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The relations between multiple imbalanced classes can be handled with a specialized approach which evaluates types of
examples’ difficulty based on an analysis of the class distribution in the examples’ neighborhood, additionally exploiting
information about the similarity of neighboring classes. In this paper, we demonstrate that such an approach can be im-
plemented as a data preprocessing technique and that it can improve the performance of various classifiers on multiclass
imbalanced datasets. It has led us to the introduction of a new resampling algorithm, called Similarity Oversampling and
Undersampling Preprocessing (SOUP), which resamples examples according to their difficulty. Its experimental evaluation
on real and artificial datasets has shown that it is competitive with the most popular decomposition ensembles and better
than specialized preprocessing techniques for multi-imbalanced problems.
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1. Introduction

In imbalanced data at least one of the target classes
contains a much smaller number of examples than
the other classes. This underrepresented class, called
a minority class, gains more importance than the
remaining majority class(es), and its correct recognition
is particularly required in many applications. Standard
learning algorithms are biased toward better recognition
of the majority classes and they met difficulties (or even
are unable) to classify correctly new instances from the
minority class (see He and Ma, 2013).

Up to now many specialized methods for improving
the classification of imbalanced data have been
introduced. Nevertheless, some problems are still worth
to be studied more deeply (Krawczyk, 2016; Stefanowski
et al., 2017). One of them is dealing with multiple
decision classes.

Note that most of the current research concerns
binary classification problems, i.e., with a single minority
class and a single majority class. This formulation is
justified by the nature of typical imbalanced problems,

∗Corresponding author

where a single minority class is most important from the
application perspective and it is essential to improve its
recognition. Focusing on this single class usually leads
to seeing all the remaining classes as one aggregated
class. However, in some problems it may be reasonable
to focus interest on more minority classes and such class
binarization may be questionable. For instance, in some
medical problems physicians may consider few different
types of an illness as more critical than other less serious
disorders. In such situations, aggregating classes into a
binary version is unacceptable, in particular when one
critical (usually also rare) disease class would be joined
with a majority class of more healthy patients (Lango
et al., 2017). On the other hand, joining minority classes
together will not lead to different therapies for various
types of a disease. Similar needs for distinguishing more
minority classes in medical procedures are discussed by
Wojciechowski et al. (2017).

The current approaches to deal with multiple
imbalanced classes are mainly based on decomposition
of the multiclass problem to special binary subtasks.
The most popular are adaptations of earlier known
one-versus-one (OVO) or one-versus-all (OVA) ensemble
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schemes, which apply resampling methods for binary
problems (Fernandez et al., 2013). Other simpler
preprocessing methods usually straightforwardly
oversample the minority classes to the size of the
majority ones (Zhou and Liu, 2010) or iteratively
duplicate the smallest class with the SMOTE
method (Fernández-Navarro et al., 2011).

Although the selected minority classes are specially
re-sampled in these approaches, the information about
decision boundaries between various classes or its internal
data distributions is lost, while in the original problem
one class may influence several neighboring classes at the
same time. Furthermore, these binary decompositions do
not consider the mutual relations between classes that are
different for majority and minority classes and increase
the complexity of the learning task.

To illustrate the need for dealing with class
interrelations, consider the asthma diagnosis discussed
by Lango et al. (2017). The two types of asthma,
being minority classes, are more closely related to each
other and their treatment procedures do not differ too
much, while the similarity of these classes to the majority
class (nearly healthy patients) is much lower, which is
also reflected in a simpler and less aggressive medicine
therapy. Such different neighbourhood relations between
classes should be taken into account while constructing
new approaches to multiclass imbalances.

Following these motivations, Lango et al. (2017)
recently introduced a new approach to examine the
interrelations of multiclasses in imbalanced data. It
generalizes the previous approach to study the types
of the examples’ difficulty for binary class datasets,
which is based on the analysis of a class distribution
in the neighborhood of the examples (Napierala
and Stefanowski, 2012; 2016). In the multiclass
generalization, it also exploits additional information
about the similarity of neighboring classes to the class
of an examined example. Lango et al. (2017) showed
that this approach is capable of identifying data difficulty
factors in multiclass imbalanced data. Nevertheless, the
question of exploiting the information coming from that
proposal in the design of new methods for improving
classification of imbalanced data remains open.

Therefore, the aim of this paper is to study whether
this approach could be used in a new preprocessing
approach to multiclass imbalanced data. We will
show this by introducing a new re-sampling algorithm,
called Similarity Oversampling and Undersampling
Preprocessing (abbreviated as SOUP), which first
removes the most harmful majority class examples and
than oversamples the most important minority ones
according to their safe levels resulting from analyzing
their neighbourhood. Furthermore, we will demonstrate
that elements of SOUP can be used to modify resampling
in the binarization-based ensembles, particularly those

relying on the OVO principle. In order to validate
the usefulness of these newly introduced methods,
we will experimentally compare them with the most
popular methods specialized for dealing with multiclass
imbalanced data (which do not model interrelations
among classes) covering both preprocessing and ensemble
decomposition ones. Furthermore, we will examine how
different ways of defining class similarities may influence
the SOUP performance.

The paper is organized as follows. Section 2 covers
the most related previous works. In Section 3 we provide
background of the proposal to model class interrelations
and to estimate example difficulty levels. The new
resampling algorithm SOUP and modifications of the
OVO ensemble are introduced in Section 4. Section 5
describes the experimental analysis of the proposed
methods and their comparison with the state-of-the-art
algorithms. Section 6 concludes our study.

2. Related works on multiclass imbalances

Multiclass classification problems are considered to be
more difficult than their binary counterparts. For instance,
Wang and Yao (2012) experimentally demonstrated that
increasing the number of classes is strongly correlated
with a decrease in many popular classification measures
even for more balanced data. The bulk of the proposed
methods for binary imbalanced data are not directly
applicable for multiple classes. The current approaches
to multiclass imbalances are mainly based on adapting
binary preprocessing techniques, special algorithmic
modifications or using misclassification costs; see their
review by Fernández et al. (2018). Following these
authors, the most popular decomposition approaches are
one-vs-all (OVA) and one-vs-one (OVO) strategies.

