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A NOTE ON APPLICATIONS OF INTERPOLATION
THEORY TO CONTROL PROBLEMS
OF INFINITE-DIMENSIONAL SYSTEMS'#

HANs ZWART™

In this paper we shall give two examples of how interpolation theory plays an
important role in control theory. The first one is proving the necessary and
sufficient conditions for admissibility of a one-dimensional input vector for a
diagonal semigroup. The other problem is showing lack of optimizability for the
well-known Zabczyk example (Zabczyk, 1975).

1. Introduction

Complex analysis has played an important role in control theory since its inception.
For instance, complex analysis appears the Nyquist stability test, Bode diagrams,
and more recently, H .~control. These applications of complex analysis are in the
frequency domain. In this paper, we focus on the use of complex analysis, in partic-
ular interpolation theory, in questions concerning time-domain properties. Roughly
speaking, interpolation theory deals with the following two questions:

1. Given two sequences of compléx numbers, a, and b,, when does there exist a
holomorphic function with certain growth properties such that f(a,) = b,?

2. Given a complex valued function with certain growth properties and a set of
numbers in its domain, what is the image of this set of numbers?

The fact that interpolation problems are closely related to moment problems make
them useful in control theory, in particular in solving controllability questions — see
e.g. (Fattorini, 1975; Parks, 1973; Russell, 1967; 1978). In this paper, the focus is on
the use of interpolation problems in proving admissibility and lack of optimizability.
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2. Admissible Input Operators

In this section, we reprove a well-known result from (Ho and Russell, 1983; Weiss,
1988) in a simple way, by using strong results from interpolation theory. We remark
that a different, but also simple, proof was given recently by Grabowski (1995).

Consider the abstract equation
z(t) = Az(t) + bu(t), z(0) = zo (1)

where A is an infinite matrix given by

A 0
0 X O

A= . 2
. 0 /\3 0 ( )

with Re(A,) < —¢ < 0 and b is an infinite vector

T
b=<b1 b2 b3 ) . (3)
System (1) is then equivalent to
Zn(t) = Anzn(t) + bpu(t) (4)

for all n. It can be shown that A generates a Cp-semigroup on £5, the space of
all square summable sequences (see e.g. Curtain and Zwart, 1995, Chapter 2), so the
solution of (1) is, for each t > 0, an element of £;, provided that « = 0. If this is true
for any locally square integrable input function u, then b is said to be admissible
(Weiss, 1988). The following definition states this precisely.

Definition 1. Let T'(t) be the Cp-semigroup generated by A. The input operator b
is admissible for T'(t) if there exists a to > 0 such that

/;0 T(to — 7)bu(r)dr ‘ (5)

is an element of £, for all u € L4(0,tp).

Since T'(t)ro € €5 for every t > 0 and zy € f2, we have that if the system is
admissible, there is at least one ¢ for which the solution of (1) lies in £3. In the next
lemma it is shown that admissibility implies that (1) has a solution which lies in £,
for all ¢ > 0 and all locally square integrable u. Furthermore, we shall show that we
can take ¢y equal to infinity.

Lemma 1. Consider system (1) with assumptions (2) and (3).
1. b is admissible for T(t) if and only if

t
/ T(t—71)bu(r)dr € £y (6)
o ‘
for all w € Ly(0,t) and all t > 0. .
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2. b is admissible for T(t) if and only if

/00 T(r)bu(r)dr € £, » (M)
0
for all u € Ly(0,00).

Proof. The proof of the first part can be found in (Weiss, 1989). To prove the second
part, let us assume that u € L3(0,00), so from the first part we know that the
sequence {zn}, zn := [; T(r)bu(7)dr,isin £. If M > N, then it follows easily from
the semigroup property of T'(t) that

M—-N-1 1
M —2ZN = Z T(N+Ic)/ T(T)bu(r + N + k)dr
k=0 0
Since the system is exponentially stable and b is admissible, it follows from this

equality that z, is a Cauchy sequence in the Hilbert space €. So it has a limit
I T(r)bu(r)dr in £s. [

The operator T'(t) has the form

et 0
0 e 90
T(t) = 0 Mt g (8)
From this, it follows that (7) can be written as
® /\11'
/ eMThu(r)dr
0
/ e hyu(r) dr 9)
0

Note that each element in this vector can be seen as the Laplace transform of u at
a certain point. So if we denote the Laplace transform of u by @, then we can write
this vector as

(a2, (=X, - ) (10)

Hence the input operator is admissible if and only if the vector (10) lies in 4, i.e.
o .
> (= An)bn]? < 00 (11)
n=1

for all u € L3(0,00).
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Note the Laplace transform of an L, (0, co)-function is an H-function, that is,
analytic in the right half-plane and square integrable over every line parallel to the
imaginairy axis (see Hoffman, 1962). The admissibility of the input vector b is then
equivalent to summability properties of an Ha-function. The following theorem of
Carleson (Garnett, 1981, Theorem 5.6, p. 33) is therefore relevant.

