy1(τ),
i = 1 , . . . , n − 2, (8a)

x̂n(τ) = ˙̂xn−1(τ) − h2 Δy1(τ) + I2(τ). (8b)
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Fig. 1. Observer structure and functional characteristics.

To simplify the expressions for successive derivatives
of the observer state, we introduce

x̃i+1(τ) =
d (i) x̂1(τ)

dτ (i)
, i = 0, . . . , n − 1, (9)

with as many derivatives of x̂1(τ) as needed. The vector
of successive derivatives for x̂1(τ) is thus

x̃(τ)T =
[
x̃1(τ) . . . x̃n(τ)

]
, (10)

which leads to defining the output errors given in (7d) in
terms of

Δy1(τ) = x1(τ) − x̃1(τ). (11)

Successive derivatives of Δy1(τ) are written as

Δyi+1(τ) =
d(i) Δy1(τ)

dτ (i)
, i = 1, . . . , n − 1. (12)

From (12) we deduce

Δyi+1(τ) = Δẏi(τ), i = 1, . . . , n − 1. (13)

From (10), (11) and (12) we obtain

Δyi(τ) = xi(τ) − x̃i(τ), (14a)

Δy(τ)T =
[
Δy1(τ) . . . Δyn(τ)

]
. (14b)

Repeatedly applying (8) with this new notation leads
to a new form of the vector x̂(τ):

x̂(τ) = x̃(τ) + G Δy(τ) − g(τ), (15a)

G =

⎡
⎢⎢⎢⎣

0 . . .
−hn 0 . . .

...
. . . 0 . . .

−h2 . . . −hn 0

⎤
⎥⎥⎥⎦ . (15b)

Then, we re-introduce (15a) into (7a) to obtain

˙̂x(τ) = Â x̃(τ) + Â G Δy(τ) + h Δy1(τ) + j(τ). (16)

The temporal derivative of (15a) can be written as
follows:

˙̂x(τ) = ˙̃x(τ) + J Δy(τ) − ġ(τ), (17a)

J =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . .
0 −hn 0 . . .

0
...

. . . 0 . . .
0 −h3 . . . −hn 0
0 −h2 −h3 . . . −hn

⎤
⎥⎥⎥⎥⎥⎦

. (17b)

Then, reducing the right-hand side of (16) to (17a),
we obtain a new state system, which only depends on
x̂1(τ), Δy1(τ) and their successive derivatives:

˙̃x(τ) = Â x̃(τ) + H Δy(τ) + f̂(τ), (18a)

H =

⎡
⎢⎣

0 . . . 0 0
...

...
...

h1 + g1 . . . hn−1 + gn−1 hn

⎤
⎥⎦ , (18b)

gi =
n−1∑
j=i

hj+1 ãn+i−j , (18c)

f̂(τ)
T

= j(τ)T + ġ(τ)T (18d)

=
[
0 . . . I0(τ) + I1(τ) + İ2(τ)

]
, (18e)

İ0(τ) = h0 Δy1(τ), (18f)

I1(τ) = f1 ( x̃1(τ), x̃2(τ), u(τ) ) , (18g)

I2(τ) = f2 ( x̃1(τ), x̃2(τ) ) . (18h)

The vector f̂(τ), composed of functions I0(τ), I1(τ)
and İ2(τ), is of the type C1. The variables x̃1(τ), x̃2(τ) =
dx̂1(τ)/dτ used in functions f1, f2 are directly
obtainable. The derivative of I2(τ) allows constructing
functions by involving [ x̃1(τ), x̃2(τ), x̃3(τ) ]. This
allows a large number of choices of İ2(τ)+I1(τ). Second
of choices of İ2(τ) + I1(τ) and third order nonlinear
systems are often composed of such a, particularly
polynomial, function (41d). We will now calculate the
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difference between (2a) and (18a). This gives

Δẏ(τ) =
[
Â − H

]
Δy(τ) + f̃(τ) − f̂(τ), (19a)

Â − H =

⎡
⎢⎢⎣

0 1 0 . . .
0 0 1 . . .
. . . 0 0 1
−Ã1 . . . . . . −Ãn

⎤
⎥⎥⎦ , (19b)

Ãi =
{

ãi + hi, i = n,
ãi + hi + gi, i < n,

(19c)

f̃(τ)
T

=
[
0 . . . Ψ̃ [ x(τ), u(τ)]

]
, (19d)

which enables us to obtain the state representation of the
distances between the physical system (vector x(τ)) and
vector x̃(τ) ((9) and (10)) and the observer. Here f̃(τ) is

composed of the function Ψ̃ of the physical system, which
is of the type C1. The distance with f̂(τ) only takes part

in the equation n of (19a). The matrix Â − H retains the
canonical form of regulation.

