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While most of state-of-the-art image processing techniques were built under the so-called classical linear image processing,
an alternative that presents superior behavior for specific applications comes in the form of Logarithmic Type Image Pro-
cessing (LTIP). This refers to mathematical models constructed for the representation and processing of gray tones images.
In this paper we describe a general mathematical framework that allows extensions of these models by various means while
preserving their mathematical properties. We propose a parametric extension of LTIP models and discuss its similarities
with the human visual system. The usability of the proposed extension model is verified for an application of contrast based
auto-focus in extreme lighting conditions. The closing property of the named models facilitates superior behavior when
compared with state-of-the-art methods.
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1. Introduction

Logarithmic Image Processing (LIP) models are part
of a larger category of non-linear image processing
techniques and were introduced (Jourlin and Pinoli,
1987) in opposition to image processing with real based
operations. While the later combination, named Classical
Linear Image Processing (CLIP) (Lim, 1990), proves
its limitations under specific circumstances, like upper
range overflow, LIP models—due to their mathematical
properties—are capable of dealing with such cases.
Subsequently, many extensions and alternative models
with numerous practical applications appeared. In order
to allow more flexibility, parametric extensions of LIP
models were constructed (Panetta et al., 2011; Deng,
2012). While the initial, Jourlin–Pinoli model specifically
followed a logarithmic one and placed itself under the
homomorphic theory elaborated by Oppenheim (1965),
the more recent parametric extensions require additional
and restrictive constraints in order to keep within the same
theory.

In this paper we propose an extension of LIP models
by parametrization. Four main contributions are claimed.
First we will revisit the algebraic substrate of logarithmic
models and we will formulate a set of simple conditions
that allow extensions of LIP models while preserving the

cone space structure (i.e., keeping within homomorphic
theory). Secondly, using the said conditions, we will
elaborate a parametric extension of the LIP models.
Thirdly, we will discuss the similarity of the proposed
model with the human visual system. Fourthly, to
demonstrate the practical usability of the proposed model,
we will integrate it in an application of contrast-based
auto-focus for extreme lighting conditions which proves
to be superior to the state of the art.

The remainder of the paper is organized as follows.
In Section 2, an overview of the existing LIP models
is provided, followed by a discussion on mathematical
background. In Section 3 we will discuss the
mechanism for generating a parametric extension for these
models while keeping them within homomorphic theory.
Section 4 describes the proposed method for focusing in
extreme lighting conditions and in Section 5 we discuss
the achieved results. Section 6 summarizes the proposed
solutions and discusses further continuation paths.

2. Logarithmic image processing models

The first LIP model was constructed by Jourlin and Pinoli
(1987; 1988) starting from the equation of light passing
through transmitting filters. The model was further
used in various applications, like background removing
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(Wu and Jeng, 2002), image enhancement (contrast and
sharpness improvement) (Jourlin and Pinoli, 1995; Deng
et al., 1995), and so on. An extensive review of advances
and applications for LIP may be found in the work of
Deng et al. (1995) as well as Pinoli and Debayle (2007).
Summarizing, the strong points of LIP models that lead to
successful applications include

1. strong mathematical properties, namely, affiliation to
a closed algebraic system;

2. resemblance with the Weber–Fechner perception law.

In Section 3.1, we will show that LTIP models have
stronger properties.

Later advances in LIP witness Deng’s interpretation
of the LIP model from an entropy point of view (Deng,
2009) and a proof of similarity with the Giga-vision image
sensor (Deng, 2012).

In parallel, other derivations of these models
appeared. First, the cone-space structure was completed
to a vector space structure (Pătraşcu and Voicu, 2000),
while more recently the generative logarithmic function
was replaced by a logarithmic-like one with the benefits of
a simplified calculus (Vertan et al., 2008). This extension
preserves the same behavior, yet it differs in the nature
of the generative function. Thus, in the remainder of the
paper we will collectively name the models Logarithmic
Type Image Processing (LTIP) ones.

Meanwhile, parametric extensions of LTIP models
have been proposed. The first significant result in
parametrization of LTIP models may be considered
the one reported by Panetta et al. (2008; 2011).
They proposed a parametric extension of the Jourlin
model, named PLIP (Parametric LIP). Compared with
the corresponding Jourlin initial LIP model operations,
the upper range value of the grey-levels, D, has been
replaced by a parametric linear function γ(D) = A +
B(D). The introduction of the parameters offers greater
flexibility for defining new operations but has the cost
of loosing the cone space structure. The model, if
different from the initial one (i.e., γ(D) �= Λ(D)), is no
longer an extension of homomorphic systems introduced
by Oppenheim (1965), which are the basis for LTIP
functionality.

