Appl. Math. and Comp. Sci., 1998, Vol.8, No.2, 335365

AN ALGEBRAIC APPROACH TO MODELLING
AND PERFORMANCE OPTIMISATION
OF A TRAFFIC ROUTE SYSTEM

ANDRZE] OBUCHOWICZ*, KELWYN A. D’SOUZA**
ZBIGNIEW A. BANASZAK*

An algebraic approach to performance optimisation of collision-free traffic route
systems is presented. The proposed models take into account traffic conditions
in a wide area and react to the dynamic nature of the traffic flow. The adjust-
ment of traffic-signal timings to minimise the total travel time through a city
is considered. The approach is based on the (max,+) and (min, +) algebras
which provide a framework to build an executable performance-oriented model
for sequential and repetitive processes like a set of signalised intersections co-
ordinating the traffic access to the routes through a sequence of signal timings.
The concept of a quasi-rendez-vous synchronisation mechanism of processes is
introduced. A computer example is provided in the final part of the paper to
illustrate the effectiveness of the approach.

1. Introduction

The expanding transportation industry involves safety and congestion problems in
urban areas. Signalised intersections in arterial networks are important components
affecting the smooth traffic flow. In the present paper, the traffic route system (TRS)
for a wide area in a city is considered as a class of discrete-event dynamic systems
(DEDS). It consists of cyclic processes (the so-called traffic light processes, TLPs) such
as signalised intersections which co-ordinate the traffic access to the routes through
a sequence of signal timings (a signal timing plan, STP).

Many studies have been devoted in recent years to investigation of the perfor-
mance of urban traffic systems, (Bretherton et al., 1994; Guo and Hu, 1994). How-
ever, the problem has not been fully settled yet, in part because of interrupted traffic
patterns in saturated flow conditions and signal policies related to turning vehicles.
Simulations and queuing theory have been used to study activities at individual in-
tersections. Since the activities at each intersection are asynchronous, such methods
would be inappropriate to model a group of asynchronous activities. Signal models
have been explored to find an optimum cycle time for traffic lights. These models
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have been developed mostly for isolated intersections which ignore the formation of
platoons (D’Souza and Banaszak, 1995; McShane and Roess, 1990).

The capability of predicting the behaviour of TRSs (e.g. in order to estimate
a throughway capacity, flexibility, and delay times) hinges on two types of knowledge.
The first and most powerful one is the knowledge of the laws underlying a given
phenomenon. When this knowledge is expressed in the form of equations which can,
in principle, be solved, one can predict the future outcome of an experiment once the
initial conditions are completely specified. The other method relies on discovering
strong empirical regularities in the observed behaviour of the system, e.g. based on
the data collected from simulation experiments. The approach proposed here follows
the former. It aims at providing an algebraic model for performance evaluation of large
TRSs. The goal is to find a state equation to calculate traffic routing characteristics
without cumbersome and time-consuming simulations while providing a framework
for the design of real-time control systems. The interest in such models is still growing
in view of the increased congestion and accident rates.

In order to build an executable control-oriented model for TRS, the (max,+)
and (min, +) algebras are used (Baccelli et al., 1992; Obuchowicz and Banaszak,
1995). The model based on the (min,+) algebra rises a possibility to obtain the
time required to travel along a given route (Obuchowicz et al., 1995; Zaremba et al.,
1996). Thus, if a set of routes and signal timings are given, then this model can be
used for creating a testing procedure which calculates the global time T of waiting
for green signals. T is treated as a performance index because it influences the
traffic fume and capacity. The (min,+) algebra model, however, is not a useful tool
to determine a procedure for the adjustment of traffic signal timings minimising 7.
This is because the traffic signal timings cannot be calculated immediately in this
framework.