If the distances Δy(τ) tend towards 0, given (15),
the variables x̂(τ) + g(τ) tend towards x̃(τ), which tend
towards x(τ). As a consequence, the distance due to
nonlinearities

ΔΨ̃(τ) = Ψ̃ [ x(τ), u(τ)] − I1(τ) − İ2(τ) (20)

tends towards 0. For the rest of the derivation, it is useful
to define the augmented vectors Δy

a
(τ), xa(τ), x̃a(τ) :

Δy
a
(τ) =

[
Δy(τ)T

, Δyn+1(τ)
]T

, (21a)

xa(τ) =
[
x(τ)T

, xn+1(τ)
]T

, (21b)

x̃a(τ) =
[
x̃(τ)T

, x̃n+1(τ)
]T

, (21c)

Δyn+1(τ) = xn+1(τ) − x̃n+1(τ) = Δẏn(τ) (21d)

xn+1(τ) =
d(n) x1(τ)

dτ (n)
= ẋn(τ), (21e)

x̃n+1(τ) =
d(n) x̃1(τ)

dτ (n)
= ˙̃xn(τ). (21f)

For analyzing the integrator effects (7g), we
temporally differentiate (19a) through (13) and (21),
and reintroduce (7g) into df̂(τ)/dτ for İ0(τ). The

function Ψ(t) (1e) in the vector f̃(t) is also differentiated,

and terms ui(t) and xi(t) are replaced by ui(τ) ω̃ i

and xi(τ) ω̃ i, with each expression divided by ω̃ n

to obtain the normed functions ˙̃Ψ(τ), İ1(τ) and Ï2(τ)
(see (41d), (48) as an example). Hence, we obtain the

following (n + 1) × (n + 1) state representation:

Δẏ
a
(τ) = Ã Δy

a
(τ) + Δ ˙̃Ψ(τ), (22a)

Ã =

⎡
⎢⎢⎣

0 1 0 . . .
0 0 1 . . .

. . . 0 0 1
−Ã0 −Ã1 . . . −Ãn

⎤
⎥⎥⎦ , (22b)

Ã0 = h0, (22c)

Δ ˙̃Ψ(τ)
T

=
[
0 . . . Δ ˙̃Ψ(τ)

]
, (22d)

Δ ˙̃Ψ(τ) = ˙̃Ψ [ xa(τ), u(τ)] − İ1(τ) − Ï2(τ). (22e)

Given (22b) and (22c), the observer gain has become
unitary.

Considering that ˙̃Ψ [ xa(τ), u(τ)] is a nonlinear
function Lipschitz in xa(τ) and uniformly bounded in
u(τ) in an invariant set, with a Lipschitz constant L, i.e.,

‖Δ ˙̃Ψ(τ)‖ � L ‖Δy
a
(τ)‖ (23)

For many systems, if functions Δ ˙̃Ψ(τ) are not globally of
the Lipschitz type, they may be locally so.

2.3. Convergence of state observations. The observer
convergence analysis consists in proving the globally
asymptotic evolution of the error estimate for state
reconstruction. In other words, regardless of the initial
conditions, the observer state is to converge toward the
state of the physical system. This leads to the following
theorem.

Theorem 1. Let us consider a physical SISO system
described by (2), for which the observer structure (7) may
be used and the distance (22e) exists. If the latter is locally
of the Lipschitz type (23), then the observer (7) will be
locally stable if the gains hi controlling the constants Ãi

(19c) can be adjusted so that they satisfy the following
conditions:

Ãi ≥ ω̃n+1L2 (17/8) +
2

ω̃ n+1 , i = 0, . . . , n − 1,

(24a)

Ãn ≥ ω̃n+1L2

(
1
2

+
n

32

)
+

1
4

+
1

2 ω̃n+1
. (24b)

If the distance (22e) is globally of the Lipschitz type and
if the gains hi satisfy (24), then the observer (7) will be
globally asymptotically stable.

