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SHAPE OPTIMAL DESIGN FOR A FLUID-HEAT
COUPLED SYSTEM

DENISE CHENAIS*, JEROME MONNIER* **
JEAN-PAUL VILA***

This paper deals with the shape optimal design problem for a fluid-heat coupled
system used in the car industry. For modelling, we assume that the flow is
stationary, potential and incompressible, and we consider the thermal transfer
by convection, diffusion and radiation with multiple reflexions. The whole model
is a non-linear integro-differential system of two partial differential equations
and one integral equation. These three equations are coupled. We present the
mathematical analysis of this model (the existence, uniqueness and regularity
of the solution) as well as its numerical analysis. Then we present the shape
optimal-design problem: we seek to minimize, with respect to the domain in
which the equations are defined, a cost function which depends on the fluid
temperature. This control problem is solved by a descent algorithm. We prove
that, under some physical assumption, the solution of the system is differentiable
with respect to the domain. We introduce the adjoint state equation and we
give an expression for the differential of the exact cost function.

1. Introduction

The industrial problem we want to solve is the following: we model the air flow and
heat transfer under a car bonnet (see Fig. 1). Then we seek to optimize the hose
shape in order to minimize the cost function dependent on the hose temperature.

The paper is organized as follows. In Section 2, we describe the physical model
and the boundary conditions. In Section 3, we give a proof of the existence and
uniqueness of the solution, and we discuss its regularity. Then, in Section 4, we state
our results on the existence and uniqueness of the discrete solution and our results
of convergence. We present the shape optimal-design problem in Section 5 and give
an expression for the design gradient. Finally, numerical results are presented in
Section 6.
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Fig. 1. Engine scheme.

2. Physical Model

We assume that the fluid flow is stationary, incompressible and potential, and we
consider the heat transfer by convection, diffusion and radiation. We denote by u
the fluid velocity and by # the temperature. The radiant energy which flows away
from a surface per unit area is called the radiosity and is denoted by w.

Let w be a Lipschitz bounded open set in IR™ (n=2 or 3) and dw be its bound-
ary. The fluid velocity u is derived from a potential ), the solution of the Laplace
equation

Ay =0 in w : (1)
The velocity satisfies u = V1.
The conservation of energy gives
-AA0+pCou- V=0 in w (2)

where A, p and C, are respectively the thermal conductivity, density and specific
heat (at a constant pressure) of the fluid.

Boundary conditions. The fluid boundary conditions are as follows:

e 1 is imposed on the air exit. We denote by fy;l’ the part of the boundary where
the potential is known (Dirichlet’s condition),

e Vip-n=u-n =1, <0 at the air entrance, where v,, is given, and n is the
outwards unit normal vector,
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e and Vi -n=1u-n =0 elsewhere. We denote by v¥ the part of the boundary
where V1) -n is known (Neumann’s condition).

We have 'y:f’ Uv¥ = 0w and meas ('yff) > 0.

The thermal boundary conditions are as follows:

e The temperature is imposed on the engine-block boundary, on the exhaust pipe
and on the air entrance. (We denote by 73 the part of the boundary where the
temperature is known.)

e The thermal flow, V8- n, equals 0 on the air exit (denoted by 72, Neumann’s
conditions).

o Elsewhere, we consider the heat transfer by radiation, which is proportional to
the difference between the “outside” temperature and the boundary tempera-
ture. We denote by 'y; this part of the boundary (Fourier’s conditions).

As regards the radiation, we consider multiple reflection effects and we assume
that surfaces are gray, opaque and separated by a radiatively non-participating media.
In addition to that, the emitted and reflected radiation is diffusely distributed (see
e.g. (Sparrow and Cess, 1978)).

The radiosity w satisfies the following Fredholm integral equation of the second
order:

w@) = (1-c@) [ s 1w ds) +e@ot’@) on o0 (@)

where o is the Stephan-Boltzmann constant and ¢ is the surface emittance, ¢ €]0, 1].
The kernel ¢ € L}(8w x 8w) is the angle factor (see e.g. (Sparrow and Cess, 1978));
it is positive and symmetric. It satisfies

i ¢(z,y)ds(z) =1 (4)

‘We deduce from Fourier’s law that

AV -7 =h(f — ) + 66(004—11)) on %

1-
where w is the solution to (3), h is the thermal transfer coefficient and 6y is the
outside temperature.