Another parametrization was introduced by Deng
(2012). He extends the Jourlin model in the framework
of homomorphic theory (Oppenheim, 1965), which he
calls GLIP (Generalized LIP) based on the similarity with
the model of the Giga-vision sensor. Also this extension
requires an additional constraint (see Table 2) over the
upper limit to preserve the cone space structure. Thus,
we note that none of the previously mentioned parametric
extensions presents a natural way of preserving the closed
algebraic system (i.e., the cone space).

2.1. Vector/cone space structure. Taking into account
the necessity for additional constraints required by
state-of-the-art parametric LIP models, we shall start by
revisiting the algebraic background of LTIP models.

The mathematical origin of an LTIP model lies
in homomorphic theory developed by Oppenheim.
Such a model may be constructed by redefinition
of the operational laws, the addition and the scalar
multiplication, or by means of a function named a
generative one. In this subsection we will present a
set of results that define the conditions which guarantee
achieving a vector(cone) space structure when applied to
the named generative function.

Let us consider a function, Φ : Dφ → E. Within this
choice, the set Dφ is the one-dimensional image definition
set. For color (multi-dimensional) images, the discussion
may refer to each plane independently. Typically, if the
image values have intensity meaning, the set is bounded
(e.g., [0, 255] or [0, 1]).

The function Φ defines the model structure and maps
the image definition set (also named the tone or gray set),
Dφ, onto a subset of real numbers, E. Following the
theory elaborated by Oppenheim (1965; 1967), the two
basic operations (addition of two elements of the set, ⊕,
and multiplication, ⊗, with an outer, typically real scalar
α) are defined over the given set, Dφ, as follows:

Φ(u⊕ v) = Φ(u) + Φ(v), (1)

Φ(α⊗ u) = αΦ(u), (2)

where u, v ∈ Dφ and α ∈ K ⊆ R.
Equations (1) and (2) are the conditions that must

be fulfilled by a homomorphism between two similar
algebraic structures. The simplest solution is to consider
the function Φ as a bijection and, hence, to have the laws
uniquely determined. Any logarithmic or logarithmic like
model following these equations was named generalized
LIP (Deng, 2012).

With respect to the bijectivity constraint (thus, the
existence of Φ−1), the definition laws are determined by

u⊕ v = Φ−1 (Φ(u) + Φ(v)) , (3)

α⊗ u = Φ−1 (αΦ(u)) . (4)

Of practical importance for LTIP models is
the closing property of both addition and scalar
multiplication. This states that the sum of any two images
should lead to another valid image and, respectively, any
amplified or attenuated image should be an image:

∀u, v ∈ Dφ, z = u⊕ v ⇒ z ∈ Dφ,
∀u ∈ Dφ, ∀α ∈ K, z = α⊗ u⇒ z ∈ Dφ.

(5)

Given the two operative laws, ⊕, ⊗, the vector set
Dφ and the outer scalar set K , the formal definition of
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Table 1. Some of the existing logarithmic type image processing models with basic operations. D is the upper bound of the image
definition set (typically D = 255 for unsigned int representation or D = 1 for float image representation).

Model Domain Isomorphism Addition, u ⊕ v
Scalar

multiplication, α ⊗ u

Jourlin and Pinoli (1988) Dφ = (−∞; D] ΦJ (x) = −D log D
D−x

u + v + uv
D

D − D
(
1 − u

D

)α

Pătraşcu and Voicu (2000) Dφ = (−1; 1) ΦP (x) = 1
2

log 1+x
1−x

u+v
1+uv

(1+u)α−(1−u)α

(1+u)α+(1−u)α

Vertan et al. (2008) Dφ = [0; 1) ΦV (x) = x
1−x

1 − (1−u)(1−v)
1−uv

αu
1+(α−1)u

Table 2. Parametric LTIP models. Note that the Panetta model has a cone space structure only if Λ(D) = γ(D), while Deng enforces
Φ(x + y,D) = Φ(x, Dx) + Φ(y, Dy) to achieve the same structure. Parameter variation of the Deng model “shifts” the
original one, for the Panetta model the main effect is that of the scaling (as it changes the upper limit of the image definition
set), while for the proposed parametrization the changes are in curvature strength.