Proof. It can be achieved by proving the stability of
(22a) using an appropriate Lyapunov function, like the



388 B. Schwaller et al.

following quadratic function:

Vn(τ) = Δy
a
(τ)T P Δy

a
(τ), (25a)

P =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

. . .
...

1/2 1/2 . . . 1

⎤
⎥⎥⎥⎦ , (25b)

where P is an (n + 1) × (n + 1) lower triangular matrix
defined as positive and satisfying the Sylvester criteria.
To prove the uniform convergence of state distances, (25)
needs to be derived:

V̇n(τ) = Δẏ
a
(τ)T P Δy

a
(τ)

+ Δy
a
(τ)T

P Δẏ
a
(τ).

(26)

We reintroduce (22a) replacing Δẏ
a
(τ) and obtain

V̇n(τ) = Δy
a
(τ)T

Q Δy
a
(τ) + N(τ), (27a)

Q = Ã
T
P + P Ã, (27b)

N(τ) = Δ ˙̃Ψ(τ)
T

P Δy
a
(τ)

+ Δy
a
(τ)T

P Δ ˙̃Ψ(τ), (27c)

where N(τ) describes the influence of the nonlinear
functions on state distances. By factorizing the first
term of the right-hand side of (27a) through the products
Δyi(τ) Δyj(τ), we obtain a lower triangular matrix Q
of dimension (n + 1) × (n + 1). The coefficients of the
principal diagonal element are written as

qii =

{
−Ãi−1/2, i = 1, . . . , n,

(1/2)− 2 Ãn, i = n,
(28a)

Ãi > 0, i = 0, . . . , n − 1, Ãn > 1. (28b)

If the conditions (28b) hold, the coefficients qii (28a)
satisfy the Sylvester criteria to obtain the semi-negativity
of Q: all successive minors have opposite signs.

Conditions applying to coefficients Ãi determine the
observer gains hi and follow from (19c) and (22c). To
determine the sign of V̇n(τ) requires expanding N(τ)
(27c) through (22d) and (25b)):

N(τ) = Δy
a
(τ)T S Δ ˙̃Ψ(τ), (29a)

S = P + PT . (29b)

To determine the sign of V̇n(τ), we need to majorize the
term N(τ) in (27a) and (29a). This is possible on the
basis of the following inequality (Raghavan and Hedrick,
1994):

Δy
a
(τ)T

S Δ ˙̃Ψ(τ) ≤ Δy
a
(τ)T

R Δy
a
(τ), (30a)

R =
ω̃n+1 L2

4
S S +

I

ω̃ n+1 , (30b)

In (30a), factorizing the products Δyi(τ) Δyj(τ)
yields a positive lower triangular matrix R (30b) of the
dimension (n + 1) × (n + 1), which permits rewriting
(29a) as an inequality:

N(τ) ≤ Δy
a
(τ)T

R Δy
a
(τ), (31a)

rii =

⎧
⎪⎨
⎪⎩

ω̃n+1L2 17
16

+
1

ω̃ n+1 , i �= n,

ω̃n+1L2
(
1 +

n

16

)
+

1
ω̃n+1

, i = n,

(31b)

with rii (31b) as positive coefficients of the principal
diagonal element. The inequality (31a) and the Lipschitz
conditions (23) permit majorizing N(τ) in (27a):

V̇n(τ) ≤ Δy
a
(τ)T (

Q + R
)
Δy

a
(τ). (32)

To determine the sign of V̇n(τ), we need

Q + R ≤ 0. (33)

The sum Q + R yields a lower triangular matrix that
satisfies Sylvester citeria of semi-negativity if the n
inequalities (24) are satisfied. Then, if I1(τ) (18g) and

I2(τ) (18h) exist, if Δ ˙̃Ψ (22e)) is Lipschitz (23, V̇n(τ)
is semi-negative and (22a) is globally and asymptotically
stable. The observer is locally stable if (23) is locally Lip-
schitz.