We have 75U, U7} = 8w and meas(vj) > 0.

To prove the existence and uniqueness of the solution, we will need the following
assumption.

Assumption 1. a) The velocity = belongs to (L?(w))™ with p > n.
b) The parts of the boundary of w denoted by 5 and 7} are such that w-n is
given and positive on v U~}.
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The whole model is as follows:

[ Find 1 € HY(w) such that
Ay =0 in w
(P¥) ¢
Y =y on vy
oY "
 on = Yn on vy,
[ Let i = V1 satisfy Assumption 1.
Find (8, w) € H'(w) x L?(6w) such that
—MA + pCpit -V =0 in  w
0 =64 on ~f
(P 2 =0 on ~¢
on
00 € 4 0
_)\—a——ﬁ—h(ﬂ—ﬁg)+(1_e)(00 w) on 7%
we) = (1-¢@) | sl dsw)
L +e(x)ab*(z) on Ow

We suppose that ¢4 and 1, are given functions in H %(*y;/’) and HZ(y?),
respegtively. The temperatures 63 and 6y are given positive functions respectively
. 1 oo
in Hz(y5) N L®(v3) and HZ(v}) N L®(7}).

3. Mathematical Analysis of the Model

In this section, we prove that the problems (P¥) and (P¥) have a unique solution.

The existence and uniqueness of the fluid velocity follows from the Lax-Milgram
theorem.

3.1. Resolution of the Integral Equation

In order to prove the existence and uniqueness of the thermal model solution, we first
solve the integral equation (Perret and Witomski, 1991).

We define the operator A by

Au(@) = (1-c@) | (@) ds(y) (5)
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and consider the problem

Let 6 € LP(6w), 1 < p < co. Find w € LP(dw) such that
(Id — A)w = eat?
The operator A is a contraction one in LP(dw) for all p € [1,00], so there exists a

unique solution w € LP?(8w). We prove that this solution is the sum of a series and
can be written as follows (Perret and Witomski, 1991):

w(z) = g K(z,y)e(y)o8*(y) ds(y) + e(z)o6*(z) (6)

where the kernel K belongs to L!(8w x 8w) and is positive. In addition to that,
this kernel K satisfies the following properties (Perret and Witomski, 1991; Monnier,
" 1995): '

Proposition 1.

) [ K@wewdsw) =1- <o)
. £(z) _

ii) K( z,y ) ~ @) ds(z) =1
iii) / K(z E(Z()x) ds(z) > 0

3.2. Existence of the Temperature

We deduce from (6) that the problem (P™) can be written down as follows:

4

Let » satisfy Assumption 1.
Find 6 € H'(w) such that
—AAG +pCp u-VO =0 in w
(P9) 0 =140y on ~f
% =0 on 4
| 22— q) on

where the operator Q is defined by
Vz € 8w, Q(8)(z) = h(6— 00)(:r) + e(z)ob*(x)

l—e

/ K(z,1)e(w)o 0 (v) ds(y)
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We truncate the operator @@ and we first prove the existence of the solution to
the truncated problem (Perret and Witomski, 1991).

Let 6ins = min(inf 8,4,inf 6y) and 6,,, = max(sup 84, sup by). We define
73 g 78 v8

Oine  if  0(z) < Oyt
B(z)=1{ 8(z) if Bine <O(z) < Ooup (7)
Gsup lf 0(1') Z 051113

and the truncated operator Q as follows:

Vz € 8w, Q(0)(z) = h(@ - 8o)(z) + [s(:c)a(G_)"(a:)

e(z)

_1 »E(‘T) Bw

K(o,9)e@)o @ v)dsw)] ()

From Proposition 1 (i) and (ii), we deduce that the operator @ has the following
properties (Perret and Witomski, 1991; Monnier, 1995):

Proposition 2.

i) Q is a Lipschitz operator from L?(dw) into L?(w).

ii) The image of L*(8w) by Q is bounded in L*°(0w).

iii) If 0(z) 2 Ooup (resp. 8(z) < int), then Q(8)(z) >0 (resp. Q(8)(x) <0).