Model Isomorphism Addition
Scalar

multiplication

Panetta et al. (2008) Φ(x) = −Λ(D)
(
log

(
1 − x

Λ(D)

))β

u + v + uv
γ(D)

γ(D) − γ(D)
(
1 − u

γ(D)

)α

Deng (2012) Φ(x, Dx) = −D log
(
1 − x

Dx

)
D

(
u

Du
+ v

Dv
+ uv

DuDv

)
D

(
1 −

(
1 − u

Du

)α)

Proposed Φm(x) = xm

1−xm
m

√
1 − (1−um)(1−vm)

1−umvm u exp
(

1
m

log α
1+(α−1)um

)

the vector space implies several properties (see Hefferon,
2008, Section II.1). More precisely, the vector addition
has to be associative and commutative and should have
a neutral element and inverse element, while the scalar
multiplication should be distributive with respect to vector
addition in the field of vectors and in the field of scalars,
should respect field multiplication and have an identity
element. These properties do hold under the bijectivity
constraint.

The existence of the addition identity element, u0,
implies further conditioning over the mapping function,
Φ. The mentioned restriction is a consequence of the
isomorphic behavior:

∀u ∈ Dφ, ∃u0, u⊕ u0 = u⇔ Φ(u0) = 0. (6)

The existence of an addition inverse element, u− is
conditioned by a symmetry towards 0 of the generative
function. This property makes a difference between vector
and cone space. However, since this is not of paramount
importance for practical applications, in many cases the
LTIP model has a cone structure.

In much the same way as for addition, the identity
element of the scalar multiplication has to be 1:

∃α1, ∀u ∈ Dφ − {u0}, α1 ⊗ u = u⇔ α1 = 1. (7)

It can be determined that the set of sufficient condi-
tions that needs to be fulfilled by a generative function so
as to produce a usable logarithmic-type image processing
model (and to preserve the named properties, which are of
practical importance) is as follows:

• Φ should be bijective;

• the target E should be at least [0,∞) in the case of a
cone structure;

• Φ(u0) = 0.

Any new model that completes under the given rule will
produce a cone space structure.

For models that have only a cone space structure, the
subtraction is defined as follows:

u v = Φ−1 (Φ(u) − Φ(v)) , (8)

where u is enforced to be larger than v, u > v.
The models mostly used in image processing (Jourlin

and Pinoli, 1988; Pătraşcu and Voicu, 2000; Vertan et al.,
2008) are summarized in Table 1.

Given the found mathematical boundaries of the
generative function, there are many ways to derive
parametric models. In the next subsection, we will present
a modality for constructing specific parametric extensions.

3. Parametrization

While Panetta et al. (2008) aim simply at more
flexibility and Deng (2012) uses the Giga-vision model
for parametrization, we construct our proposal from a
mathematical point of view. The basic result that allows
us to extend LTIP models by parametrization comes from
algebraic theory (see Hefferon, 2008, Section III.2) and
was introduced by Florea et al. (2009). It states that
the composition of two valid homomorphisms leads to
another homomorphism. Let there be ψ : Dφ

1 → Dφ
2, a

homomorphism from Dφ
1 to Dφ

2, and let φ : Dφ
2 →

E2 be a homomorphism from Dφ
2 to E2. Then the

composite function ρ : Dφ
1 → E2, ρ = φ ◦ ψ =
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φ(ψ) is a homomorphism from Dφ
1 to E2. With such

a construction, we choose φ to be the generative function,
Φ, of a known LTIP model, while ψ may be a real function
with a bounded domain and a target set; the result is a valid
new LTIP model. One may go even further: it is not really
necessary to have the ψ function a homomorphism, but
only a bijective function; even in such a case the result is
a valid generative LTIP model function.

The parametrization is naturally achieved if the ψ
function is a parametric one that in all the cases uses
the same sets. Such an example may be the family of
“power(gamma)-type” functions:

ψm : [0, 1) → [0, 1), ψm(x) = xm, (9)

∀m ∈ (0,+∞). We note that all members of this family
are bijective functions.

By composing this family of functions with the
generative function of the logarithmic-like model (Vertan
et al., 2008), one will obtain a set of parametric LTIP
models. The base function is

Φm : [0, 1) → [0,+∞),

Φm(x) = Φ (ψm(x)) =
xm

1 − xm
.

(10)

The inverse function is

Φ−1
m (y) = ψ−1

m

(
Φ−1(x)

)
= m

√
y

1 + y
. (11)

The mathematical formulas of the so-generated
model are found if one replaces the formulas (10) and (11)
in Eqns. (3), (4) or (8). Hence, the general formula for
addition, ⊕m, becomes

u⊕m v = ψ−1
m (ψm(u) ⊕ ψm(v))

= m

√

1 − (1 − um)(1 − vm)
1 − umvm

(12)

where ⊕ is the logarithmic-like addition. The detailed
form of the subtraction, m, is

um v = ψ−1
m (ψm(u)  ψm(v))

= m

√
(um − vm)

1 + umvm − 2vm
, u > v

(13)

Some illustrative graphical examples of the subtraction
are presented in Fig. 1.

