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DISCRETIZATION CHAOS: VARIABLE STRUCTURE
SYSTEMS WITH FINITE SWITCHING VALUES

XiNGg H. YU*

Discretization chaos in a class of variable structure control systems with finite
switching values is discussed in this paper. It is shown that for the linear os-
cillatory systems with a certain class of sampling periods, discretized variable
structure control enables periodic motions whose periods can be determined.
The patterns of behaviours of the discretized system vary depending upon ini-
tial conditions as well as sampling periods. Simulation results are presented to
show various behaviours.

1. Introduction

A variable Structure Control (VSC) has been studied extensively and received many
applications (Utkin, 1992; Zinober, 1990). The main mechanism of VSC is the so-
called sliding mode behaviour. The sliding mode is attained by designing the control
laws that drive the system state to reach and remain at the intersection of a set of
prescribed sliding surfaces. When in sliding, the system exhibits invariance properties,
such as robustness to certain internal parameter variations and external disturbances.
These invariance properties are maintained when the switching frequency is assumed
to be infinite. This ensures that the system state resides on the prescribed switching
surfaces that exhibit the desired dynamic characteristics.

However in the practical implementation of the VSC control, due to the physical
limitation of switching equipment, the frequency of switching is fixed and not rela-
tively high. Problems, such as severe chattering (or zigzagging), chaotic behaviours,
etc., may appear (Yu, 1993; 1994).

A chaotic system is a nonlinear deterministic dynamical system whose behaviour
is erratic and irregular and so sensitive to small changes in initial conditions that it
is impossible to predict precisely the motion of the system (Grantham and Athalye,
1990). In other words, a chaotic system is a deterministic system exhibiting essentially
random motion.

Discretization chaos is concerned with the deterministic system whose chaotic
motion is caused solely by converting the continuous-time system to discrete-time
system (Grantham and Athalye, 1990).

Discretization chaos in VSC systems with unbounded control magnitudes has
been studied in (Yu, 1993; 1994). It has been shown that for a class of VSC systems,
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increasing sampling periods brings about the transition from the sliding mode to
the pseudo-sliding mode, to irregular “bird” pattern behaviours, and further, to the
instability.

The preliminary study of discretization chaos in another class of VSC systems
with finite switching values has been undertaken in the paper (Yu, 1995) in which
a two-dimensional oscillatory system was dealt with. To the best of the author’s
knowledge, this was the first time the discretization chaos in such VSC systems was
studied. In this paper, we will extend the result in (Yu, 1995) to general controllable
oscillatory linear systems. We will show that different sampling periods may lead the
discretized VSC systems into periodic and chaotic behaviours.

The paper is organized as follows. In Section 2, the mechanism of VSC is briefly
explained and the continuous—time VSC system concerned in this paper with finite
switching values is analyzed in details. In Section 3, the periodic behaviours of the
system discretized using commonly used zero-order-hold are studied. Periods when
the system behaves periodically are determined. Simulation results are presented in
Section 4 to confirm the theoretical investigation as well as various chaotic behaviours
that are yet to be explored. Discussion and conclusions are included in Section 5.

2. Continuous—Time VSC System

This section aims to provide a brief introduction of the theory of VSC and details of
the linear oscillatory system to be studied.

2.1. Mechanism of VSC

To demonstrate the mechanism of VSC, let us consider the following dynamical control
system:

z = f(z,u) (1)

where z € IR™ is the system state and u € IR! is a scalar control input to be
determined. The control « is a closed-loop feedback which has the form u = u(z).
Once such a control is specified, the control system (1) becomes an autonomous
continuous-time dynamical system % = f(z,u(x)).

The prominent VSC is characterized by the control structure

" .
u(z) = { u_(z) %f s(z) >0 @)
v (z) if s(z)<0

where u*(z) # v~ (z) and s(z) = 0 is the switching manifold on which the disconti-
nuity takes place. System (1) under control (2) is actually a differential equation with
right-hand side discontinuity. The task is to design a control law u satisfying (2)
such that the system trajectories reach and reside on the prescribed switching mani-
fold s(z) =0 for ¢ > tp, where ¢y is a particular moment. The prescribed switching
manifold characterizes the desired dynamics to be achieved.
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To ensure the sliding on s(z) = 0, the condition
$§<0 (3)

is needed in the neighbourhood of s(z) =0 for the design of u such that the state z
crosses the switching manifold s = 0, for example, with w*(z) from s > 0 to s < 0,
and recrosses back from s <0 to s > 0 as soon as u~(z) takes place, and so forth,
resulting in the value of u being altered between u* and u~. The resulting motion
is called a sliding mode because of the resulting chattering along s = 0.