If an urban traffic system can be considered as a discrete-event dynamic sys-
tem, then a (max,+) algebra model can be constructed. This model is based on
the concept of a “green line”, i.e. a route such that the vehicles moving along it do
not wait for green lights at all passed intersections. It forces a quasi-rendez-vous
synchronisation of the TLPs corresponding to the intersections passed by the “green
line.” Two TLPs are said to have a quasi-rendez-vous if every vehicle moving along
the route connecting the corresponding intersections does not have to wait for green
lights. Thus the problem of TLPs synchronisation becomes similar to the well-known
problem of the rendez-vous synchronisation of a cyclic process, where the (max,+)
algebra was successfully applied (Braker, 1993; Obuchowicz and Banaszak, 1995).

The paper is organised as follows. In Section 2 the main problem is formulated.
The respective formalism of (min,+) and (max,+) algebras is introduced in Sec-
tion 3. A (min,+) algebraic model of vehicles routing is proposed in Section 4.
Section 5 presents the main results based on a (max,+) algebraic model of traffic
signal synchronisation, as well as an illustrative example of a TRS. In the last section
we summarise the paper and indicate some directions of future research.
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2. Problem Statement

2.1. Smooth-Flow Traffic Problem

Let us consider the traffic route system for a wide urban area, i.e. a regular, mesh-like
arterial network with signalised intersections. Each pair of neighbouring intersections
in the network is specified by the mean travel time required to drive from one posi-
tion in the city to another. This means that owing to a given speed limit the relevant
distance between two neighbouring intersections can easily be calculated. The traffic
signal timings at the intersections are limited by the period of changing lights. The
minimal periods are limited by both the time required to cross the street by pedestri-
ans and the velocities of vehicles passing along one direction from one intersection to
another. On the other hand, the maximal periods result from the traffic flow along a
particular route.

Given a set of traffic routes, the problem under consideration consists in deter-
mining the signal-timing plans (the light timings) and their relative phases which
minimise the overall time which vehicles have to spend at the signalised intersections
while waiting for the green light and following the presumed routes.

Of course, the constraints regarding the minimal and maximal periods of sig-
nal timings may contradict one another and, accordingly, no solution can be found.
Therefore, in what follows we restrict our attention to the case where no limits are
specified for the maximal period of light timings. In this way, a solution to the
problem, i.e. a timetable of the signal timings, follows from the period of an arterial
network which is caused by the cyclic nature of distributed TLPs.

The problem specification can be represented in terms of a marked-graph for-
malism. Since the marked-graph representation can be transformed to a state-graph
specification (which is, in turn, equivalent to a state equation), a timetable of signal
timings can be easily calculated within the framework of a (max, +) algebra.

2.2, Ilustrative Example

A city traffic route system (TRS), shown in Fig. 1, is given. It consists of two four-
directional intersections I and I and of a three-directional intersection I7I. Based
on the analysis of traffic streams in the TRS, i.e. the average flow per hour, important
routes with significant streams can be selected (routes 1, 2 and 3 in Fig. 1). If T is
defined as the overall waiting time (for green lights) for vehicles moving along these
routes, then the TRS with T = 0 (routes 1, 2 and 3 are “green routes”) is treated as
the most efficient system. Thus the problem reduces to finding a signal-timing plan
(STP) (which co-ordinates the traffic access to the routes through a sequence of signal
timings), its schedule and related traffic signal phases between directly-connected
intersections, while minimising the overall waiting time T (for green lights) for the
vehicles moving along the selected routes.

For a given intersection, there are many possibilities of choosing a signal schedul-
ing (SS) which guarantee an admissible, i.e. collision-free, flow through this intersec-
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'TRAFFIC SIGNALS
~ REDLIGHT \

Fig. 1. Street layoutand signalised intersection location: I, II, ITI—signalised in-
tersection location; 1, 2, 3—routes with significant streams (“green routes”).
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Fig. 2. Two possibilities of choosing SS which guarantee a collision-free flow through
the intersection: (a) SS-A and (b) SS-B, for four-directional and three-
directional intersections. The directions of movement for vehicles having
green lights are marked with arrows in circles.

tion. Two examples presented in Fig. 2. The SS-A (Fig. 2(a)) permits the vehicles
arriving from only one direction to cross the intersection. In the SS-B (Fig. 2(b))
vehicles can cross the intersection simultaneously from the é-th to the j-th direction
and from the j-th to the i-th direction. If an SS is chosen, then the minimal time
interval gz; during which the k-th intersection has to be in the i-th state (e.g. this
is the time required to pass the intersection by a given number of vehicles or the time
needed to pass the crosswalk by pedestrians) can be determined.
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3. Formalism