The OVA method constructs a binary subproblem for
each class, where all other classes are aggregated into one
common class. More precisely, from the original dataset
D, a series of datasets D1, D2, . . . , Dc is constructed
where c is the number of classes. Each dataset Di

contains all the examples of D but the class label y is
replaced by I[y = i] where I is the indicator function.
On each dataset Di a binary classifier Ci is trained. For
a new instance x, the class is usually assigned by the
component classifier with the highest confidence, i.e.,
argmaxi∈{1,2,...,c} Ci(x).

Contrary to one-vs-all, the one-vs-one approach
exploits a decomposition of multiclasses into all possible
pairs of classes. For each pair of classes, a dataset
Dij which contains the examples of classes i and j
is constructed. Again, the class label is replaced
by I[y = i], binary classifiers Cij are trained on
corresponding datasets Dij , and the final decision is made
by argmaxi∈{1,2,...,c}

∑c
j=1 Cij(x). It is noteworthy that

this method creates a quadratic number of classifiers
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(c(c− 1)/2) with respect to the number of classes which
may cause problems when the number of classes is high.

All these approaches have been adopted for the
imbalanced case. The most studied extensions of OVO
and OVA ensembles are those which apply resampling
methods (such as random oversampling, undersampling or
SMOTE) to balance class distribution in binary datasets.
Their experimental evaluation was extensively studied
by Fernandez et al. (2013). Various aggregation methods
of component classifiers outputs were also studied (Galar
et al., 2011). Other decomposition techniques are
surveyed by Fernández et al. (2018).

There are also other ensemble approaches for
multi-class imbalanced data. Abdi and Hashemi (2016)
propose a Mahalanobis distance-based oversampling
method and combine it with a boosting algorithm, creating
MDOBoost. Other combinations of random resampling
with boosting are proposed by Wang and Yao (2012).
Recently, yet another extension of Roughly Balanced
Bagging to multiclass imbalanced data has been proposed
by Lango and Stefanowski (2018).

There are special preprocessing methods for
multiclass imbalanced data. The most well-known
is Global-CS which takes inspirations from rescaling
approaches in cost-sensitive learning, where Zhou and Liu
(2010) proposed to assign an equal weight to every class,
independently of their cardinality. Fernandez et al. (2013)
argue that the simplest way of achieving it is by the means
of random oversampling. In Global-CS each class is
oversampled except the class with the highest cardinality.
First, each instance is copied �nmax/ni� times, where ni

is the size of an example’s class and nmax is the size of the
biggest majority class. Then, (nmax mod ni) examples
are randomly oversampled for each class i. After these
operations every class has an equal number of examples.
Besides this uninformed preprocessing method, also some
informed oversampling methods have been proposed,
most notably Static-SMOTE (Fernández-Navarro
et al., 2011), which works iteratively. In each iteration
the class with the smallest cardinality is selected and
duplicated with the standard SMOTE technique (treating
all examples from nonselected classes as majority
ones). The number of the method’s iterations is set
as the number of classes. There is also a limited
number of works on combinations of oversampling with
undersampling (Agrawal et al., 2015), which include a
selective hybrid resampling SPIDER3 (Wojciechowski
et al., 2017), where relations between classes are captured
by predefined misclassification costs. Moreover, Seaz
et al. (2016) have applied types of minority examples
of Napierala and Stefanowski (2012) to independently
oversample single minority classes, however without
considering any relations between classes. For a more
detailed review of methods for multi-class imbalanced
learning, see the work of Fernández et al. (2018).

3. Modeling multiple class interrelations
and data difficulty factors

The proposal presented by Lango et al. (2017) results
from two inspirations:

(i) the need for richer modeling complex relations
between classes, which is missed by current
approaches, and

(ii) previous studies with handling data difficulty factors
by means of the types of examples for binary
imbalanced classification.

Discussing the first point, please note that one class
may be a majority one when it is compared with some
other classes but at the same time it may be a minority
class with respect to the remaining classes (Krawczyk,
2016; Wang and Yao, 2012). The simple resampling
of single classes is usually insufficient to deal with
these situations. Then, distributions of many classes
are quite complex and boundaries between them may
overlap. As a result, examples from these overlapped
regions, which belong to different classes and have
similar attribute descriptions, usually negatively influence
predictive accuracy. However, their influence on each
class recognition may be different. Thus, when dealing
with multiple classes, one may easily lose performance
on one minority class while attempting to improve it at
another classes (Seaz et al., 2016).

Moreover, the availability of expert knowledge on
the classes’ interpretation and their mutual relations
should influence the solutions to multiclass imbalanced
classification. As discussed in Section 1, some minority
classes can be treated as more closely related to each other
than to the majority class in some practical applications
(see, e.g., the asthma diagnosis case). It may impact
both the evaluation of data difficulty and the development
of methods for improving classification. In the first
perspective, the class similarity should be taken into
account while considering which class misclassifications
are better and which are worse according to an expert
(it is different from the expert’s misclassification costs of
Wojciechowski et al. (2017)).