Due to the discontinuity of the control on the switching manifold s = 0, the
solution of the differential equation with right-hand side discontinuity should be re-
defined. Assuming s = 0 is a regular and smooth manifold, a function z(t) is a
solution to (1) with closed-loop feedback control u = u(z) in the sense of Filippov
(Zinober, 1990) if

() = af (z) + (1 - o) fy (2) (4)

where fi'(z) = (vs, f*(z,u™(2))), f5 (z) = (Vs, f(z,u™(z))), and a proper o
(0 £ @ £ 1) chosen such that & is orthogonal to the tangent of s = 0, so the solution
remains on the manifold. Here f*(z,u*(z)) and f~(z,u"(z)) are limit values at
s = 0 approaching from sides s > 0 and s < 0, respectively.

When in sliding mode, the system satisfies equations
s(z)=0 and s(z)=0 (5)

and exhibits invariance properties (Zinober, 1990) yielding motion which is indepen-
dent of certain system parameters and disturbances.

The invariance properties are a very important aspect of control systems as the
systems must perform well regardless of certain disturbances in their work environ-
ments. For further details on the theory of VSC, readers are referred to the books by
Utkin (1992) and Zinober (1990).

2.2. Control System to Be Studied

In this paper, we consider the system in the controllable canonical form

T1 = Ty
(6)
n
Ty = — Za,{vi +u
=1
y=x (7
where aj,---,a, are the system constant parameters and u can only take finite

switching values. The switching hyperplane for the system is chosen

S(x) =7 +(22.’L‘2+...+cn_1xn_1 +$n =0 (8)



52 X.H. Yu

where s(r) defines an asymptotically stable motion with properly chosen ¢;,
i =1,---,n — 1. Equation s(z) .= 0 prescribes the desired system dynamics to
be tracked. One can easily see that s = 0 corresponds to the (n — 1)-dimensional
system

Yy Dt ey i+ ay =0
So when the trajectory enters the sliding mode s = 0, the system dimension is reduced
by one.

A natural candidate of VSC with finite switching values that forces the trajectory
into the sliding mode s =0 is

u = — b sgn(s), b>0 9)
where
1 for s>0
sgn(s) = - 10
gn(s) { -1 for s<0. (10)

which is a bang-bang type of switching control. For inequality (3) one obtains
n—1 n—1 n
s§§ = S[Z CiTit1 +in] = S[Z CiTiy1 — Zaia:,- +u}
i=1 i=1 i=1

n—1 n
= Zcizi+1s—2aizis—b|s| (11)
=1 =1

If the condition

n—1 n
-b < Z CiTi+1 — Zaimi < b (12)
=1 =1

is satisfied, then s§ < 0 and the existence of the sliding mode s = 0 as well as the
attractiveness towards it are guaranteed. Inequality (12) actually defines the region of
attraction in the state space towards s = 0. Since s = 0 is asymptotically stable, the
entire system is asymptotically stable and exhibits the desired dynamics s(z) = 0.

The formal solution of the system is

Z(t) = exp (A(t - to))i(to) (13)
with
0 1 0 0
0 0 1 0
A=
—a; —ay —az ‘- —Gn

where & = [z + (b/a1) sgn(s), 2, .., Ta]T.



Discretization chaos: variable structure systems with finite switching values 53

Definition 1. The linear system is called oscillatory if the eigenvalues of A are
non-zero and imaginary. In this paper, the linear system dealt with is assumed to be

oscillatory.

Figure 1 depicts the state space portrait of a two-dimensional oscillatory system
(a1 > 0, az = 0) with the VSC. For the two-dimensional system, the system trajec-
tory is governed by the switching between two oscillators whose equilibriums are at
(=b/a1, 0)T and (b/a;, 0)T. Two typical trajectories are shown in Fig. 1. The tra-
jectory starting from z,, which is inside the region of attraction, slides along s =0
as soon as it hits the switching line. The other trajectory that starts from z,, which
is outside the region of attraction, exhibits oscillation before it enters the region of
attraction. It then slides on the switching line as soon as it hits it.

>0

2r s<0 xb T e .-

)
1w

Fig. 1. Phase plane portrait and typical trajectories.