In this section the (max,+) and (min,+) algebras are introduced. Some graph-
theoretical interpretations of the equations written in this formalism are presented.
A new operation called modulo is also defined.
3.1. (Max, +) Algebra
Definition 1. The (max,+) algebraic structure (Rmax,®,®) is defined as follows:
¢ Ryax = RU{—00}, where R is the field of real numbers;
o Va,b € Ryax : a ®b=max(a,b);

o Va,b € Ryax : a®b=a+b and Va € Rpax : a® (—00) = (—0) ®a = (—x).

Remark 1. The (max, +) algebra exhibits the following properties:
o associativity of addition: Va,b,c € Ryax : (a®b)Dec=a® (bdc),
o commutativity of addition: Va,b € Rpax : a ®b =0 a,
e associativity of multiplication: Va,b,c € Rpax : (a®b)®@c=a® (b®¢),
o right and left distributivity of multiplication over addition:

Va,b,c € Ruax : (a®b)®c=(a®b)® (b®0)
Va,b,c € Ryax : a® (b®c) =(a®b)® (a®c)
o existence and absorbing of a zero element:

Je € Rpax Va € Rpax : a®e=a (e =—00)
Va € Rpax : a®@e=c¢

¢ existence of an identity element: Je € Rmax V& € Rnax : a®e=a (e=0),

o any element of the Ry,.x space has no inverse with respect to the operation &,
because the equation a @ x = & has a solution only for a =¢ and z = &.

Definition 2. The parallel composition (sum) & of matrices A = (4;;) and B =
(Bsj) of the same size is defined by the equation :

(A® B)i; = Ai; © By 1)

Definition 3. The series composition (product) ® of an m xn matrix A = (4;)
and an n x p matrix B = (B;;) is defined by

n

(A® B);j = @ (4u ® By,) (2)

k=1
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Definition 4. The spectral equation in the (max,+)-algebra language has the form
ARz =AQzx (3)

Proposition 1. (Baccelli et al., 1992) Every square matriz has at least one eigen- ’

value. An irreducible square matrix has a unigue eigenvalue. (A matriz A is called

irreducible if there exists no permutation matriz P such that PT AP is upper trian-
gular, where PT is the transpose of P.)

3.2. Correspondence of Graphs and Matrices

Definition 5. A digraph G(A) corresponding to an nxn matrix A is the pair
(9,¢), where ¥ is the set of the vertices of G(A) and (¢ is the set of the arcs of
G(A), such that the vertices are labelled from 1 to n, and

Vij€9: (i) g Ay=e 4)

The value A;; is the weight assigned to the arc (j,i). We can also define a matrix
corresponding to the digraph G(9,¢).

Remark 2. If a digraph G(9,() is strongly-connected, i.e. if there exists a path from
every node ¢ to any node j, then the corresponding matrix is irreducible.

Definition 6. The average weight of a path p = (i3 = i3 = -~ = 41 — %))
is defined as W, = w,/l,, where w, is the weight of p (the sum of the weights of
individual arcs), I, is the length of p (the number of arcs in the path).

Definition 7. The circuit mean is the average weight of a circuit.

Proposition 2. (Baccielli et al., 1992) For a strongly-connected graph the maximum
circuit mean, taken over all circuits, is equal to the eigenvalue of the corresponding
matrizx.

3.3. (Min,+) Algebra

Definition 8. The (min,+) algebraic structure (Rmin,V,e) is defined as follows:
® Rnin = RU {oo};
® Va,b € Ryin : aVb=min(a,b);

e Va,b € Ryin: aeb=a+band Va€ Ryjn : aeco =0c0ea = 0.

Proposition 3. The (min,+) algebra is isomorphic to the (max,+) algebra.