�

2.4. Synthesis of observer parameters. The
foregoing proof of uniform convergence and overall
asymptotic stability of the observer make it possible to
conceive a synthesis of parameters hi by applying Lya-
punov’s first-order approximation (Lyapunov, 1892; Gille
et al., 1988; Fuller, 1992) to (22a). This implies neglecting

nonlinear terms in functions Δ ˙̃Ψ(τ), which then takes
the form of a classical linear differential equation. More
precisely, this approximation deals with singular points
of a nonlinear system. Lyapunov, in particular, made an
important theoretical claim (first-order method) according
to which, except in certain so-called “critical” cases, the
nature and especially the stability of an singular point
can be determined neglecting terms with degrees greater
than 2. This would consist in linearizing a nonlinear
system by limiting it to the smallest domains of variation
in variables (“small movements”); in other words, by
assimilating the nonlinear functions of variables to the
first term of their serial development.

The proof of globally asymptotic stability given in
Section 2.3 limits the problem of parameter synthesis
near the point of equilibrium Δy(τ)T → 0. In our
case here, this leads to a synthesis of gains hi and keeps
the roots of the characteristic equation of the linearized
observer in conditions where such an approximation is
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valid. Lyapunov’s “critical case” is avoided. The
“small movements” in our case are the differences in
state trajectories between the physical system and its
adapted observer. Since the role of an observer is
to constantly reduce or minimize these differences, the
theorem proposed here appears ideally suited. Otherwise,
very complex equations, specific to each model of an
observer’s input-output behaviour, would be required.
Such an unnecessary complexity seriously complicates
attempts to synthesize the coefficients hi, while the
stability of a linearized system conforms to that of a real
system. On the basis of these considerations, we can
re-write (22a) as follows:

Δyn+2(τ) +
n∑

i=1

Ãi Δyi+1(τ) + h0 Δy1(τ) = 0. (34)

Observer stability and convergence, as proven in the
previous section here, do not account for error damping.
Naslin’s normal damping polynomials (Naslin, 1960;
1963, Humbert and Ragot, 1970; Gissler and Schmid,
1990; Kim, 2002) define algebraic criteria for a simple
and rapid analysis of the damping associated with the
parameter space in (34), allowing a parameter synthesis
of gains hi which ensures the convergence of vectors x̃(τ)
(10), x̂(τ) (7b), (15a) and allows controlling the transitory
states. A normal polynomial D(s) = a0 + a1 s + . . . +
an+1 sn+1 + sn+2 of degree n + 2 is defined in terms of
a characteristic pulsation ω0 and an associated interval γ.
Characteristic pulsations of D(s) as defined by Naslin are
written in terms of

ωi =
ai

ai+1
, i = 0, . . . , n. (35)

The relationship between characteristic pulsations
and interval γ is

ωi = ω0 γi, i = 0, . . . , n. (36)

The definition of the first pulsation ω0 determines that of
all others. The coefficient γ is assimilated with the general
damping of D(s). Given (2g), and by normalizing the
parameters of D(s), the relation between characteristic
pulsations and intervals is

ω̃i =
Ãi

Ãi+1

=
γi

r̃
. (37)

This condition applies to the characteristic polynomial
associated with (34). The Naslin technique of gain
adjustment satisfies the Routh–Hurwitz criteria within an
adimensional space. For the observer gain synthesis,
coefficient hn is determined for the highest order taking
into account (22d):

Ãn =
γn

r̃
, hn =

γn

r̃
− ãn (38)

For practical reasons, the coefficient γ is often
chosen arbitrarily between 2 and 5/2, which produces
a specific response and damping in the system. The
coefficients hn−1, . . . , h1, h0 are obtained by using

hi =
n∏

j=i

(
γj

r̃

)
− ãi − gi, i = 1, . . . , n − 1, (39a)

h0 =
n∏

j=0

(
γj

r̃

)
. (39b)

Naslin damping polynomials provide a simple and
efficient means of observer parameter synthesis fully
respecting the conditions for convergence (24), which
ensure stability. The speed of convergence is controlled
by (2) through parameter r̃ and the damping by γ. Given
that ãi, gi are normalized, the gains obtained satisfy the
conditions (24) independently of the time scale of the
system.