3. Discretization Chaos in the VSC System

3.1. Discretized System

A commonly used discretization scheme is the so-called zero-order-hold (Astrom and
Wittenmark, 1984). The control is withheld in the half-closed half-open sampling
interval [kh,(k + 1)h), where k is an integer and h is the sampling period. The
discretized system can be derived as follows:

Z(k + 1) = exp(Ah)Z (k) (14)

where Z(k) = [z1(k) + (b/a1) sgn(s(k)),z2(k),...,z.(k)]T. Equation (14) can also
be written as

z(k+1) = ®z(k) + ['(k,k+ 1) (15)
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where

® = exp(Ah)
T(k,k+1) = (b/ax) [ exp(AR)ersgn(s(k)) - exsgn(s(k + 1))] (16)

with e; = [1,0,...,0]7.

The fixed sampling period h allows overstepping of the desired equilibrium be-
cause the control value is withheld during the sampling interval. The system trajec-
tory may never converge to the desired equilibrium at all, since the discretized system
is obtained by switching between two linear systems whose equilibriums are different
from the desired equilibrium. The problem of interest is the patterns of behaviours.

3.2. Chaotic Behaviours

Discretization chaos is concerned with the deterministic system whose chaotic be-
haviours are caused solely by converting the continuous-time system to a discrete-
time one (Gratham and Athalye, 1990). That is, chaos occurs in a discrete-time
analog of a continuous-time system for cases where the continuous-time system does
not exhibit any chaos at all. The discretization chaos measures the deterioration of
the system performance due to discretization. The terminology sensitivity to initial
conditions in the continuous-time case should then be extended to the sensitivity to
initial conditions as well as sampling periods in the discrete-time case. For example,
trajectories starting from two neighbouring initial states may have completely differ-
ent behaviours: one converges and the other diverges. Trajectories with two slightly
different sampling periods may give rise to totally different behaviours.

The complete answer to the discretization chaos in system (7) is not available
due to the complexity of the problem. However, for some class of systems, we can
figure out conditions that enable periodic and chaotic behaviours. The results in (Yu,
1995) constitute an initial study of two-dimensional oscillatory systems. This paper
deals with a more general case, but restricted by the following assumption.

Assumption 1. [t is assumed that system (7) is characterized by the properties:

o All the eigenvalues of A are nonzero and imaginary, i.e. with distinct frequencies
W1,Ws,...,Wn/2 (actually Tw;j is a pair of conjugate eigenvalues of A), where
n 1is the rank of the system.

o There exists a frequency such that all other frequencies are its harmonics. Without
loss of generality, assume wy is the frequency and w; =lwy, i1 #1 and 1 > 0 is
an integer.

In the following, we shall prove for certain classes of sampling periods that if a
system behaves periodically, then we can compute its period. However, we do not have
all answers to all cases. Accordingly, in Section 4 we demonstrate other behaviours
including chaos through simulations.
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Theorem 1. For system (7), under Assumption 1, if the sampling period equals
h = (27)/(Nw1) with even N and there exists a ko > 0 such that for k > ko,
s(k)s(k +1) < 0, i.e. the trajectory moves one and only one step on each side of
the switching hyperplane s = 0, then the system exhibits periodic behaviours with
period n for k > kg.

Proof. Without loss of generality, we assume s(kg) > 0. Iterating (15) for N =
k — ko + 1 steps yields

k
o(k +1) = *FoFlg(ko) + Y SRT(k + ko — i,k + ko + 1 — 1) (17)

i=kg

Since s(k)s(k +1) <0 for k > ko, we have

T(k,k+1) = (b/ay) [exp(Ah)elsgn(s(k)) —eysgn(s(k + 1))]

= (b/a1) | exp(AB)es + el] sgn(s(k)) = ~T(k — 1, k)
and hence
T(k+ko—t,k+ko+1—14)=(=1)*"T(ko, ko + 1) (18)
Thus

k
o(k+1) = ¥ Rotg(kg) + Y &R (~1)* T (ko, ko + 1)

i:ko
k .
= FRoFlg(kg) + (—1)F R0 (ko, ko +1) Y & (—1)iHo
t=ko
k—kg .
= @ Rotlg(ko) + (~1)F R (ko ko +1) D '(-1)*  (19)
=0

since the entries of exp(ANh) contain the terms cos(w;Nh) and sin(w;Nh) for
i=1,...,n/2 and w; = lw;. For h = (2nr/Nw;), cos(w;Nh) =1 and sin(w;Nh) =0
for ¢ =1,...,n/2, which is the same as for the case h = 0, hence ®*~*o+l = N =T
and eqn. (19) can be expressed as