This is related to a more general problem of
analyzing neighboring examples for the given class
and considering which other class examples are more
preferred to be the closest neighbors of this class
according to the expert knowledge. Such class
neighborhood analysis is particularly useful while
modifying the example distribution in preprocessing
techniques, where one should decide which class
examples should be introduced in the given subregion
of data (where examples of other classes already exist).
The decomposition approaches, which treat all pairs of
classes equally, do not reflect these issues properly (Seaz
et al., 2016).
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Following the second motivation point, class
imbalances are often accompanied by additional data
difficulty factors. These factors referring to internal
characteristics of class distributions may be even more
influential than the global imbalance ratio between
cardinalities of minority and majority classes. They
include the decomposition of the minority class into many
rare subconcepts playing a role of small disjuncts (Jo
and Japkowicz, 2004; Stefanowski, 2016), overlapping
between the classes (Prati et al., 2004; Garcia et al., 2007)
or the presence of many minority class examples inside
the majority class region (Napierala et al., 2010). A
joint combination of all these data difficulty factors with
the class imbalance seriously degrades the recognition
of the minority class; see, e.g., experimental studies
(Lopez et al., 2014; Stefanowski, 2013). Napierala
and Stefanowski (2012) have linked some of these data
difficulty factors to distinguishing different types of exam-
ples forming the minority class distribution.

3.1. Types of examples in imbalanced data and
the approaches for their identification. Napierala and
Stefanowski (2012) proposed to distinguish the following
types of examples. Safe examples are the ones located
in homogeneous regions populated by examples from one
class only. Other examples are unsafe (categorized into
borderline, rare cases and outliers) and more difficult for
learning.

To identify the type of a particular example, they
analyze the ratio between the number of minority
and majority examples in its neighborhood which can
be modeled with either k-nearest neighbors or kernel
functions. Specific thresholds on this ratio are directly
related to particular example types. For instance, if all
or nearly all neighbors belong to the same class, the
example is treated as a safe example; if the prevalence of
both classes inside the neighborhood is quite similar, the
example is treated as a borderline one, etc. (Napierala and
Stefanowski, 2012; 2016).

Besides using labels which depends on such
thresholds, these authors also defined a coefficient
expressing a safe level of the given example x being
a local estimator of the conditional probability of its
assignment to the target class as

p(C|x) = kC
k
, (1)

where C is the class of example x, k is the number
of neighbors and kC is the number of neighbors which
belongs to class C. Usually these coefficients are
examined for the minority class only, as these are much
diversified and smaller while majority examples often
have very high safe levels (Napierala and Stefanowski,
2016).

The information about the type of examples have
been already successfully applied to binary imbalanced
problems, (see, e.g., Błaszczyński and Stefanowski,
2015). Therefore, new multiclass generalizations have
been expected (Krawczyk, 2016). These new approaches
should also take into account the complexity of different
relations between multiple classes. Using existing binary
class approaches to estimate data difficulty in such a case
is not straightforward (Seaz et al., 2016).

3.2. Handling multiple class relations with sim-
ilarity information. To model relations between
multiple imbalanced classes, Lango et al. (2017) exploit
information about the similarity between pairs of classes.
This information should be acquired from users being
experts in the domain problem. They should say which
classes can be seen as more similar to each other than to
the rest of the classes. Furthermore, this class similarity
may correspond to the expert’s interpretation of a mutual
position of examples in the neighborhood of the example
from a given class. An intuition behind this neighborhood
is the following: if example x from a given class has
some neighbors from other classes, then neighbors from
the class with higher similarity are more preferred.

Consider an illustrative example with three classes:
M1 andM2 minority ones andW majority class. Assume
that example x belongs to M1. While looking at its 5
neighbors, consider several possible situations which are
presented in Table 1.

The neighborhood (a) is the most preferred situation,
as example x is surrounded only by examples from its
class. In situations (b) and (c), the neighborhoods of
example x include one example from class M1 and four
examples from other classes. Within the binary analysis
of example types both these situations will be treated as
the same one, however, knowing relations between classes
will lead to a different interpretation. If an example
x has more neighbors from another minority class M2
(situation b) it is more preferred to neighborhood (c)
where all surrounding examples come from the distant
majority class W . This neighborhood (b) would let the
expert consider the analyzed example to be safer—in other
terms, easier recognized as a member of its class (as it will
be less prone to suffer from the algorithm bias toward the
majority classes). The strength of this preference could
be expressed by the experts asked to define similarity
between classes—stronger between minority classes and

Table 1. Different multiple classes in the neighborhood.
No. Class M1 Class M2 Class W

a 5 0 0
b 1 2 2
c 1 0 4
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much lower between the minority and majority classes1.
More formally, it is assumed that for each pair of

classes Ci, Cj the degree of their similarity is defined
as a real μij ∈ [0, 1]. The similarity of a class to
itself is defined as μii = 1. The degree of similarity
does not have to be symmetric, i.e., for some classes
Ci, Cj it may happen that μij �= μji. Although the
values of μij are defined individually for each dataset,
the general recommendation of Lango et al. (2017) is
to have higher simlarities (μig → 1) for other minority
classes Cg , while similarities to majority classes Ch

should be rather low (μih → 0). This claim is coherent
with the earlier experimental studies showing that the
multimajority case is more difficult than problems with
many minority classes (Wang and Yao, 2012).

The degrees of similarity should be provided by an
expert or can come from the domain knowledge. If neither
is available, some heuristic approaches could be used. In
this work, we propose such an approach which models
the situations where one of minority classes suffers from
imbalance with respect to the majority class but at the
same time may cause imbalances to another, smaller
minority class. This leads us to the following definition:

μij =
min(|Ci|, |Cj |)
max(|Ci|, |Cj |) , (2)

where |Ci| is the number of examples of Ci class. To
better understand our heuristics, consider the classical
car UCI dataset which has the classes of the following
cardinalities: |Cgood| = 69, |Cvgood| = 65, |Cunacc| =
1210 and |Cacc| = 384. The similarity between two
smallest minority classes is 0.94 and the similarities
between the biggest “unacc” class and other minority
classes is around 0.05 which is in line with our previous
indications. However, the medium size “acc” class may
also act as a minority one with respect to “unacc” but
at the same time may play a role of a majority class in
the proximity of “good” and “vgood” examples. This is
reflected in the similarity values assigned by the proposed
heuristic: μacc,unacc = 0.32, μacc,good = 0.18 and
μacc,vgood = 0.17.