3. Simulations

To illustrate our developments, we consider an observer
of a strange attractor of type D (Sprott, 1994). This
corresponds to a system of the order n = 3 defined in
terms of

ż1(t) = − z2(t), (40a)

ż2(t) = z1(t) + z3(t), (40b)

ż3(t) = z1(t) z3(t) + 3 z2(t)
2
, (40c)

y(t) = z1(t). (40d)

It is possible to define the system (40) in terms of its
successive derivatives:

ẋ1(t) = x2(t), (41a)

ẋ2(t) = x3(t), (41b)

ẋ3(t) = Ψ̃ (x(t)) , (41c)

Ψ̃ (x(t)) = x1(t)
2 + x1(t) x3(t)

− x2(t) − 3 x2(t)
2, (41d)

and a linking system with (41) and (40):

z1(t) = x1(t), (42a)

z2(t) = − x2(t), (42b)

z3(t) = − x1(t) − x3(t), (42c)

y(t) = z1(t). (42d)

This transformation permits observing the system
through (7). Figure 2(a) visualizes the state trajectory in
the two-dimensional plane (x − y coordinates), with the
initial parameters z1(0) = −4, 27z2(0) = −0, 39z3(0) =
0, 3. Figure 2(b) permits observing estimates of the
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system’s temporal response, showing a superposition of
several eigenfrequencies and random amplitudes. The
highest is chosen as the norm. We consider ω0 = 2π
with a ratio r̃ = 6. This choice of initial values places
the observer in a “pessimistic” regime where the assumed
state distance is the largest possible. Normalization of (2)
applied to our example here gives

ẋ1(τ) = x2(τ), (43a)

ẋ2(τ) = x3(τ), (43b)

ẋ3(τ) = Ψ̃ [ x(τ) ] , (43c)

Ψ̃ [ x(τ) ] =
1

ω̃ 3 x1(τ)2 +
1
ω̃

x1(τ) x3(τ)

− 1
ω̃ 2 x2(τ) − 3

ω̃
x2(τ)2. (43d)

The linking system for (43) and (40) becomes

z1(t) = x1(τ), (44a)

z2(t) = − ω̃ x2(τ) = −37, 7 x2(τ), (44b)

z3(t) = − x1(τ) − ω̃ 2 x3(τ)
= − x1(τ) − 1421, 2 x3(τ), (44c)

y(τ) = x1(τ). (44d)

The observer of the system (43) illustrated by Fig. 1 is
written in terms of

˙̂x1(τ) = x̂2(τ) + h3 Δy1(τ), (45a)

˙̂x2(τ) = x̂3(τ) + I2(τ) + h2 Δy1(τ), (45b)

˙̂x3(τ) = I0(τ) + I1(τ) + h1 Δy1(τ), (45c)

İ0(τ) = h0 Δy1(τ), (45d)

Δy1(τ) = x1(τ) − x̂1(τ), (45e)

with the nonlinear functions decomposed into

I2(τ) =
1
ω̃

x̃1(τ) x̃2(τ), (46a)

İ2(τ) =
1
ω̃

[
x̃1(τ)2 + x̃1(τ) x̃2(τ)

]
, (46b)

I1(τ) =
1

ω̃ 3 x̃1(τ)2 − 1
ω̃ 2 x̃2(τ) − 4

ω̃
x̃2(τ)2. (46c)

A Lyapunov approximation of the first order (34)
through (38) and (39), generates the observer gain
synthesis

h3 =
γ3

r̃
, h2 =

γ2 γ3

r̃ 2 ,

h1 =
γ1 γ2 γ3

r̃ 3 , h0 =
γ0 γ1 γ2 γ3

r̃ 4 .

(47)

For three different γ, we obtain the gains given in Table 1.

Table 1. Gains obtained for the numerical example.