k—ko
o(k +1) = o(N + ko) = z(ko) + (—1)**T(ko, ko + 1) Y &(-1)* (20)
=0 .
Since for an even integer m
m—1
A™ — B™ = (A _ B) Z (_l)iAm—i—lBi
i=0
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it follows that

k—ko k—kg
Z @i(——l)i — Z ,I)k—ko—j(_l)k~ku~j
i=0 =0
— (_1\k—ko o~ k—ko—3i(_1\J
= (-)Fh Y@ (-1)
j=0
= (~1kh (@ - D)@k ) (1)

Again, since N is even and ®F %0+l = &N = J we see that (21) is zero. Hence
eqn. (20) becomes

(N + k) = z(ko) (22)

which shows the period of the system trajectory is N. H

Corollary 1. If the conditions of Theorem 1 are satisfied except that, for k >
ko, we have s(ko)s(ko + 1) > 0, s(ko + 1)s(ko +2) < 0, s(ko + 2)s(ko + 3) > 0,
s(ko +3)s(ko +4) <0, -+, i.e. on each side of the switching line s = 0 the system
trajectory always moves two and only two steps before jumping to the opposite side
of the switching line, then the system ezhibits periodic behaviours with period 2N for
k>ko.

Proof. Because on each side of the switching hyperplane, the system trajectory moves
two and only two steps before jumping to the other side of the switching hyperplane,
we can actually consider the case when the system trajectory moves with a “larger”
step 2h which adds two steps together. From Theorem 1 one can conclude that
the system exhibits the periodic behaviour with period n and the sampling period
h' = 2h. Hence h = (27)/((2N)w) which indicates that the period of the “new”
system trajectory is 2NV, H

Remark 1. From Corollary 1 one can see that if the conditions of Theorem 1 are
satisfied and the system trajectory moves ! steps and only [ steps on each side of the
switching hyperplane before jumping to the opposite side of the switching hyperplane,
then the system exhibits a periodic behaviour with period IN.

Theorem 1 and Corollary 1 show that the period of the trajectory can be deter-
mined if the trajectory moves the same number of steps on each side of the switching
hyperplane. However, there may be cases where the steps on each side are different.
We have the following theorem to deal with it.

Theorem 2. For system (7) under Assumption 1, if the sampling period is h =
(2m)/(Nw1) and there ezists a ko > O such that, for k > ko, the p steps when the
trajectory moves on one side of s(k) =0 are different from the q steps on the other
side of s(k) = 0, then the system ezhibits periodic behaviours with period n(p + q)
for k > k. '
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Proof. Without loss of generality, we assume s(ko) > 0. Iterating (15) for N(p + q)
steps starting from ko yields

z(N(p +4q)+ ko)

N(p+q)—-1+ko .
= Nerg(k)+ S @"kOI‘(N(p+q)+2ko—i,N(p+q)+2ko—i+1)(23)

1=kg

Since we assume that the system trajectory moves p steps on one side of s(k) = 0
and ¢ steps on the other side of s(k) = 0, it follows that, in the first term of (23),
N(P+9) = I because it contains the terms cos(w;N(p + q)h) =1 and sin(w;N(p +
q)h) = 0 for h = (2r)/(Nw1) and i = 1,...,n/2. In the second term of (23), we
have
N{p+q)~1+ko
3 cbi-kor(N(p +q) +2ko — i, N(p+ q) + 2ko — i + 1) (24)

i=kg

From the index sequence
ko,ko+1,...., ko +p+q,ko+p+qg+1,...,(p+qN—-1+k

one can see that the terms T'((N(p+q)+2ko —%, N(p+q) +2ko—i+1) corresponding
to the subsequence

kot+jko+(pt+a)+i ko +2(0+q) +5- ko +(N-1)(p+a)+5,
jel(p+q)
are the same, since the period of the pattern is p + ¢. The summation (24) can be
rewritten as

N(p+q)—1+ko '
Z @’“k"l‘(N(p+q)+2ko-—z’,N(p+q)+2lco—z'+1)

i=kg

= 3 | X eI (N(p+g) + ko — (i +1(p+4)), N(p+q) + ko

p+qg—1 [ N-1
=0 =0

~G+1(p+q) + 1)]