3.3. Data difficulty with respect to a safe level of mi-
nority examples. The degrees of similarity have been
applied to generalize the identification of the type of
examples. Lango et al. (2017) generalized the safe level
coefficient in the following way.

Considering a given example x belonging to the
minority class Ci. Its safe level is defined with respect

1Note that in our proposal of similarity between classes we do not
directly model misclassifications between minority classes, which alter-
natively could be handled by yet another approach with costs of misclas-
sifications between classes (Wojciechowski et al., 2017).

to l classes of examples in its neighborhood as:

safe(xCi) =
1

n

l∑

j=1

nCjμij (3)

where μij is the degree of similarity, nCj is the
number of examples from class Cj inside the considered
neighborhood of x and n is a total number of neighbors.

Coming back to the illustrative example from the
previous sub-section, calculate the safe level for situations
(b) and (c). If we assume that similarity between minority
classes M1 and M2 is equal to 0.5 while their similarity
to majority class W is equal to 0, then

safe(xb) =
1× 1 + 0.5× 2 + 0× 2

5
= 0.25

while

safe(xc) =
1× 1 + 0× 4

5
= 0.2.

Thus, the situation (b) is interpreted as slightly safer than
its alternative (c). If one increases the minority class
similarities up to 0.8, then safe(xb) = 0.52 and safe(xc)
will be still 0.2. Thus, the difference in interpreting the
safe neighborhood will be much higher. Note that without
modeling class similarities the situations (b) and (c) are
indistinguishable as their safe levels are the same and
equal to 0.2

Lango et al. (2017) carried out few experiments
with mainly artificial datasets and analyzed averaged safe
levels for minority examples together with the predictions
of standard classifiers. They showed that this method
sufficiently well identifies difficulties in learning these
classifiers from the minority classes and their distribution,
in particular for class overlapping.

4. Resampling algorithm SOUP

In this paper we want further exploit the approach
described in Section 3 to improve classification of
multi-class imbalanced data. However, as our aim is to
present a kind of a feasibility study rather than looking for
the most accurate solution, we have decided to consider a
relatively simple and universal pre-processing method.

As a critical motivation for this method we notice
that existing multiclass oversampling methods increase
class cardinalities to the sizes of majority classes (see
Global-CS), which may reinforce difficulties in class
distributions, in particular in the case of class overlapping
or complex boundaries. Moreover, it may too strongly
amplify possible noise of minority class examples with
respect to more complicated relations to many other
classes. On the other hand, undersampling may be
more problematic for imbalanced datasets with a high
disproportion between the cardinality of the biggest and
the smallest class.



774 M. Janicka et al.

Therefore, we have decided to introduce a hybrid
resampling algorithm, called Similarity Oversampling and
Undersampling Preprocessing (SOUP), which combines
undersampling with oversampling and exploits the
information about the difficulty of examples. Its
pseudocode is presented in Algorithm 1. In what follows
we shall present a rationale behind SOUP algorithm and
describe the proposed approach in more detail.

In SOUP, all majority classes are undersampled and
all minority classes are oversampled to the cardinality
being the average of the sizes of the biggest minority and
the smallest majority class (line 3). It is partly inspired by
experiences with SCUT undersampling (Agrawal et al.,
2015). This provides us not only a dataset with a balanced
class distribution, but also with a reasonable size.

SOUP exploits the knowledge about the examples’
safe levels which were defined in the previous section.
The undersampling of the majority classes is performed
by removing the most unsafe examples until a desired
class cardinality is obtained (line 9). In this way, the
undersampling process is focused on the examples lying
closely to minority examples or inside their regions,
which possibly deteriorate minority class recognition. The
oversampling of minority classes is performed in the
opposite direction, i.e., the safest examples are duplicated
first, enhancing the representation of clear minority
concepts (line 17). In the undesirable situation that there
are not enough examples to achieve the requested number
of examples even by duplicating the whole class, the list of
class examples is processed cyclically from the beginning.

Another aspect of this sampling scheme is that the
safe level of a particular example in the final distribution
is changing while performing consecutive steps of over-
or under sampling for succeeding classes. This leads to
establishing a particular order of performing under- and
oversampling in SOUP, starting from operations which
should have the biggest impact on other examples’ safe
levels and potentially on the recognition of the minority
classes. In this way, undersampling majority classes
is done from the biggest to the smallest one (line 4).
Then, the minority classes are oversampled from the
smallest to the biggest one (line 12). Note that after each
under/oversampling of a class, safe levels of all examples
are recomputed.

The calculation of the safe level which takes into
account the degrees of similarities (lines 7 and 15) as well
as the homogeneity of a k neighborhood is performed as
proposed by Lango et al. (2017) with HVDM distance.
This is the most time-consuming element of SOUP.

Furthermore, in order to check how effective our
resampling technique is in the combination with the OVO
and OVA decomposition approaches, we have developed
two separate sampling techniques based on solutions
coming from SOUP, which will be applied before learning
component binary classifiers. Algorithms 2 and 3 present

Algorithm 1. Similarity Oversampling and
Undersampling Preprocessing (SOUP).

Input: D: original training set of |D| examples with c
classes; Cmin: indexes of minority classes; Cmaj: indexes
of majority classes; μij similarities between classes
Output: D′: balanced training set

1: Split dataset D into c homogeneous parts
D1, D2, . . . , Dc. Each Di contains all examples
from i class

2: D′ = ∅
3: m← mean(mini∈Cmaj |Di|,maxj∈Cmin |Dj |)
4: for all i ∈ Cmaj do
5: for all x ∈ Di do
6: find k nearest neighbours of x
7: calculate safe level of x, according to Eqn. (3)
8: end for
9: remove |Di| − m examples with the lowest safe

level values from Di

10: D′ ← D′ ∪Di

11: end for
12: for all j ∈ Cmin do
13: for all x ∈ Dj do
14: find k nearest neighbours of x
15: calculate safe level of x, according to Eqn. (3)
16: end for
17: duplicate m− |Di| examples with the highest safe

level values in Dj

18: D′ ← D′ ∪Dj

19: end for
20: return D′

the pseudocodes of undersampling and oversampling
approaches for binary imbalanced data. They were created
by extracting and adapting the respective parts from
SOUP. Note that in these approaches only two classes are
considered and the reference sizes of resampled classes
are defined in a new way with respect to a smaller
component Dmin.