Scalar amplification is done as

α⊗m u = u exp
(

1
m

log
α

1 + (α− 1)um

)
. (14)

We have to note that the “power” function is thereby
a choice and any other bijective parametric function will
do. In the case used, form = 1 the logarithmic-like model
is obtained.

3.1. Relation with the human visual system. A
strong point in the motivation of the utility of LIP models
is their similarity with the human visual system. This
was noted by Jourlin and Pinoli (1988) and thoroughly
discussed by Pinoli and Debayle (2007). Basically, it was
shown that the initial LIP subtraction is consistent with the
Weber fraction and the Fechner law of perception.

Yet the Weber–Fechner model is not unanimously
accepted. Stevens (1961) strongly challenged this practice
and argued for the use of the power-law rules (Stevens
and Stevens, 1963). Thus we note that the Stevens model
is in-line with the proposed parametric extension. On
the other hand, Stevens experiments were also questioned
(Macmillan and Creelman, 2005), so it does not seem to
be a definite answer in this regard. Therefore we shall
focus on unanimously accepted facts.

The general shape of the power-law and of the
Weber–Fechner model are similar and this similarity is
shared by all the closed logarithmic and logarithmic-type
models. First, there is a general acceptance that the human
eye never saturates (Ferwerda et al., 1996). The lack
of saturation is valid also for any closed mathematical
model. Furthermore, there is an agreement (both Stevens
and Weber–Fechner) that visual quanta in the domain of
low light are significantly larger than in the high light
domain. This trait is also characteristic to all LTIP models,
thus encouraging the use of LTIP models and the proposed
parametric extension.

3.2. Edge detection. To prove the utility of the
parametric LTIP model we will describe in Section 4
an application for contrast-based auto-focus. Such an
application relies on edge detection operators. Motivated
by the resemblance of LTIP models with the human visual
system, we claim that the edge detection operator should
rely on a logarithmic-type subtraction rather than on the
classical one.

Edge detection is an important issue in image
processing (Fabijańska, 2012). Here, we shall use the
luminance-invariant inter-color distance as suggested by
Deng et al. (1995) for the implementation of a Laplacian
operatorL. The proposed operator is a modification of the
classical (derivative-type) V4–neighborhood Laplacian
operator; the proposed Laplacian is the average difference
between the value (gray-scale or on each color plane) at
the currently processed location (i; j) and its immediate
neighboring values from the image I . Mathematically
we can express the proposed operator, at the (i; j)
coordinates, as

Lm(i; j) =
∑

(k;l)∈V4

1
4

(I(i+ k; j + l) m I(i; j)) (15)

assuming that I(i+ k; j + l) > I(i; j).
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(a) (b)

Fig. 1. Graphical representation of ξ(u, b) = u �m (u − b), with respect to u, for different values of m: {0.1, 0.5, 1, 2, 5}. In the left
panel (a), we used b = 10, while in the right (b) b = 30. Note that in the higher part of the domain the non-linear subtraction is
much more sensitive than the classical subtraction (horizontal solid line), while in the lower part only supra-unitary parameter
values lead to less sensitivity.

The implied subtraction is given by Eqn. (13), while
the addition (implicitly written in the sum) is the one
shown in Eqn. (12). Now, let us note that Eqn. (15) can
be re-written as

Lm(i; j) =
∑

(k;l)∈V4

1
4
ξ
(
I
(i,j,k,l)
min , δ

(k,l)
(i,j)

)
, (16)

with

I
(i,j,k,l)
min = min (I(i, j), I(i+ k, j + l)) ,

δ
(k,l)
(i,j) = |I(i, j) − I(i+ k, j + l)|,

ξ(u, u− b) = um (u− b).

(17)

Examples of ξ(·, ·) are presented in Fig. 1.

4. Auto-focus

Digital cameras, in their various forms (still cameras,
video cameras, mobile phones), have gained significant
popularity in the recent years. Nowadays, the main
direction seems to be that of decreasing the size and
weight of the imaging devices so as to embed them in
various other consumer electronics devices. The trend
of miniaturization imposes design modifications such as
reducing the size of optics and of the photo-sensible area,
which leads to more pressure on the image processing
pipeline. It should be noted that, due to small camera
dimensions and to avoid blur due to shaky hands, mobile
phone cameras are usually forced to acquire underexposed
images/videos and to amplify them later.