Theorem 1. The following assertions are equivalent: L

1. The measure o is a Carleson measure, i.e. it is o positive measure on the right
half-plane € = {s € €| Re s > 0} satisfying

U(R(h,w)) <ch (12)
for all rectangles R(h,w):={z+y€C|0<z<h,|ly—w| <h}.
2. For all f € H,, the following inequality holds
1) a0 < cal 1, (13)

0

From this theorem we have the following corollary.

Corollary 1. Consider system (1) with A and b given by (2) and (3), respectively.
Then the input vector b is admissible if and only if the following holds:

Y. | <mh (14) :
—An ER(h,w)
for some m independent of h and w.
Proof. If we define the positive measure o as
o(Rhw)= 3 Il
—An ER(h,w)

then it is easy to see that

o0

[ 1@ do0) = 3 1 =A)Plenl

0 n=1
The corollary follows from this and Theorem 1. ]

Relation (14) is known as the Carleson measure criterion. We apply it to a simple
example.

Example 1. Consider the heat equation with boundary control action:

Oz 0%z 0z 9z

E(xat) = W(‘Tat)a '5;(0175) =0, %(l’t) = U(t), Z(.’I},O) = Zo(.’E) ?

From Example 3.3.5 of (Curtain and Zwart, 1995), we have that this partial differential
equation can be formulated as (1), where A, = —7?(n — 1), by = 0, and b, =
(—1)"*14/2. As can be seen from the eigenvalue at zero, this system is not stable.
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However, it is easy to see that b is admissible for 7'(¢) if and only if it is admissible
for e~**T'(t). Hence we define now X% := A,.— ¢ and check the inequality (13). Since
all the eigenvalues lie on the real axis, we only have to check this inequality for w = 0.
Hence we have to calculate :

> P

n?w24e€R(h,0)

There are approximately v&/7 n’s in R(h,0), and so this sum can be bounded by
¢Vh, for some constant c. In other words, this input operator is admissible.

For other examples, we refer to (Ho and Russell, 1983).

3. Optimizability of the Zabczyk Example

The Zabczyk ezample (Zabczyk, 1975) has an infinitesimal generator which is block
diagonal, where the blocks are Jordan ones with growing sizes. Let

A O
0 4 0 .
A= | (15)
. 0 As 0

where A, is the n xn matrix

[\, 1 0 --- 0
0 M 1
Ap = (16)
o --. 0 A )

Furthermore, we assume that the )\, are unequal and all have real parts equal to
one. This operator generates a Cy-semigroup that does not satisfy the spectrum-
determined growth assumption. As is shown in (Zabczyk, 1975) the growth of this
semigroup is two, but the maximum over the real part of the eigenvalues is one.
Since this system is unstable, it is logical to ask whether or not it is stabilizable
by some feedback law. Here we shall investigate this question for one-dimensional
feedback operators. Since we additionally want the input trajectories generated by the
stabilizing feedback to be square integrable, our stabilizability question is equivalent
to optimizability. We shall show that the answer to this question is negative.

We take the input vector b in the form (3), but now the b,’s are vectors in C".
We assume that all the elements in these vectors are uniformly bounded, i.e. the
{s-norm of the infinite vector b is finite.
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The problem we discuss in this section is whether or not we can choose for every
2o € £y an input u € Ly(0,00) such that the solution z(t) of

2(t) = Az(t) + bu(z), z(0) = 2 an
is square integrable, i.e.

/0 Z @I dt < oo (18)

In other words, can the cost functional

T(z0,u) = /0 T IR + a1 dt Qo)

be made finite for every initial condition? This is commonly known as optimizability.
Since we are working with a general input operator, we have to be more precise what
is meant by the solution of (17). We say that (z(-),u(-)) satisfies (17) if and only if

t
Zn(t) = etzn o + / eAn(t=9)p u(s) ds
0

where z,(-) and b, denote the n-th component vector of z(-) and b, respectively.
Hence we have decomposed the state according to the generator A, see (15).

In the next lemma, we show that the input that makes the cost finite can be
chosen in a special way.

Lemma 2. If system (17) is optimizable, then for each zy € £y there ezists an input
U such that

J(z0,u) < M?||z|? (20)
for some M independent of zy and wu.

Proof. We prove this by using the Baire Category Theorem.

Step 1. First we remark that the square root of the cost functional can be seen as
the norm on the Hilbert space X := L2((0,00); Z) ® L2(0,00). Let

Vy = {zo € Z | there exists an input u such that J(zg,u) < N}

Since the system is optimizable, we have that

Vy =2 ‘ (21)
1

e

In order to apply the Baire Category Theorem, we need to show that Vy is a closed
subset for every N. :



A note on applications of interpolation theory to ... 11

Step 2. Let 2§ be a sequence in Vy which converges to zp in Z. Denote by
(2™(),u™(:)) the state and input trajectories, respectively, that satisfy J(zJ,u") <
N. So in the Hilbert space X, we have that ||(z",u")||x is a uniformly bounded
sequence. Thus it contains a weakly converging subsequence. We denote the limit of
this subsequence by (z,u). Since we can always delete the elements in the sequence
(z™,u™) that are not part of this converging subsequence, we may without loss of gen-
erality assume that (z™,u") is weakly convergent. For weakly convergent sequences,
we have

Iz, W% < liminf [|(z", u™)[[% < N (22)

Furthermore, it is not hard to see that (z,u) satisfies (17). Hence Vy is a closed
subset.