5. Experiments

5.1. Experimental setup. We want to experimentally
evaluate whether SOUP (which exploits additional
information on class similarities and safe levels of
examples) may be competitive to existing single
preprocessing methods and the ensemble specialized
for multiclass imbalance data (which do not use this
information). Additionally, we will examine the
sensitivity of SOUP with respect to various degrees of
class similarity, also including the usefulness of the
automatic methods for defining these degrees.

The related standard approaches are Global-CS
and Static-SMOTE as representatives of over sampling
applied to single classifiers, decomposition with OVA and
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Algorithm 2. Similarity Oversampling (SO).

Input: D: original training set of |D| examples with two
classes;
Output: D′: balanced training set

1: Split dataset D in two parts containing examples from
a single class, denoted Dmin and Dmaj

2: D′ = ∅
3: diff← |Dmaj| − |Dmin|
4: if diff > 0 then
5: for all x ∈ Dmin do
6: find k nearest neighbours of x
7: calculate safe level of x
8: end for
9: duplicate ‘diff’ examples with the highest safe level

values from Dmin

10: end if
11: D′ = Dmaj ∪Dmin

12: return D′

OVO ensembles with resampling of the binary classes
done with random over sampling (ROS) or random
under sampling (RUS) following recommendations of
(Fernandez et al., 2013) and (Galar et al., 2011) and NCR
as a more informative under sampling (Laurikkala, 2001),
and newly introduced Multi-class Roughly Balanced
Bagging, which showed good experimental results in
the work of Lango and Stefanowski (2018). To
learn component classifiers, we consider three popular
algorithms: J4.8 tree, PART rule and k-NN. All of them
were used with standard parameters except deactivating
pruning options and k = 3 following earlier experiments
on imbalanced data. All experiments were performed
in the WEKA framework. Classification performance is
evaluated by a stratified 10-fold cross-validation.

The predictions of all classifiers are evaluated with
three measures adapted to the multiclass context: G-
mean, average minority and F-score. Let sensitivityi
be the recognition rate of the local class Ci, then
G-mean = n

√∏n
i=1 sensitivityi; average minority =

1
n

∑
i∈Cmin

sensitivityi, where Cmin denotes minority
classes, while n is their number. F-score is
macro-averaged in a standard way over the sum of
F1 scores for all minority classes.

5.2. Multiclass datasets. Our experiments are carried
out over 19 diversified datasets. Their characteristics
are given in Table 2. Firstly, we choose 15 real-world
imbalanced data sets coming from the UCI repository,
representing a different number of classes, sizes and
imbalance ratios, which have been used in the most
related experimental studies (Fernandez et al., 2013; Galar
et al., 2011; Seaz et al., 2016). We have modified
some data by aggregating classes and made decisions on

Algorithm 3. Similarity Undersampling (SU)

Input: D: original training set of |D| examples with two
classes;
Output: D′: balanced training set

1: Split dataset D in two parts containing examples from
a single class, denoted Dmin and Dmaj

2: D′ = ∅
3: diff← |Dmaj| − |Dmin|
4: if diff > 0 then
5: for all x ∈ Dmaj do
6: find k nearest neighbours of x
7: calculate safe level of x
8: end for
9: remove ‘diff’ examples with the lowest safe level

values from Dmaj

10: end if
11: D′ = Dmaj ∪Dmin

12: return D′

assigning particular classes into minority ones. It resulted
in constructing two extra variants of cleveland data.
Therefore, datasets include from 1 to 5 minority classes.
Additionally, we choose 4 synthetic data sets coming
from the work of Lango et al. (2017), where art1 is
the easiest while art3 and art4 more difficult ones.
All the considered datasets represent different degrees of
difficulty for learning standard classifiers.

5.3. Class similarities and dataset difficulty. To
study the influence of modeling various potential relations
between classes, we chose six different configurations of
the similarity values μij , cf. Table 3. Their values model
possible various expert understanding of the safer class
neighborhood.

SIM1–SIM3 are coming from the earlier study
(Lango et al., 2017), where, e.g., SIM1 represents an
expert’s acceptance to potential overlapping between
minority classes, while SIM2 adds more acceptance for
similarity with majority classes. Then, the last three
configurations cover the extreme views on which class
similarity could be the most preferred.

In the first step, we evaluate the potential difficulty
of class distributions in each dataset by calculating the
average values of safe levels independently for minority
and majority classes. Due to space limitations we
present in Table 5 their values for SIM2 configuration
only. One can notice that the chosen datasets represent
different categories of difficulty. Following the original
interpretations of Napierala and Stefanowski (2016) the
datasets with high average values (close to 0.9) should be
easier for recognizing classes, see, e.g., dermatology,
car, vehicle, thyroid or some synthetic data. On
the other hand, datasets such as cleveland, cmc,
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Table 2. Characteristics of multi-class imbalanced datasets. Names of classes are given in the first row, while their cardinalities in the
second row.