The sharpness of the acquired image is given by
the physical properties of the sensor and the optical
system and, most importantly, by the auto-focus solution
(Ramanath et al., 2005). A camera de-focus causes
damage on the acquired images of an observed sample:
out-of-focus parts of the sample appear blurred, whereas
in-focus parts look relatively sharp.

4.1. Contrast based auto-focus. Currently, two main
categories of auto-focus algorithms exist in cameras:
passive and active. Active systems measure the distance
to the subject independently of the optical system, and,
subsequently, adjust the optical system for correct focus.
Passive focusing systems determine the correct lens
position by analyzing the images entering through the
optical system. Two major passive solutions exist: phase
detection and contrast measurement. The algorithm
proposed goes within the line of the last category, namely,
contrast measurement.

Motivated by the similarity with the human visual
system, this paper proposes a reinterpretation of a
classical focus measurement under the parametric LTIP
framework. A similar method was proposed by Fernandes
et al. (2010), who used Jourlin’s model for a shape-from
focus solution for normally exposed microscopic images.
Instead, we make use of the previously described
parametric extension to provide more adaptability of the
algorithm. We differentiate furthermore by the fact that
we use the superior sensitivity of LTIP models adaptively
on strong and weak luminance and in order not to enhance
noise.

The contrast measurement is achieved by measuring
sharpness within a sensor field, through the lens. The
intensity difference between adjacent pixels of the sensor
naturally increases with a correct image focus. For
different lens positions, different values for contrast are
computed. The subject-to-camera distance is determined
for the sharpest recorded image, via optical system
settings. This estimation is known as the depth from focus
and a review of the known techniques may be found in the
works of Krotkov (1987), Subbarao and Tyan (1998), as
well as Sun et al. (2005).

The sharpness (or the local contrast) of an image is
measured with so-called Focus Measure Function (FMF).
The FMF encodes the relative proximity of the system to
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the focus position with respect to various lens positions.
In practice, the FMF may be either of a derivative type
(and then we look for the maximum) or in the family of
correlation methods (Vollath, 1987), the case when the
minimum is looked for. Once the measure is available, the
FMF optimum with respect to the lens position must be
searched for. A review of the problem specific techniques
to determine the maximum of the FMF is given by Svahn
(1996). We note that the FMF resolution (i.e., one/two
pixels) should be consistent with the image real resolution.

Between possible FMFs, there is the sum of a
modified Laplacian, which has been initially introduced to
estimate the shape of the subject (Nayar and Nakagawa,
1994). The sum of modified Laplacian, Υ(Is), within
a convex subset of the image Is ⊂ I is the sum of
the absolute values of the second grey-scale derivative,
computed with a discrete approximation of the Laplacian,
L(i; j) (which is the second derivative in the horizontal
and vertical directions of an image):

Υ(Is) =
∑

(i;j)∈Is

L(i; j). (18)

Florea and Florea (2011) proposed a solution for
focusing on bright objects, hence overexposed images.
In the current work, we extend the algorithm to
underexposed images, too. The exposure case is known at
the beginning of the acquisition. If we know the solution
for overexposure, in the case of the underexposure we
choose to simply use the negative of the image (u→ u′ =
D − u).

In the simplest form, the computation of the
Laplacian L(i; j) is given by Eqn. (15), thus forming a
parametric function with respect to m. The global FMF
used is therefore parametric: Υ(Is) → Υm(Is).

The simple use of the Laplacian, as defined by Eqn.
(15) and in the formulation of Fernandes et al. (2010), will
not do much good to the focusing problem. The closing
property, written in Eqn. (5) says that the sum of any two
numbers between 0 and D will also lead to a number
smaller than D. IfD = 255, this means, for example, that
the sum of 235 and 240 will give 248. Then, if we subtract,
using Eqn. (13), 240 from 248, we will get 235. This result
is beneficial for bright scenes with pale edges, but it also
may have the consequence that we are measuring the noise
of the image. Hence, we modified the computation of the
Laplacian, from Lm(i; j) into Lcut

m (i; j), as follows:

Lcut
m (i; j) =

⎧
⎨

⎩

Lm(i; j), Lm(i; j) ≥ 1
4 ⊗m Is,

0, Lm(i; j) < 1
4 ⊗m Is.

(19)
where Is is the average of the pixels from the Is patch
computed according to the classical image processing
model. In this way, the contribution of noise is greatly

reduced, while the LTIP edge detector preserves its special
sensibility.

Concluding, the procedure to determine the lens
position that provides the maximum sharpness is the
following:

• Using the relative exposure of the image, consider
the initial or the negative version of the image.

• Initialize the parameter m to the smallest possible
value.

• Given an image (or an image patch) Is with a known
lens position, k0, compute the average Is.