We denote by (PQ) the truncated problem which is the same as the problem
(P9) but with the following boundary condition on ~%:

09 -
")\51; =Q(0) on 7}

Owing to truncation, we now can prove, with the help of Schauder’s fixed-point
theorem, the existence of solutions to the truncated problem (P%).

Theorem 1. The problem (P?) has a solution in H(w).
Proof. We define the operator N by
N:H_%(Bw) - HYw)

v — 6
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such that
([ _AAO+pC, T-V9=0 in w
=06y on 7§
< 9
g% =0 on ¢ ®)
_9 v on ~4
\ an - "Yf

We deduce from the property div(u) = 0 and Assumption 1 that the bilinear
mapping associated with this operator is coercive in H'(w) (Monnier, 1995). It
follows from the Lax-Milgram theorem that this problem is well-posed and N is
continuous.

We now define the operator M as follows:

M:Hw) - HYw)

t — 40
te H'(w) M, 0 € H'(w)
17y : trace TN
Nt € HI(Bw) Q(yt) € H™¥(8w)
1t : injection T¢* @ injection
vt € L2(dw) N Qyt) € L*(8w)

We have M = N oi* 0o Q o4 ory. We know that Q is continuous (Proposition 2
(i)). Hence the operator M is continuous from H'(w) into H!(w).

From the compactness of the injection #* and Proposition 2 (ii), the image of
H'(w) through M is relatively compact in H'(w). It follows from Schauder’s fixed-
point theorem that M has a fixed-point in H*(w) and the truncated problem (P?)
has a solution. n

We now prove that the solutions of the truncated problem (PQ) satisfy the weak
maximum principle.
Theorem 2. Each solution of the problem (PQ) satisfies O < 6 < Ogyp.

Proof. We write a variational formulation of the problem (P®) (with test functions in
H'(w)) and we choose t = (6 — 6sup)* as a test function, where ¢+ = max(t,0) (see
e.g. (Gilbarg and Trudinger, 1977)). Then we deduce from the property div(u) = 0,
Assumption 1 and Proposition 2 (iii), that (Monnier, 1995)

/|Vt|2dx <0
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This gives 6 < Gop a.e. in w.
The inequality i5¢ < 6 is proved in a similar way with ¢t = (6 — 6i,¢)~ where
t~ = max(-t,0). |

We have just proved the existence of solutions to the truncated problem (PQ).
Moreover, these solutions belong to the interval [@inf,fsup]. Then we have Vz €

Ow, Q(6)(z) = Q(9)(x), and the solutions to the problem (PQ) are also solutions to
the problem (P?). Therefore we have proved that the problem (P%) has solutions
and these solutions satisfy the weak maximum principle.

3.3. Uniqueness of the Temperature
We now establish the uniqueness of the solution.
Theorem 3. The solution to the problem (P?) is unigue.

Proof. We define the operator ¢ : L*(8w) — L?(0w) by
e(z)

- 1-¢(a) Jou

It follows from Proposition 1 (i) and (ii) that

9(0)(z) = e(z)ob"(z) K (z,y)e(y)o8* (y) ds(y)

/ q@)ds = 0 Ve L*(0w)
ow

(This relation expresses the conservation of the radiative energy flow through dw.)

_ We denote by 6; and 62 two solutions to the problem (PY) and we define
8 = 6; — 05. From Proposition 1 (iii), we deduce (Monnier, 1995) that

/ ecftds =0
v§Uh

This implies 6, = > a.e. on Ow. We thus conclude that the solution is unique.
[ |

Regularity of the solutions. We now present results on regularity in the case
where w is an open set in IR?.

We suppose that the domain w has reentering corners and boundary conditions
on each side of such corners are of the same kind. In these conditions, we have
(Grisvard, 1985)

2
Ve >0, uc€ (H‘”(w))
where oy = £ —e. Then we deduce by the bootstrap method that (Monnier, 1995)

Ve>0, §eHM™ ()

where a; = § —«.
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4. Numerical Analysis
4.1. Introduction

We assume that w is a polygonal domain of IR®.. We discretize the equations by
means of a finite-element method. We denote by (7,) a regular and quasi-uniform
family of triangulation, () = UcreT;,)T- We associate this family of triangulation with
a single reference finite element of Lagrange of class C°.