Dataset Minority classes Majority classes

balance-scale
B L R
49 288 288

car
good vgood unacc acc

69 65 1210 384

cleveland 1
1 2 3 4 0
55 36 35 13 164

cleveland 2
2 3 4 0+1
36 35 13 219

cmc
2 1 3

333 629 511

dermatology
6 1 2 3 4 5
20 112 61 72 49 52

ecoli
pp imUimS omomL cpimL im
52 37 25 145 77

flare
4 5 1 2 3 6

116 51 212 287 327 396

glass
vwf con tab bwf bwnf head
17 13 9 70 76 29

hayes roth
3 1 2
31 65 64

led7digit
5 10 1 2 3 6
52 49 98 94 108 99

new thyroid
2 3 1
35 30 150

vehicle
bus van opel saab
218 199 429

yeast
2 3 5 6 7 1 8 9 10
20 30 35 44 51 463 168 244 429

wine quality red
7 8 5 6

199 81 681 638

art1
MIN1 MIN2 MAJ
120 240 840

art2
MIN1 MIN2 MAJ
120 240 840

art3
MIN1 MIN2 MAJ
120 240 840

art4
MIN1 MIN2 MAJ
120 240 840

glass, yeast and many others may be very difficult.
Furthermore, the choice of similarity degrees influences
the average safe levels, in particular for possibly more
difficult datasets. For instance, the more difficult synthetic
datasets art3 and art4 have smaller safe levels for
SIM3, i.e., 0.4156 and 0.7527, respectively.

Similarly, real datasets; such as, e.g., ecoli, have
SIM3 equal 0.4364 and SIM2 is 0.66316; hayes-roth
SIM3 is 0.36129 while SIM2 is 0.4571. The similar
increases do not occur for easier datasets, see, e.g.,
dermatology SIM3 0.9586 vs. SIM 2 0.96488.

Therefore, modeling higher similarity degrees between
classes increases safe interpretations of possibly more
complex and overlapping classes, which is expected
knowing the approach.

5.4. Impact of similarity degrees on the SOUP
algorithm. Then we check the influence of different
similarity degrees on classification results obtained with
SOUP, including SOUP working with heuristic similarity
values calculated according to Eqn. (2). Due to space
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Table 3. Different configurations of similarity degrees.
Similarity μmin1 min2 μmin maj μmaj1 maj2

SIM1 0.8 0 0.1
SIM2 0.7 0.15 0.2
SIM3 0 0 0
SIM4 1.0 0 1.0
SIM5 0 0.5 0
SIM6 1.0 0 0

Table 4. Average safe levels for all minority and all majority
classes calculated for SIM2 class similarities.

Dataset Minority Majority

balance scale 0.16388 0.88009
car 0.90716 0.96745
cleveland 1 0.62374 0.83104
cleveland 2 0.51762 0.89210
cmc 0.45580 0.59982
dermatology 0.96488 0.97110
ecoli 0.66316 0.83252
flare 0.48246 0.78493
glass 0.51795 0.74309
hayes roth 0.45710 0.66891
led7digit 0.76267 0.77206
thyroid 0.85092 0.98073
vehicle 0.89434 0.89142
wine quality 0.46754 0.64299
yeast 0.56089 0.60316
art1 0.94994 0.96924
art2 0.77986 0.92512
art3 0.61383 0.84882
art4 0.79836 0.90873

limitations, we omit a table with precise results2 and
discuss the main observations.

The first observation is that SOUP in all
configurations improves recognition of the minority
classes while compared with the baseline. Then,
analyzing the G-mean measure for the J4.8 classifier, we
observe that differences between SIM configurations on
individual datasets are high, especially on very difficult
datasets. For instance, differences between SOUP with
different similarity degrees on the cleveland dataset
go up to 30%. Similar observations can be made for
other classifiers: 10% for kNN and 35% for PART.
Furthermore, SIM configurations influence the classifier
performance for various datasets in a diversified way.
For instance, using SIM1 or SIM2 leads to better results
for such data as cleveland1, balance scale,
while SIM6 works better for cleveland2 or wine

2See detailed results on the Web page accompanying this arti-
cle: www.cs.put.poznan.pl/mlango/publications/soup
.html. A SOUP implementation is also available there.

quality. Then, SIM5 is the best for cmc, flare
or glass. In general using higher degrees of class
similarity for difficult data is better than no relations
in SIM3. On the other hand, for safer datasets the
differences are not considerable, e.g., for vehicle or
dermatology the results are the same up to the third
decimal place. Such conclusions also hold for other
considered classification measures they for particular
datasets; go up to 11% for average minority and up to 8%
for F1-measure, both reported for a tree classifier.

Although these differences occurred for particular
datasets, a global statistical analysis does not clearly
indicate the winning configuration. Following the
Friedman rank test, the differences are not significant (the
p value equal to 0.36). In further experiments, we will
use only one similarity function, namely the heuristic
one, as it achieves slightly better results and is adaptive
to different datasets. At this point, we would like to
emphasize that in practice, expert knowledge may be of
key importance to model similarity between classes and
to achieve the best results.

We have also tested SOUP variants with different
orderings of class sampling as well as with different
orders of processing examples with respect to safe levels;
however, since they have not led to better results, we do
not report them. We noted that changing the oversampling
order for minority examples (from the most unsafe ones)
is beneficial to the most difficult data, which is consistent
with results of Błaszczyński and Stefanowski (2015).

5.5. Comparing related approaches. Before the final
comparative experiment for SOUP, we compared only the
related approaches for multi-imbalanced problems. The
results of G-mean for OVO and OVA decompositions,
Global-CS and Static-SMOTE preprocessing methods
while using a J4.8 tree as a base classifier are presented
in Table 5. In OVO and OVA we applied various
resampling methods: random oversampling (ROS),
random undersampling (RUS) and NCR. The results
of the Friedman test are statistically significant (p <
0.0001) indicating differences between methods being
investigated. The performed Nemenyi post-hoc analysis
is summarized in Fig. 1. The results for other measures
and base classifiers are available in the earlier indicated
Web page.