Proof. The proof is immediate if we select the required isomorphism in the form

¢: Rmin — Rmax, ¢(a) = —a g O
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Remark 3. A consequence of the above-mentioned isomorphism is the inheritance
of all properties of the (max,+) algebra by the (min,+) algebra, and conversely.
In particular, the (min,+) algebra exhibits the properties included in Remark 1 if
the element 7 = oo is treated as a zero element. Similarly, Proposition 1 is true if
the parallel (sum) and series compositions (product) of the matrices, and the spectral
equation are defined analogously to Definitions 2, 3 and 4, respectively, i.e. they take
the forms

(AVB)y; = Aij V B (6)

(AeB)i; = \/ (Aix ¢ By)) (7)
k=1

Aexr =)oz (8)

One can also define a correspondence between a digraph G(9,¢) and a matrix A in
the same way as in Definition 5, by introducing the condition

Vi,j€1.9:(i,j)¢<<"——>Aij:T (9)
in lieu of (4).

Lemma 1. If A is a matriz with non-negative elements and the diagonal elements
equal to e, then

ko VE>ko:  AF = AF (10)

e for i=]

T for i#j

Proof. If A has non-negative elements, then it is associated with a digraph with non-
negative weights. The A;; can be understood as the weight of a minimal path of unit
length between vertices j and 4. Thus (AF);; specifies the weight of the shortest
path of the length equal to k between vertices j and 4. The resulting shortest path
i — j cannot contain any cycles, because the path of the same arcs, apart from those
of a cycle, has the weight being less than or equal to that of the path containing the
cycle. For a finite n, each path which does not contain a cycle can have at most n—1
arcs. Thus there exists an upper limit for k. ]

where AL =AeA™', Al=E., (E.); :{

3.4. Operator Modulo

Definition 9. The modulo operator { is defined as follows:
Va,t € le,7) Ib€fe,t): adt=b<=3IkeN a=betk

(11)
Va € [e,7): adT=10a; Va,€le,7): 70a =T
where N denotes the set of natural numbers. If A = (4;;) is an m xn matrix with
non-negative entries and b = (b;) is an m-element vector with non-negative elements,
then B = A{b is an m xn matrix defined by

Bij = Ai; Ob; (12)
It is easy to see that b is the remainder if a is divided by an integer number ¢ (k
times).
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4. Vehicle Routing

In this section two problems are considered: calculation of the time required to drive
along a given route in the TRS and finding the shortest route (in the sense of time)
between two points. A model based on the (min, +) algebra is used to solve these
problems.

4.1. A System Without Signalised Intersections

The formalism of the (min, +) algebra is a natural language for the problem of seeking
the minimal path between the vertices of a given graph. The digraph can model e.g.
a street network and the minimal path can reflect the shortest (in the sense of the
travel time) path between given points in the considered city, under the condition
that directly passing through the intersections is guaranteed. Let A = [Aij];:n,;_:lo be
an (n+2) x (n+2) matrix with A;; = e and A;; = 7 for i # j if there is no direct
connection between the intersections ¢ and j, and A;; = t;; otherwise, t;; being the
travel time between two directly-connected intersections j and 7. The starting and
destination points are labelled with i =0 and i =n + 1, respectively.

Lemma 2. If y is the minimum travel time from a starting point to a destination
point, then

E”C() : Yy = l'.,1+1(k0) = (AI:O L4 HI(O))TH_]_ (13)
where x(0) = [xo 7 --- T]T is an (n + 2)-dimensional vector with the indices of
elements 1 =0,1,...,n+ 1 and xo stands for the starting time of travel.

Proof. The i-th element of the vector z(1) = A e 2(0) represents the earliest time
of the arrival at the i-th intersection along a road which is at most single-branched,
i=1,...,n, and at the destination point for i = n + 1. If the element is equal to T,
such a one-branched road does not exist. Therefore the vector

z(k) = Aez(k-1) = A" 0 2(0) (14)

consists of minimal arriving times at the corresponding intersections along at most
k-branched roads. Similarly,

z(k+1) = A¥1 o 2(0) (15)

The matrix A is associated with a graph with non-negative weights which are equal
to the time lengths between the intersections. Thus, based on Lemma 1, we obtain

ko VE > ko : @(k) = z(k + 1) (16)