Let k be an integer greater than or equal to 1. We denote by P, the set
of polynomials of degree less than or equal to k. We define the following discrete
spaces:

Voh(w) = {soh €Co@);VT € Th PhlT € Pr;onl,p = 0}

V() = {ﬂoh € CY@);VT € T, pulr € PkQSDhL,:f = lbd}

Vi () = {th € C°(@);¥T € Th, talr € Piitulys = o} (10)
Vo (w) = {th € C'(@);YT € Th, thlr € Pi;talys = 9d} (11)

k>2= W, = {v € C%(Qw); for every T € Tp, (12
such that the boundary 9T € dw, we have v|ar € Pk_l}

k=1= W, = {’U : 0w — IR, v is piecewise constant} (13)

These spaces are subspaces of H(w) and L?(8w), respectively.
The discrete fluid model is as follows:

Find 95 € V¥ such that (14)

Von € Vo, (Vibn, Vior) = (¥n, on)

We write @, = W/)h and obtain the discrete thermal model:
Let up. Find (6, wr) € VE, (w) x Wi(8w) such that

Vi, € Voeh(w), /\(V@h, Vth) + pC’,,(uhVHh,th)
3 4 .
+([h (gh—00)+—~(1_€)(09h wh)],th) =0

Yup € Wi (0w), ((I - A)wh,vh) = (eab},vp)

(Pr')

where A is the operator defined by (5).

The existence and uniqueness of v, follows from the Lax-Milgram theorem. We
obtain the following error estimate (Monnier, 1995):

lle — unlo,00 = O(R**)
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4.2. Thermal Model

We now prove that if the thermal conductivity A is large enough, then there exists a
unique solution to the discrete thermal model (P). Moreover, this solution converges
to the exact solution and we present an error estimate. This analysis is based on the
notion of branches of non-singular solutions and makes use of the extended implicit-
function theorem (see e.g. (Brezzi et al., 1980)).

4.2.1. Continuous Fixed-Point Problem

We rewrite the problem (P¥) as a fixed-point one. Let X = H'(w)x L?(dw),
Y = L*(7})x L*(dw) and A be a compact interval of R**. We define the linear
operator T as follows:

T:Y-X
(15)
(h'7g) = _(97 ’UJ)
where z = (f,w) € X is the solution of the following uncoupled linear problem:
[ —\AG + pCpit- V6 =0 inw
6 =6, on g
o0
i 0 on ~¢
o6
—55 = h on %
w(@) = (1-¢@) [ s@pua)dst)+g o o
The non-linear operator G is defined by
G:AxX - Y
Ast,0) (h(t—90)+ £ (ot —v) m4) (16)
Yy (1 _ 6) ?

where ) is the thermal conductivity.

We define F(A;z) = 2+ T G(X;z). Then the problem (P*) is equivalent to the
following omne:

r Let X € A. Find z = (6, w) € X such that
P (17)
F(\z)=0
We define the linearized problem as follows:
Let A € A and z(A) be the solution of (17).
Find [ € X such that (18)

%g(x;z(,\)) 1=0
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We also introduce Amin as

Amin = /4 (Co + 110630 G, (19)

where C,, is Poincaré’s constant.

We proved in (Monnier, 1995) employing the Lax-Milgram theorem that if A >
Amin, then the linearized problem (18) is well-posed. By definition, the solution z(})
of (17) is non-singular if the linearized problem (18) is well-posed. Therefore the
branch of solutions {(X,z(A)); A > Amin} is a branch of non-singular solutions.

4.2.2. Discrete Fixed-Point Problem

We now write the discrete thermal problem as a fixed point one.

We define the discrete space Xp = Vgl(w) x Wh(w) and the operator T, as
- follows:

Th:Y — Xp;(h,g) = —(On, wr)
where z, = (0p,wp) € X}, is the solution of the system

XV, Vtr) + pCp (@ - VOh,th) = (hytn)  Vin € Vgy(w) (20)
(7 = Aywn,vn) = (9,00) Yon € Wa(w) (21)

We proved in (Monnier, 1995) the existence and uniqueness of the solution of
eqn. (20) if A is small enough.