Step 3. By the Baire Category Theorem, there exists an Ny such that Vy, contains
an open ball B(c,p). Let zp be an arbitrary element of Z, and let = be defined as

p
r=c+ ——2o
2| |zl

Then it is clear that = € B(c,p). Hence z satisfies J(z,u®) < Ny for some u®.
For ¢ we can also construct an input u. such that J(c,u®) < Ny. Since the system
is linear, it is easy to see that for the initial state z; and the input

u) = [um() _ uc(_)] 2”;0”
the state is given by
() = [¢#() - 2o0] 2

Hence, since z and ¢ are in B(c, p) C Vn,,

TCao0) = Nl < 16"l + 1 ) ] 2

< [/ 22l < arja

But z, is arbitrary, so we have proved the assertion. E

Taking the Laplace transform of (17), we obtain
€(s) = (sT ~ A) 20 + (sT — A)~"bu(s) (23)

where w and ¢ are the Laplace transforms of u(-) and z(-), respectively. Denote by
H,(¢;) the set of Ho-functions with values in the Hilbert space f. If the system
is optimizable, then the complex-valued functions ¢ and w are in Hq(f2) and Ho,
respectively. V
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Consider the initial condition zy = €,, where
T
€n = ( 0, ---, 0, ez:, 0, .- )
with
T
en = ( a~ ™l a7l ) (24)

and a > 1.

Using the block structure of A and b we can write (23) as

£n(5) = (sIn — Ap)~L [en - bnw"(s)] (25)

where I, denotes the identity on C", &, stands for the n-th block of ¢ corresponding
to é,, and w™ is the w corresponding to €,. By the special structure of A,, we can
write (25) as

1 1
5”,1(5) S — An . (3 - )\n)n €n,1 b"al

Il
+
€

3
—
[V
~
—~~
]
(=)
~~

1
En,n(s) En,n bn,n
0 S — An

Multiplying the top row by (s — A,)™, we obtain

[(s =) ey e+ en,n]

¥ [(3 e NI bn,n]w"(s) = (s — An)"n1(5) (27)

We introduce the variable 7 := s—Im(\,)7. Since the real part of A, is 1, using (24)
we obtain

[E

= (1= 1)™na(7 +Im(\n)) (28)

n [(T 1) by 4+ bn,n]w"(r + Im()\n)y)

Since the shift in the argument of £,; and w™ are purely imaginary, we have that
&na(-+Im(A,)7) and w™ (- +Im(X,)3) are still Ho-functions. Furthermore, their
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norms do not change. Apart from that,

(61 (r + Im()3)] = ] [ et oy a
0
1
<— xn o0 )2
< =l

M

< m”énllez,

by the Cauchy-Schwarz inequality

by (20)

M a
S JaRe(r) Jar=1 (29)

Therefore we have that the sequence &, 1(7 + Im(\,)7) is uniformly bounded on the
disc B(1, %), i.e. the disc with center 1 and radius 1/2.

Furthermore, we have

Ma
vaz—1

where we have used the fact that H, and L;(0,00) are isomorphic, and eqn. (20).

w"( - +Im(An)p) e, = o™l = 1"l La(0,0) < MllEnlle, < (30)

Now we have all the ingredients to prove the contradiction. Since the vector b
has a bounded {.-norm, we have that {(r — 1)"~!b,1 + -+ +b,,} is a bounded
sequence of functions in the disc B(1, ;). Hence it has a convergent subsequence. We
denote this limit function by B(7). For this subsequence, we see from (30) that the
H ;-sequence w™(- +Im(A,)j) is uniformly bounded. Since H is a Hilbert space,
we know that every bounded sequence has a weakly converging subsequence, hence
{w™(- +Im(An)7)} has a weakly converging subsequence. We denote the index set of
this final subsequence by n; and the weak limit of {w™(- + Im(A,)7)} by weo € H.

Note that for Ha-functions, weak convergence implies pointwise convergence.
So letting n — oo along the subsequence ny, we see that for 7 € B(1, %) eqn. (28)
becomes
(6

m + B(T)weo (1) = 0 (31)

Since we is analytic in the right half-plane, and since the first function is meromor-
phic on the complex plane, we see from this equation that B has a meromorphic
extension to the right half-plane. Furthermore, using the analyticity of w., once
again, we see that B must have a pole at 7 = a+ 1. Now the construction of B is in-
dependent of the initial condition, hence independent of «, so it follows that B must
have a pole at every real point larger than 1. This is impossible for a meromorphic
function. Hence we have a contradiction, and so system (17) cannot be optimizable.

Note that lack of optimizability also excludes stabilizability for a large class of
feedbacks. For more about the lack of stabilizability, we refer to the paper (Rebarber
and Zwart, 1996).
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