This result justifies that it is pointless to calculate the states later than x(ko) and
the proof is completed. [ |

It is easy to see that the above algorithm is equivalent to the standard shortest-
path algorithm.
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Example 1. Let us consider the street network presented in Fig. 3. In order to
simplify the calculations, we will assume that the average travel speed of the vehicle
between the intersections is equal to unity. The matrix of the system is in the form

(e 5 7 T T T |
5 e 10 15 7 7
A= T 10 e 7 15 7T
T 15 7 e 20 7T
T 7 15 20 e &
LT 7 T T 35 e

Clearly, the longest paths without a cycle in this system have four edges.

b)

Fig. 3. (a) The arrangement of four intersections (1" to 4%) with given start-
ing (0%) and destination (5*) points; distances between the intersections and
points 0* and 5%, in distance units, are also given; (b) the graph-theoretical
representation of the system.
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Thus y = z5(4) = (A% e £(0))5 = 35, where

e 5 15 20 30 35
5 e 10 15 25 30
15 10 e 25 15 20
20 15 25 e 20 25
30 25 15 20 e 5
35 30 20 25 5 e |

and the initial state x(0) is defined as in Lemma 2 with starting time zo = e.

Analysing the travel times between the individual points of the system, we easily
observe that the route 0* — 1* — 2* — 4* — 5* leads to the minimum travel time.

¢

4.2. A System With Signalised Intersections

The necessary condition in accepting the thesis of Lemma 2 is the certainty that the
vehicle will never be forced to wait to pass through the intersections in its route. This
assumption is not very realistic with intersections where traffic lights exist. Let us
define the following traffic light parameters:

o T = [T;]/4)} as the traffic-light change period vector of a given intersection,
where Ty = Th41 = 7 and T; is the time required by the traffic lights to
change at the i-th intersection, i =1,...,n;

* R = [Ry]};—o as an (n + 2)x(n + 2) matrix, R;; = ry for off-diagonal
elements, if a direct connection exists between the i-th and the j-th point;
R;; = e otherwise, r;j; being the time durations of the red light at the i-th
intersection when coming from the j-th point of the system, i = 1,...,n,
i=0,...,n+1;

e P =[P asan (n+2) x (n+2) matrix, P;; = p;; for off-diagonal elements
if a direct connection exists between the i-th and the j-th point; P;; = e
otherwise, p;; being the traffic light phase at the i-th intersection at a fixed
moment tp = e, counted from the last preceding lighting of the red light for the
entrance onto that intersection from the j-th point of the network, i = 1,...,n,
i=0,...,n+1;

The yellow light is not considered in our model.

Example 2. In Fig. 3 a street network composed of four intersections is shown.
The time distance matrix is represented by the matrix A of Example 1. Let the
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parameters of the intersections have the following values:

period time of red light traffic light phases at g = e
B (e e e e e e | (e e e e e e
6 e 6 6 e e 5 e 1 3 e e
T 20 . R= e 15 e e 15 e . p- e 2 e e 7 e
16 e 12 e e 12 e e 6 e e 10 e
12 e e 99 e e e e e 3 e e
| T ] Le e e e e e | le e e e e e |
¢

4.2.1. The Travel Time Along a Given Route

In this part we answer the question how much time a vehicle has to travel along a
given route. Thus, in the matrices A, R and P and in the vector T, we take into
account only those parameters of the system which concern the given route.

Theorem 1. The travel time along a given route is given by
Y= Topr(n+1) (17)

where Tp41 is the (n+1)-th component of the state vector derived from the equations

z(k)=B(k—1)ex(k—-1)
Bk-1)=C+Z(k-1)
C=A+R (18)

Z(k—l):—{[(A+P+eoa:T(k—1))(>T] VR}

and z(0) is defined in Lemma 2, e being the (n+2)-dimensional vector of all elements
equal to e.