• Compute Υk0
m (Is) at the lens position k0 using

Eqns. (18), (19) and (15).

• Determine the parameter value, m, that provides the
maximum value Υm(Is) = Υmmax(Is). Store the
found value, mmax = m.

• Using mmax, compute Υki
mmax

(Is) for various lens
positions, ki, to determine the focus. The focus
will be given by the position of the lens, ki, which
maximizes Υki

mmax
.

Regarding the best value, mmax, of the parameter, as
one may see in Fig. 2, the function, Υm(Is), is uni-modal
and in a majority of cases it has the maximum at the
first or the last value. We note that the maximum is not
at m = 1, thus arguing for the use of the parametric
extension. Among many parameter estimation methods
existing in the literature (see the work of Byrski and
Byrski (2012) and the references therein), we found that
a simple implementation of the hill climbing algorithm
(always go in the sense of the positive slope (Russell and
Norvig, 2003)) solves the problem.

Now let us give an insight of into the method.
The basic statement is that parametrization allows more
adaptability to the scene, hence leading to improved
results when compared with the simple re-writing of
the classical FMF under logarithmic-like model. The
motivation for the procedure lies in the fact that if the
scene is static, then the histogram of the blurred image
is the blurred version of the sharp image’s histogram,
hence preserving the positions of the modes (which
corresponds to objects). The aim of this adaptation is to
get the maximum difference (in the sense of Eqn. (13))
between modes (favoring edges) and to have the minimum
difference inside the modes.

Because the proved mathematical model for the
out-of-focus blur is the convolution with a Gaussian
kernel (Svahn, 1996), the variation of the FMF, including
here Υ(Is), used has the shape of a Gaussian probability
density function (i.e., a uni-modal function). An example
of the variation is presented in Fig. 3. Again the hill
climbing procedure is used for the determination of the
maximum of the FMF.
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Fig. 2. Variation of the FMF used, Υ(Is), with respect to pa-
rameter m for a static scene. As can be seen, it is ex-
pected to achieve better results for m > 5, but in that
case quantization errors for a discrete space computation
become significant and introduce artefacts.

Fig. 3. Variation of the FMF used, Υm(Is), for a fixed value
of the parameter, m = 5, with respect to the lens po-
sition. The sharpest image is attained for the maximum
of Υm(Is). The function has been interpolated from the
original 12 values to 60 values.

5. Implementation and results

5.1. Databases. We tested the proposed method on
two types of databases: one using examples from public
databases and another one internally built. While the
public databases contain well exposed original images
and simulated out-of-focus blur, our database was built
by manually adjusting the focus lens, thus containing
naturally degraded frames and with unbalanced exposures
(over and underexposed).

The public database set contains all useful image
sets from the Tampere Image Database (TID2008)1

(Ponomarenko et al., 2009) and from the CSIQ image
database2 (Larson and Chandler, 2010). We note that all
these images have the exposure well balanced and the
variation regards the scene type and the content.

TID2008 contains 25 reference images and 1700
distorted images (25 reference images × 17 types of
distortions × 4 levels of distortions). Among these

1http://www.ponomarenko.info/tid2008.htm.
2http://vision.okstate.edu/?loc=csiq.

(a) (b)

Fig. 4. Example of images from the TDI2008 database: original
images (with all objects in focus) (a), Gaussian blurred
image simulating objects out of focus (b).

distortions is the Gaussian blur, which was noted as being
the model for out-of-focus blur (Svahn, 1996). Therefore,
relevant for our work are 25 sets with 5 images each.
Examples of images from this database can be seen in
Fig. 4.

The CSIQ database consists of 30 original images,
each distorted using 6 different types of distortions,
including Gaussian blur at 4 to 5 different levels of
distortion. Out of this databases resulted 30 sets × 6
images. Images from this database can be seen in Fig. 5.

For each sequence of images from the public data
sets, we built 5 tests by considering 5 different patches of
interest (therefore varying the content of the patch).

Since our database concentrates more on unbalanced
exposures, it can be considered that it complements the
public databases, where all images are well exposed.
For acquisition we used a webcam and a professional
camera, because both of them permit manual precise lens
positioning. We varied the nature of the object aimed to be
in focus (average intensity, sharpness) and the distance to
the camera. For each such setting, images corresponding
to different lens positions were acquired. This made what
will be subsequently called a “set of images”.

The total database consisted out of 114 sets, 65 with
a bright objects and 49 with dark ones. An example of
a scene with a bright object may be observed in Fig. 6,
while that with a dark one in Fig. 7. The variation in
the lens position was done in 11 steps (hence each set
consists out of 12 images) for the professional camera and
24 images for the webcam. The images were acquired
with reduced shift (scene had mainly the same content).