We define Fy,(\;z1) = zn+Th G(A; zr). The discrete problem (Py”) is equivalent
to the problem

Let A € A. Find zj, = (6, wr) € X4 such that
(Py) { (22)

Fh(/\;xh) =0

We have the following result (Monnier, 1995).

Theorem 4. We suppose that Assumption 1 is satisfied and we denote by 5 a
real such that w € HP(Ow), B > 0. Then, for h small enough, there exists a
unique branch of non-singular solutions {(),(6r()),wr(N))); A > Amin} to the prob-
lem (PhF) Moreover, there exists a constant C independent of h such that for all
e>0

18(A) = Or(Ml1,0 + lw(A) = wa(A)[lo,00 < Ch
with a. = min{a; — €, a2 — ¢, §).

Proof. This result is proved for a non-linear abstract problem in (Brezzi et al.,
1980). The assumptions of this theorem are satisfied in the case of our thermal model
(Monnier, 1995). The main assumptions we have to satisfy are the following:

e The operator G is C? from |Amin, +00[x X into Y.
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e For all (A, z) €]Amin, +00[ x X, the operator TD,G();z) is compact.
o lim (7~ T)(@)llx =0 VyeY.

(Let us notice that the error estimates are only stated for the uncoupled linear problem
(20)—(21), and they are written in fractional-order Sobolev spaces.) [ |

5. Shape Optimal-Design Problem
We define the spaces

V(@) = (¥ € B W) ¢l,y =0}, Viw)={6 € H'(w); 0,4 =0}
and their translated counterparts

VIW) = {v € H' W) ¥ly =va}, Vi) ={6€H W) 0,5 =04}
Furthermore, we set

Vi(w) = V¥ (@) x V() x L2(0w), Vow) = V' (w) x Vg (w) x L*(0w)

The variational formulation of the coupled problem (called the state problem) is as
follows:

{ Let w be a given domain. Find y* = (¢*,60*,w*) € V;(w) such that (23)

Vz = (p,t,v) € Vo(w), Bu(y“,2) =0

The state problem is a system of two partial dlfferentlal equations and an integral
equation, which can be written as

Find ¢“ € Vtw (w) such that
Yo e Vi), [ Vivede= [ ppds
w Yn

[ Let u* = Vy~. Find (6*,w*) € V(w) x L%(8w) such that
vt € Vi (w), ,\/VGthz+pC /uVtha:+h/ 6 — 6p)tds

’ / dntds

‘v’veL26w/ vds—/awl—s(x /¢ 7,9)u(y) ds(v)|v(a) ds(z)

=0 e6vds
\ B

{ +

We define the observation J, : V(w) — R; 6 — / 62 ds, where +y, is a part

of fyf
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We denote by D the space of admissible domains and consider the cost function
JiDoRiwe W) = L)

where y* is the state of the system.

The minimization problem we seek to solve is

Find w* € D such that
ey
j(@") = min j(w)

We use a gradient method to minimize the cost function. Therefore we have to
differentiate the functional J,(y*), y¥ € Vi(w), with respect to the domain. We
use a method of deformation domain which consists in transporting functionals on
a reference domain €. Then we differentiate with respect to the transformation T,
where T is such that w = T(Q) (see e.g. (Murat and Simon, 1976; Céa, 1981;
Rousselet, 1982; Sokotowski and Zolésio, 1992)).

We consider Lipschitz transformations (see e.g. Monnier, 1995) and we set V =
T — I, where I is the identity of R™.

Let
7T = R:T o 3(T) = §(T(Q))
Then we define the derivative of j with respect to the domain in the following way:

-4

. .dj
VYV Lipschitz, E(Q) V= T

n-v

5.1. Differentiability of the Solution with Respect to the Domain

To compute the sensitivity gradient, we have to prove the differentiability of the cost
function with respect to the domain. Therefore we have to prove the differentiability
of the solution y* with respect to the domain w.

We have already noticed in the numerical analysis (Section 4) that if the thermal
conductivity A is greater than Amin, then the linearized problem (18) is well-posed.
Thus we deduce from the implicit-function theorem that in this case the solution y*
is differentiable with respect to w (Monnier, 1995).