Proof. Passing through one intersection. Let us assume that the travel route passes
over only one intersection (Fig. 4). Let [jo be the distance between the starting
point and the intersection, and v1o be the average travel speed along this part of the
route. Moreover, we denote by ls; and wg; the distance between the intersection
and the destination point, and the average travel speed along this part of the route,
respectively. Thus the travel times along these parts of the route are

for i=1,2 (19)
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Fig. 4. Travel route through one intersection.

Let us assume that the travel time through the intersection is negligible, i.e.
¢1 = e. Let the starting time of travel at the starting point be the reference time
point zo = e (Fig. 5). T} is the light changing period of the intersection and ryg is
the time of the red light when the vehicle gets to the intersection (Fig. 5).

X,

X
hhhhhhhhhh P
.............. ? T
x Ll
° plOI irm l [
¢ sle »
! * /

" Fig. 5. Graphic interpretation of travelling along a route with one intersection.

If p is the time elapsed since the last red light, we say that the state of the traffic
lights when reaching the intersection is in phase p. Thus the moment of the red-light
lighting has zero phase and the moment of green light lighting has ¢ phase. If the
reference time point ¢o = 0 is laid at a fixed moment of red-light lighting, then the
phase p at any moment ¢ can be calculated from the formula

p=1t0Ty (20)
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However, as has been stated above, the reference time point is ty = o = e. Then
the traffic-light phase upon reaching the intersection, pig, does not necessarily have
to be equal to e. At that time

p = (p1o+ (tOT1)) 0Tt = (pro + 1)OT1 (21)

In particular, at the moment at which the vehicle reaches the intersection after trav-
elling the distance Iy, the traffic light is equal to:

P = (p1o + zo + t10) T = (P10 + t10) OT1 (22)

If p > 70, i.e. the vehicle encounters a green light, then it passes through the
intersection directly, otherwise it must wait for 739 — p units of time. Therefore the
waiting time at the intersection is equal to

wio =710 — (P V T10) (23)
and the time of leaving the intersection is given by

z1 = (ti0 + Wio) ® To = (CIO + Zlo(ﬁo)) LN (24)
where

c10 =tio + 710, 210(%0) = —((t10 + 1o + z0)OT1) V110 (25)
The total travel time is equal to

y=ta1 01 (26)

According to the definitions of the matrices A, R, P and T, the parameters
describing the system composed of only one intersection, n = 1, are as follows:

i e T T [ T
A= th e T 3 T = T1
L T tgl e L T
_ (27)
e e e i [ e €
BR=|ryp e €], P=1po e e
i e e e L € e e
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Moreover, we have the initial state vector in the form

Togp =€
z0)= |z =7
To =T

By analogy to (24) we define the matrices
C=A+R, Z(O):—[(A+P+eomT(0))<>T]VR (28)

where e is an (n+ 2)-dimensional vector consisting of the elements equal to e. Then

2(1) = (C+Z(0)) +2(0)
e T T e e e e
= tio+rio € 7|+ | —[tw+po)0Ti]Vrio e e Q|7
T to1 € e e e T (29)
I e
= | t10 + r10 — [(t10 + P10)OT1] V10
T

By calculating Z(1) it can be shown, in accordance with (18), that

e
z(2) = (C+Z(1)) oz(l) = ti0 + 110 — [(tlo +p10)<>T1] Vo (30)
tio + 710 — [(t10 + P10)OT1] V r10 + ta1

Subsequent iterations do not change the state vector. The individual elements
of this vector represent the values of the starting times, leaving the intersection and
reaching destination point. These values are in accordance with (23) and (25), and
the rule of calculating subsequent state vectors is in accordance with the thesis of
Theorem 1.

Passing through n intersections. Let us consider a more general case, i.e. passing
through n intersections. The methodology of solving the problem does not change:
it consists in repeating one intersection route n times. The time of leaving the i-th
intersection is the starting time for the route with the (i 4+ 1)-th intersection. B

Example 3. Consider a route through three intersections illustrated in Fig. 6. As-
sume (the units are irrelevant) that I = 720, ly; = 500, Iz = 600, lyis = 350,
v1o = 60, va1 = 50, w3z = 30, v4z = 35, r10 = 13, ro1 = 23, r3o = 13, p1o = 8,
p21 = 23, p3g =10, 71 =18, Ty = 30, T3 = 15.
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X3

X2

X1

X0

..... SN

Fig. 6. Graphic interpretation of travelling along a route with three intersections.