The first observation is that OVO based approaches
are winners compared with OVA and the baseline.
Their advantage is particularly visible for more difficult
datasets. The two best performing variants are OVO with
random oversampling (average rank of 2.55) and OVO
with random undersampling (2.55). Interestingly, the
resampling method Global-CS also performs quite well
(4.11). OVO NCR and Static-SMOTE are the last methods
which have overall performance better than the baseline.
The weaker performance of OVA methods goes in tandem

www.cs.put.poznan.pl/mlango/publications/soup.html
www.cs.put.poznan.pl/mlango/publications/soup.html


778 M. Janicka et al.

Table 5. Comparison of G-mean for decomposition methods and Global-CS for using decision trees as a basic classifier.
Dataset baseline Global Static OVO OVO OVO OVA OVA OVA

CS SMOTE ROS RUS NCR ROS RUS NCR

balance scale 0.000 0.340 0.080 0.526 0.602 0.474 0.302 0.297 0.000
car 0.847 0.940 0.897 0.939 0.876 0.919 0.112 0.184 0.130
cleveland 1 0.227 0.000 0.052 0.255 0.287 0.262 0.254 0.259 0.000
cleveland 2 0.000 0.000 0.037 0.288 0.285 0.000 0.280 0.287 0.000
cmc 0.483 0.478 0.452 0.509 0.514 0.526 0.510 0.511 0.529
dermatology 0.945 0.952 0.927 0.921 0.929 0.948 0.000 0.000 0.000
ecoli 0.728 0.710 0.738 0.805 0.767 0.000 0.000 0.000 0.000
flare 0.446 0.570 0.421 0.544 0.568 0.522 0.000 0.000 0.000
glass 0.625 0.715 0.322 0.699 0.697 0.691 0.000 0.000 0.000
hayes roth 0.843 0.832 0.835 0.843 0.843 0.838 0.000 0.000 0.000
led7digit 0.786 0.770 0.756 0.771 0.779 0.722 0.120 0.162 0.156
thyroid 0.889 0.922 0.879 0.922 0.886 0.913 0.904 0.927 0.898
vehicle 0.912 0.912 0.915 0.916 0.923 0.915 0.133 0.141 0.164
wine quality 0.432 0.464 0.356 0.492 0.476 0.434 0.459 0.489 0.356
yeast 0.000 0.406 0.184 0.442 0.479 0.000 0.000 0.000 0.000
art1 0.945 0.961 0.947 0.958 0.949 0.949 0.039 0.000 0.039
art2 0.686 0.734 0.741 0.758 0.777 0.762 0.250 0.253 0.244
art3 0.410 0.534 0.535 0.615 0.612 0.559 0.307 0.304 0.236
art4 0.785 0.829 0.856 0.840 0.872 0.839 0.000 0.000 0.000

2 3 4 5 6 7 8
CD

OVO ROS
OVO RUS
Global CS
OVO NCR

S. SMOTE
baseline
OVA RUS
OVA ROS
OVA NCR

Fig. 1. Vizualization of Nemenyi post-hoc analysis results for
preprocesing and decomposition methods.

with the earlier experimental studies by Fernandez et al.
(2013). However, the differences between the OVA
methods and the baseline are not statistically significant
according to the post-hoc analysis. Similar observations
hold for other investigated classifiers.

5.6. Comparing SOUP with other methods. We first
compare SOUP’s performance with other preprocessing
methods and later proceed with the comparison with the
best ensemble methods.

The left part of Table 6 presents the results of G-mean
for a tree classifier with different preprocessing methods.
Morover, Table 7 presents the results of paired Wilcoxon
tests between SOUP and other preprocessing methods.

Both the G-mean values as well as the results of
Wilcoxon tests indicate the superiority of SOUP over the
other methods. Using typical significance level α =
5%, one can reject the null hypothesis about the lack
of differences between SOUP and other preprocessing
methods. On the average, SOUP achieves by 5.6%

3 4 5 6

CD

SOUP
MRBB

OVO RUS
OVO SO

OVO ROS
OVO SU
OVO NCR

Fig. 2. Vizualization of Nemenyi post-hoc analysis results for
SOUP and best ensemble methods.

higher results in terms of the G-mean in comparison
with the second best preprocessing method (Global-CS)
with the J48 classifier. It also yields better results than
Static-SMOTE of about 11.6% on the average (median
5.7%). Similarly, for k-NN SOUP outperforms Global-CS
by an average of 4, 9% (median 1.3%) and even for PART,
where the results are not statistically significant, SOUP
achieves better results by about 0.8% (both median and
average).

Then, we proceed with the comparison of SOUP
with the best three performing methods from the previous
experiment: OVO RUS, OVO ROS and OVO NCR.
We have also added to this final comparison the best
performing method from our earlier studies (Lango
and Stefanowski, 2018; Lango, 2019), namely, the
undersampling version of Multi-class Roughly Balanced
Bagging (MRBB). Additionally, we ininvestigated the
performance of new combinations of OVO with the
introduced resampling, i.e., SO and SU variants. The
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Table 6. Comparison of best methods and SOUP with the tree J48 algorithm and G-mean.
Dataset Global Static SOUP OVO OVO OVO OVO OVO MRBB