γ h3 h2 h1 h0

1,5 0,56 0,89 0,053 0,009
2 1,33 0,89 0,3 0,05

The Lipschitz constant L is determined to prove
that the observer converges irrespective of the initial
conditions of the attractor. The temporal derivative of
(41d) is computed and then normalized:

˙̃Ψ (x(t)) = 2 x1(t) x2(t) + x1(t) x4(t)
− 5 x2(t) x3(t) − x3(t), (48a)

˙̃Ψ (x(τ)) =
2

ω̃ 3 x1(τ) x2(τ) +
1
ω̃

x1(τ) x4(τ)

− 5
ω̃

x2(τ) x3(τ) − 1
ω̃ 2 x3(τ). (48b)

To obtain the expression of x4(τ), we differentiate (42c)
and replace (42b) by x1(t). Then the whole is normalized
(2g), which yields

x4(τ) ω̃ 3 = z2(t) − ż3(t). (49)

This allows completing (44) to construct the vector
[x1(τ) . . . x4(τ)]:

x1(τ) = z1(t), (50a)

x2(τ) = − (1/ω̃) z2(t), (50b)

x3(τ) = − (1/ω̃ 2) (z1(t) + z3(t)) , (50c)

x4(τ) = (1/ω̃ 3) (z2(t) − ż3(t)) , (50d)

which is used in (48b). It is possible to determine the
maximum Lipschitz constant L for vector x̂(τ) = 0 of the
system on the basis of simulations and through (23). In
our example here, L = 3 · 10−5. The gains determined in
Table 1 satisfy the conditions (24), yielding local stability

since Δ ˙̃Ψ(τ) can only be locally Lipschitz.
Figure 2(c) illustrates the convergence of observer

state trajectories towards the system state trajectories
for the three parameter types. The observer stabilizes
asymptotically, with oscillations that are stronger when
γ is weaker. The choice for γ between 2 and 2.5 is
experimentally justified. The speed of convergence is not
affected by this coefficient.

A second simulation allows comparison of the
observer (7) for a γ = 2, 5 with that of a high gain
observer (I1(τ) = I2(τ) = h0 = 0) having a chain
of temporarily nonnormalized integrators with gains
h2 = 39, 3h1 = 616, 9h0 = 3875, 8, and with an observer
structure (Gauthier et al., 1992) suggesting parameters
θ = 62, 8 to determine gains hi. Figures 2(e) and
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Fig. 2. Observation of the Sprott D strange attractor: state trajectory of the system (a), oscillations of z1(t) (b), influence of damping
γ (c), observer output under the influence of white noise (d), high-gain observer (e), fluctuations of the high-gain observer (f).

2(f) demonstrate the convergence of (7) which tends
constantly towards zero, while there is still a residual error
for the high gain and Gauthier observers, which ends by
following fluctuations of Ψ [ x(t), u(t)] within the limits

of an amplitude factor.
A third simulation is performed with parameters

r̃ = 20, ω0 = 2π, γ = 2. A limited band-pass white
noise with a signal to noise ratio of 10 is added to the
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measured output y(τ). Reconstruction of the latter x̃1(τ)
in Fig. 2(d) perfectly matches x1(τ). This is ensured
by the integration I0(τ), which compensates for any
static bias due to the noise on the basis of the functions
I1(τ), I2(τ).

4. Conclusions and perspectives

The observer introduced here proposes a new proportional
integral strategy applied to continuous nonlinear systems.
It permits the exact and stable reconstruction of state
trajectories of a physical system. The observer structure
allows expressing the convergence dynamics in terms of a
nonlinear differential equation with constant coefficients.
The stability of the observer was demonstrated as long
as the nonlinear functions were at least locally of the
Lipschitz type. In this case, it is possible to determine
conditions which systematically guarantee this stability,
using a weighted quadratic Lyapunov function.

We proceed to an observer parameter synthesis
which allows providing its transitory states with temporal
specifications. Naslin’s damping polynomials are
well-adapted and simple to use here.

The reconstructed state vector has the major
advantage of being directly exploitable for state control
without any additional transformations.

The approach introduced here should prove useful in
the context of state estimates for nonlinear systems using
a decoupled multiple model. Further simulations under
conditions of parametric uncertainty, minimized by online
parameter identification, may help increase the robustness
of such estimates, even in the presence of instrumental
noise and external system perturbation. It may ultimately
be extended to MIMO systems and to the modelling of
systems based on Lure decompositions.
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Söffker, D., Yu, T. and Müller, P. (1995). State estimation
of dynamical systems with nonlinearities by using
proportional-integral observers, International Journal of
Systems Science 26(9): 1571–1582.
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