For a given i, the term I'(N(p+q)+ko — (i +1(p+9)), N(p+q)+ko— (i +1(p+q)) +1)
is the same as for I/ = 1,..., N since the period of the pattern is p + ¢q. Also, since
®N(p+9) = T and, for an integer m,

m—1
A™-B™=(A-B) Y A™'B

=0
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we obtain
N-1 M—1
Pitilpta) — i Z 3Hr+a) = i(@P+IN _[)(® -1)"' =0
1= =0
Therefore
I(N(P +q)+ ko) = z(ko)
which shows that the period of the system trajectory is N(p + q). |

Remark 2. The same argument applies to the case when the system trajectory
moves Mp steps on one side of s = 0 and Mq steps on the other side of s = 0,
where M is a positive integer. The period of the system trajectory is M N(p+ q).

Remark 3. Only two periodic behaviours have been explored in this section for a
class of sampling periods. Other sampling periods may give rise to chaotic behaviours.
However, even periodic behaviours do not mean the system is not chaotic. The trajec-
tories starting from two slightly different initial states with the same sampling period
may end up with different periods. Several typical behaviours will be demonstrated
in Section 4. Investigations into reasons behind chaotic behaviours are under way.

4. Simulations

In simulations we choose the fourth-order system with a; =4, a3 =0, a3 =5, a4 =0
such that it has four eigenvalues j, —j, 2j, —2j (w; = 1, we = 2) where j = /—1.
The second set of the conjugate eigenvalues 2j, —2j indicates that, as regards the
frequency of oscillatory motion, we = 2w; = 2. Also in the simulations, b = 1 is
chosen and ¢; = ¢3 = ¢3 = ¢4 = 1. For each simulation, 1000 iterations are made. In
the figures, we project the four-dimensional trajectories onto a two-dimensional plane
and a three-dimensional state space so that the motion can be visualized.

We set first h = (27)/10. For the initial state x(0) = (0.1,0,0,0)7, the system
trajectory moves one and only one step on each side of the switching hyperplane, the
period of the trajectory is 10 (see Fig. 2), which confirms the result of Theorem 1. For
the initial state 2(0) = (1,0.5,0.3,0.2)7, the system trajectory moves two and only
two steps on each side of the switching hyperplane, the period of the trajectory (see
Fig. 3) is 20, which confirms Corollary 1. For the initial state z(0) = (2,1,0.3,0.2),
the system trajectory moves again one and only one step on each side of the switching
hyperplane so that the period of the trajectory is 10 (see Fig. 4). The sensitivity of
the patterns of trajectory to initial conditions is observed.

We choose the second h = (27/7). For the initial state z(0) = (1,0.5,0.3,0.2)7,
the system trajectory moves two and only two steps on each side of the switching
hyperplane, showing that the irregularity disappears if the initial condition is changed.
The period of the trajectory (see Fig. 5) is 14, which confirms Corollary 1. For the
initial state z(0) = (2,1,0.3,0.2)7, the system trajectory moves two steps on the
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side s > 0 and one step on the side s < 0. From Fig. 6, the period is 21, which
confirms Theorem 2. Again, this simulation provides another proof that different
initial conditions may give rise to a totally different pattern of behaviours.

Further strange phenomena may be observed if we choose different n’s and initial
conditions. In Fig. 7, the chaotic motion is observed with the initial condition z(0) =
(0.1,0,0,0)T and n = 5. The system trajectory moves apparently in an irregular
pattern on each side of s = 0 causing the trajectory to diverge. If another initial
condition z(0) = (10,0.5,0.3,0.2) is chosen, the irregularity occurs as well, resulting
in a strange pattern of divergence. Increasing iteration steps we observe that the
trajectory goes to infinity. ‘

The low sampling frequencies in the simulations above are chosen to demonstrate
the periodic patterns of the system behaviours. If NV is large, i.e. h is small, the period
of the periodic trajectories will be large.

5. Discussion and Conclusion

The discretization chaos in the oscillatory systems using VSC with only finite switch-
ing values available has been demonstrated and studied. It has been shown that, for
the oscillatory system, periods of the periodic behaviours for a certain class of sam-
pling periods can be determined. Only two classes of movement patterns have been
studied in this paper. Some behaviours are yet to be explored for other patterns and
other classes of VSC systems.

To the author’s knowledge, this is the first time discretization chaos in VSC sys-
tems with finite switching values is studied. More complex systems will be investigated
in forthcoming publications.
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Fig. 6(c). Switching functions s

versus t for 100 steps.
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Fig. 7(c). Switching functions s versus ¢ for 100 steps.
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