CS SMOTE ROS RUS NCR SO SO

balance scale 0.340 0.080 0.585 0.526 0.602 0.474 0.542 0.547 0.683
car 0.940 0.897 0.941 0.939 0.876 0.919 0.940 0.794 0.907
cleveland 1 0.000 0.052 0.266 0.255 0.287 0.262 0.268 0.302 0.021
cleveland 2 0.000 0.037 0.303 0.288 0.285 0.000 0.284 0.312 0.055
cmc 0.478 0.452 0.535 0.509 0.514 0.526 0.522 0.524 0.517
dermatology 0.952 0.927 0.962 0.921 0.929 0.948 0.925 0.939 0.959
ecoli 0.710 0.738 0.735 0.805 0.767 0.000 0.791 0.739 0.768
flare 0.570 0.421 0.566 0.544 0.568 0.522 0.582 0.506 0.542
glass 0.715 0.322 0.667 0.699 0.697 0.691 0.701 0.697 0.400
hayes roth 0.832 0.835 0.835 0.843 0.843 0.838 0.843 0.775 0.823
led7digit 0.770 0.756 0.778 0.771 0.779 0.722 0.765 0.704 0.778
thyroid 0.922 0.879 0.922 0.922 0.886 0.913 0.897 0.896 0.932
vehicle 0.912 0.915 0.915 0.916 0.923 0.915 0.904 0.880 0.943
wine quality 0.464 0.356 0.471 0.492 0.476 0.434 0.524 0.490 0.525
yeast 0.406 0.184 0.451 0.442 0.479 0.000 0.000 0.484 0.201
art1 0.961 0.947 0.960 0.958 0.949 0.949 0.959 0.951 0.960
art2 0.734 0.741 0.777 0.758 0.777 0.762 0.754 0.804 0.808
art3 0.534 0.535 0.608 0.615 0.612 0.559 0.627 0.634 0.631
art4 0.829 0.856 0.899 0.840 0.872 0.839 0.831 0.878 0.893

Table 7. p-Values of the paired Wilcoxon signed rank test be-
tween SOUP and other preprocessing methods on G-
mean measure for various classifiers.

Alg. baseline Global-CS Static-SMOTE

J4.8 < 0.001 0.036 < 0.001
PART < 0.001 0.153 < 0.001
kNN < 0.001 0.005 0.002

Table 8. Average rank of compared algorithms (the lower, the
better) from Friedman tests on G-mean measure for
various classifiers.

Alg. SOUP MRBB OVO
RUS

OVO
SO

OVO
ROS

OVO
SU

OVO
NCR

J4.8 3.29 3.37 3.82 3.97 4.00 4.13 5.42
PART 3.8 3.05 4.05 4.0 4.45 4.2 4.45
kNN 3 3.95 4.1 4.45 4.55 3.85 4.1

results of the G-mean for a tree classifier are presented
in Table 6.

Note that from the Friedman test did not reject the
null hypothesis on equal performance of all classifiers
with p = 0.058, although it is nearly at the typical
confidence level. The Nemenyi post-hoc analysis of
average ranks is presented on Fig. 2. The best method
in our comparison, according to the average rank, is
SOUP and the next is the MRBB method. Following
the Wilcoxon test, the differences between these methods
are insignificant (p = 0.45). According to average
ranks, SOUP outperforms all decomposition approaches,

although it uses one classifier only. The third best method
is the combination of OVO with random undersampling.
We also observed that new resampling is more useful for
oversampling: OVO SO is always better than OVO ROS
in Table 8, while it is not the case for OVO RUS.

Results for kNN are also favorable for SOUP since
it has the lowest rank in such a comparison. For this
component classifier, our extensions of OVO outperform
their random counterparts. Interestingly, the position of
MRBB is lower in this ranking. We relate this to the fact
that kNN is a rather stable classifier while bagging-based
algorithms work better with more unstable classifiers like
trees or rules. For instance, MRBB with PART component
classifiers again achieves the best ranks (even better than
SOUP). Other top-performing methods for PART are
SOUP and OVO SO.

We have also analyzed the size of the constructed
trees (expressed by the number of nodes) for two less safe
datasets: flare and yeast. The application of SOUP
on the flare dataset resulted in the construction of trees
which were, on the average, twice as large as the baseline
tree without any pre-processing method. Conversely, the
trees in the OVO approaches had considerably smaller
sizes. However, since those methods required many trees
to be constructed, the sum of tree sizes exceeded the size
of SOUP’s tree almost four times. Another observation
was that the trees for undersampling approaches was
always smaller than those for oversampling methods.
Regarding the yeast dataset, the results were quite
similar with the exception that SOUP constructed a tree



780 M. Janicka et al.

slightly smaller (341.6 nodes) than the baseline (350.8).
As SOUP requires only one classifier to be constructed, it
helps human to interpret it easier than complex ensembles
without significantly sacrificing predictive abilities.

6. Conclusions

In this work, we have considered a new approach to deal
with multiclass imbalanced data, wherein interrelations
between classes are modeled by means of analyzing
the neighborhood of minority examples and taking into
account an expert’s information about the degrees of
similarity between classes. It estimates the examples’ safe
levels which indicate to what extent these examples are
problematic for learning an accurate classifier.

The main contribution of our paper is demonstrating
that those safety coefficients can be efficiently exploited
in resampling techniques to improve classifiers. To this
end, we have introduced a new preprocessing algorithm
SOUP, whose key elements are a resampling with
respect to examples’ safe levels and a particular ordering
of undersampling majority classes and oversampling
minority ones.

Its experimental evaluation has clearly shown that
defining similarity degrees influences the estimation of
the multiclass dataset difficulty. Moreover, increasing
these degrees between minority classes improves SOUP
classification of the most unsafe datasets. SOUP
with all considered configurations of similarity degrees
has outperformed baseline, no-preprocessing classifiers.
It also works significantly better than Static-SMOTE
and Global-CS two—popular preprocessing methods for
multiclass imbalances. The next comparative experiments
have demonstrated that SOUP can be slightly better then
MRBB—one of the best bagging ensembles for some
types of component classifiers. SOUP is also better
than OVO decompositions which are the most frequently
recommended in the literature. Additionally, the
components of SOUP preprocessing have demonstrated to
be useful to improve OVO ensembles, mainly in the case
of oversampling. Finally, unlike the complex structure
of ensembles, SOUP results in a much smaller single
classifier, which may be more interpretable for humans
while using, e.g., tree classifiers.

Nevertheless, as a future research direction, we plan
to use SOUP inspirations in generalizing an underbagging
ensemble, such as Neighborhood Balanced Baging, in
order to further improve predictive ability.
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