For each set of images (a sequence of frames
of the same scene with different blur), multiple tests
were performed, by changing the initial image (assumed
different beginning position for the lens). For a sequence
of K images, K − 2 tests were considered by placing the

http://www.ponomarenko.info/tid2008.htm
http://vision.okstate.edu/?loc=csiq
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(a) (b)

Fig. 5. Example of images from the CSIQ database: original
images (with all objects in focus) (a), Gaussian blurred
image simulating objects out of focus (b).

initial assumed lens position in all intermediate situations.

5.2. Evaluation procedure. The auto-focus algorithm
was implemented on the equivalent gray-level image
patch, extracted from the color image. For simplicity,
we reduced the range of possible parameter values
to {0.3, 0.5, 1, 2, 3, 5}. This reduction permitted
also simplification of the algorithm by the use of
look-up-tables for power functions.

The image patches were selected randomly from
the scene. In the case of our database, we remove
the patches that contain two objects at different depths
(hence confusing the algorithm and human observer—a
situation encountered in our database). In general, the
object of interest is at least 80% of the total patch area.
The computation of the average of the image patch Is
was performed on a sub-sampled version (4× smaller)
of the image patch. The image patches were chosen as
rectangular areas that contained mostly one object.

Various methods to estimate the correctness of an
auto-focus algorithm exist. Subbarao and Tyan (1998)
propose the so-called Auto-focusing Uncertainty Measure
(AUM) and Auto-focusing Root Mean Square (ARMS)
error. They mainly encode the sharpness of the FMF
function with respect to the lens position and the number
of correct focus estimations. Usually, one will get a failure
from the auto–focusing algorithm when the FMF function
is present, due to various reasons (noise, lack of edges,
camera movement) several modes and the hill climbing
procedure ends while producing wrong maxima.

For evaluation, we used measures that have a more
straight-forward interpretation. We counted in how many

Fig. 6. Example of a scene with a bright object and reduced
perceived contrast. Top row: object in focus and mov-
ing away, middle row: gradient image obtained with the
LTIP Laplacian, bottom row: gradient image obtained
with the Vollath F4 function. Typically, our method pro-
duces a more accurate but flatter FMF, while Vollath—
sharper but with fake modes.

cases the correct position was determined and, in the case
of an error, what was the error in the number of steps of
the lens position (because an error of one step may get
unnoticed by the user).

Testing was performed under specific scenarios, thus
containing three categories: the first with cases from
public databases (simulated cases), the second with bright
objects from our database, and thirdly with dark objects.

For comparison, we considered two other popular
FMF measures: a derivative one—the classical sum of
modified Laplacian and one from the correlation family,
namely, Vollath F4 (Vollath, 1987). These are in general
(Sun et al., 2005) perceived as the best performers.
More recent solutions, such as those by Kristan et al.

(a) (b)

Fig. 7. Example of a scene with a dark object: dark background
and bright fonts form a high perceived contrast. Object
in focus (a), object out of focus (b).



Parametric logarithmic type image processing for contrast based auto-focus. . . 645

Table 3. Evaluation performance on the data set made out of images from the CSIQ and TDI2008 databases. The total number of tests
is 975. The ground truth is the patch from the original image. The mean error represents the average number, only in the
case of a failure, of lens position steps between the reported focus and the true focus position. The total error represents the
summation of all errors on all sets.

Method Correct estimates Mean error Total error

Proposed: adaptive m 93.3% 2.6 170
Proposed: fixed m = 1 67.7% 2.6 836

Classical Laplace
(Nayar and Nakagawa, 1994)

80.3% 2.6 499

Vollath (1987) 88.0% 2.6 304

(2006) or Lee et al. (2009), even though they rely on
higher complexity they do not manage to overcome older
solutions. The search technique used was the same for all
FMFs, i.e., the hill climbing procedure.

To determine if the parametric extension is really
an improvement, we also included in our comparison
the solution that uses m = 1. This, approximately,
corresponds to the description by Fernandes et al. (2010).

5.3. Discussion. The achieved results on the public
databases are presented in Table 3, while those for our
database can be seen in Tables 4 (bright scene) and 5 (dark
scene).

Let us note that one important aspect of the focus,
namely focusing speed is missing in the current evaluation
because it is related to the convergence technique. Once
we decided to use the hill-climbing method (arguments
pro and con may be found in the work of Svahn (1996)),
the algorithm will go through all lens positions from
initialization till convergence regardless of whether the
FMF used. Thus, as long as the algorithm converges
correctly, it will require the same amount of steps if our
function or any other state-of-the- art solution is used.