5.2. Sensitivity Gradient

Proposition 3. If the thermal conductivity A is greater than Amin, then the cost
function j(w) is differentiable with respect to w. Moreover, for all Lipschitz V', we
have

Yooy y =220y %0 0
L) v=S20% v - 5200 -V (24)
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where y* € V(Q) is the solution of the state problem (23) defined in Q and p® €
V(Q) is the solution of the following adjoint equation:

OFE, aJ
V2eV(@), RN 2= 5 0" 2 (25)

Furthermore, p®

We refer the reader to the works (Chenais et al., 1995; Monnier, 1995) for the
proof of this proposition and for a more detailed expression for the adjoint state
equation. We only notice that this adjoint problem is an integro-differential system of
two linear partial differential equations and one integral equation. The three equations
are coupled. To solve this system, we first have to solve the adjoint thermal problem
and then the adjoint fluid one.

ezists and is unique. ]

6. Numerical Results

We recall that we seek to optimize the hose shape in order to minimize the cost
function j(w) = % fv: 62 ds. The cost function depends on both the hose temperature
and its length.

The hose shape is modelled by cubic splines, its thickness is constant and its
extremities are fixed. A piecewise linear approximation is used to solve numerically
all the partial differential equations and a piecewise constant one is used to solve two
integral equations.

The optimization process is as follows. We use a descent algorithm which builds
a sequence of domains (£2,). The algorithm computes a perturbation V which de-
creases the cost function. The new domain 4 is the image of €, through the
function T = (I + V). The algorithm of minimization we used was a Quasi-Newton
one from the library Basile (the company Simulog S.A.).

In this example, we have the Peclet number P, = p—gl’[){*—f“* = 10® (where U*

and L* are respectively a characteristic velocity and a characteristic length of the
flow) and h = 20. The engine-block temperature is 420K, the exhaust-pipe one is
520K and that of the air entrance is 280K. The emittance £ depends on z and is
such that 0.5 < £(z) < 0.8.

Between the initial shape (Fig. 2 and Fig. 3) and the best shape we get (Fig. 4
and Fig. 5), the cost function decreases by 20%.

7. Conclusion

In this paper, we solved a shape optimal-design problem for a fluid-heat coupled
system; the cost function in this case was differentiable. We presented in detail
the mathematical analysis of the state problem as well as the corresponding control
problem analysis. We proved that if the thermal conductivity of the fluid is large
enough, the linearized problem is well-posed. Then we obtained, using the implicit-
function theorem, the solution differentiability with respect to the domain. We de-
duced that, under this condition, the adjoint problem is well-posed. This analysis



Shape optimal design for a fluid-heat coupled system

259

MODULEF :  monnier

13/10/95
moteurl.mail.0.a

770 POINTS

770  NOEUDS
1319  ELEMENTS
1319 TRIANGLES

0.29 12.
ECHELLE

EXTREMA DU CHAMF B :

1.5 oM. = 2.

Fig. 2. Initial shape. Fluid velocity.

MODULEF :  momnier

/10795
moteurl.mail.o.a
0

oteurl.coor.0.a
eeeeee 1.bthd.0.a

40 1SOVALEUR;

Fig. 3. Initial shape. Isotherms.



D. Chenais, J. Monnier and J.P. Vila

260

g 5 33 3T 3 Amms S nAR

a s
TN v ol
au wu - e mm m -
i | EE .
i §° 8 Lhe |Eaad :
EE Z53 |EEEE L.
FEEER . B8F |EREE
. z LE03
u 2 5 899% lanan |B o
] gzgz |§afdn 2 35733 (2088 | §
] RHEE |BRGC 4 g oiis 8% ¢
| 88 1EQ it 2
g 5°9 a g

Fig. 4. Optimal shape. Fluid velocity.

EREN
B
!
)
/
S
AR\
\
.
.

Fig. 5. Optimal shape. Isotherms.




Shape optimal design for a fluid-heat coupled system 261

justifies the resolution of this shape optimal-design problem by a gradient method.
We solved numerically these equations by the finite-element method. We proved,
under the same condition on the thermal conductivity, the existence and uniqueness
of the discrete solution and the convergence of the numerical scheme. The proof was
based on the notion of branches of non-singular solutions. Finally, we obtained, for
our example, the “optimal” shape which made the cost function decrease.
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