Regarding the tests on the public database, we note
that we outperform all proposed state of the art methods.
In this test, the variation was given only by the amount of
blur and one can see that, with a very good precision, the
proposed method correctly identified the sharpest image.
Furthermore, this test showed that the proposed measure,
being in an inverse relation with the blur variance, may
be a reliable basic metric for an image quality general
measure.

While discussing the tests on our database, we stress
that the images were acquired with the camera in the auto
mode and were not processed afterward, therefore being
degraded by typical camera noise (which can be seen in
Fig. 6). Also the camera was held in hand. Thus there is a
slight content variation in the sequence of images.

Discussing the actual achieved results, we note
that the adaptive (parametric) solution significantly
out-performed the simple, non-adaptive version that relied
on m = 1, strongly arguing for the utility of the

parametric extension.
Regarding the actual precision, a basic observation

is that the FMF for the proposed method is flatter.
In association with hill climbing, this behavior has no
drawback. However, it has the benefit of being more
robust and performs more consistently. As one can see
in the mentioned tables, our method outperformed the
state-of-the-art solutions on the bright object database.
Even when it missed the correct position, it did it with
a number of steps. On the darker object data set it
was outperformed by the Vollath function in terms of
the number of correct detection of the lens position that
provides the best focus, but it did better in terms of
the error size. This means that, small although Vollath
gives fewer errors, they are rather big. Our method leads
to more errors but they are smaller that may be less
noticeable by the user.

5.4. Algorithm complexity. Since the implementation
of the auto-focus algorithm is aimed at embedded systems
that can vary in parameters, we evaluate the algorithm
performance in operation per pixel and not in seconds.
Given an image patch, the Vollath method requires
accessing the current location and the next consecutive
two ones and two additions and one multiplication.
The classical Laplacian requires buffering 3 rows, 4
differences and 3 additions. The proposed method
requires also buffering 3 rows and for each of the 4
neighbors a comparison, a difference and incrementing
a 2D histogram (which requires a multiplication and 2
additions). Next, to process the 2D histogram each
value must pass through 2 LUTs (hence 2 additions).
Thus, compared with the classical Laplacian there is an
increase of 4 multiplications and 1 addition per pixel and
2 additions and memory for storing the LUTs.

6. Conclusions and future work

In this paper we summarized our contribution to the
advance of logarithmic-type image processing models
and described their possible extensions with the precise
purpose of preserving the mathematical property resulting
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Table 4. Correct estimations of the focus position for bright scenes. The total number of tests is 1010. The ground truth resulted after
manual annotation. The mean error represents the average number, only in the case of a failure, of lens position steps between
the reported focus and the true focus position. The total error represents the summation of all errors on all sets.

Method Correct estimates Mean error Total error
Proposed: adaptive m 93.1% 2 139
Proposed: fixed m = 1 87.7% 4.7 584

Classical Laplace
(Nayar and Nakagawa, 1994)

84.8% 4.25 652

Vollath (1987) 92.3% 4.5 350

Table 5. Correct estimates of the focus position for dark objects. The total number of tests is 594. The ground truth resulted after
manual annotation.

Method Correct estimates Mean error Total error
Proposed: adaptive m 87.5% 2.5 185
Proposed: fixed m = 1 83.5% 4.25 416

Classical Laplace
(Nayar and Nakagawa, 1994)

85.8% 5.5 464

Vollath (1987) 91.2% 3.66 188

from the definite structure of the vector or cone space.
The most important resulting property is that of closing.
If ensures special behavior near the edges of the definition
set.

From the application point of view, a non-linearity
localized especially near the boundary of the value domain
makes the approach suitable for processing images that
have an important part of the histogram in these ranges;
these are images acquired in extreme lighting. We showed
the usability of the proposed framework by describing a
contrast based auto-focusing algorithm that gave results
similar to or superior over state-of-the-art methods.

Regarding further continuation paths, the algorithms
are currently in the process of optimization, including
adaptation for ASIC (Application Specific Integrated
Circuit) acceleration. The latter is rather easy
since the framework is pixel-wise oriented, and hence
parallelization may be used.

The problem of measuring sharpness has another
(more recent) use, namely, multi-sensor (acquisition)
image fusion. This topic has many applications such as
remote sensing, medical imaging, microscopic imaging
and robotics. In a specific embodiment (Li et al., 2010),
the criteria for combining information from two or more
source images of a scene into a single composite image
to extract the focused parts from each multi-focus image
and produce one with equal clarity. This is known as
multi-focus image fusion and the core of the technique
is estimation of the sharpness on image blocks.
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