Therefore ti9 = 12, tor = 10, t30 = 20, t43 = 10,

T o =

T T
18 12 0 7 7 71
T=130]|, A= 7 10 0 7 71
15 T 7 20 0 7T
| 7 | 7 7 10 0
[ e e e e e [e e e e e
13 e e e e 8 e e e e
R=| e 23 e e e|, P=|e¢ 25 e e e
e e 13 e e e e 10 e e
L e e e € e Le e e € €
and hence
e T T T T
25 e T T T
C=A+R=| 71 33 e 17 7T
T 33 e T
T 7 7T 10 e
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The subsequent iterations give

z(4) =

N8 3N 3o

23

whence y = z4(4) = 73.

B(1) =

B(3) =

23

23

23

23

10

10

10

10

20

20

30

30

R I S T SR RN ® N 83N

R

4.2.2. The Shortest Travel Time Between Given Two Points in the System

Let us consider a street system in which there exist many possible travel routes
between given points in the system.
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Theorem 2. We have

kot y =2y (ko) = ((’“.”-’ lBo)) . z<o>) (31)

j=0
n+1

where y is the shortest possible travel time between given points in the city, B(j)
and xz(0) being defined by (18) and (13), respectively.

Proof. The proof is similar to that in the classical problem of finding the shortest
path in a graph (Lemma 2). The only thing left to do is to prove that B(j) is always
non-negative. On the basis of (18) we get

Z(j) > -R (32)
B(j)=A+R+Z(j)>A+R-R=A (33)

and A the as the matrix of the time distances between the intersections in the
city network, is non-negative. Therefore the matrix B(j) for any k is always non-
negative. |

Example 4. Let us consider all the intersections of the city street network in Exam-
ple 1 (Fig. 3). The matrices P and R and the vector T are given in Example 2.
Let the initial state be the same as in Example 1. Subsequent iterations produce

[ e ] (e 5 7 1 1 1]
T \‘9 e 10 156 7 7
10 15
2(0) = T ’ B(0) = T e T T
T T 15 7 e 20 7T
T T 7 15 20 5
| 7 ] LT T T T e |
[ e ] (e 5 7 7 1 7]
9 9 e 10 15 7 7T
24 15
(1) = T ’ B(1) = T e T T
T T 15 7 e 20 7
T T 17 15 20 e 5
s LT 7 T T e |
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e e T T T T
9 9 12 19 T
33 T 24 e T 15 T
2) = B(2) =
z(2) 24 |’ 2) T 15 7 e 20 7T
T T 17 24 20 e 5
L T L T T T 5 e ]
e 7 e 5 7 7 1 1]
9 9 12 19 T
33 T 24 e T 24 1
= B =
2B)=1 94 | @=1, 15+ ¢ 2+
44 T 7 24 20 e 5
L T s T T & e |
S
9
33
4) =
z(4) o4
44
| 49 |

whence y = z5(4) = 49.

Comparing two alternative routes shown in Fig. 7, we see that the route with
the shortest travel time is 0* — 1* — 3* — 4* — 5%, unlike Example 1 (Fig. 3),
where the shortest route is also the fastest route (passing through intersection 2*).
Introducing traffic-lights results in a longer route (through intersection 3*) becoming
faster. ¢

a) b)

Fig. 7. Intersection arrangement of Fig. 3 with the fastest route (a) and an
alternative route (b). The numbers in brackets denote the waiting
times at each intersection.
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Theorem 2 gives the shortest possible travel time between given starting and
destination points in a city street network with traffic-light driven intersections. It
does not clearly indicate, however, which route is optimal. To answer this question,
Dijkstra’s algorithm can be employed (Dijkstra, 1959; Dreyfus, 1969) in which an
accessory index matrix is used. Its element (¢,j) contains the index of the point in
the network from which the j-th point is reached after at most i steps. The number
of columns in this matrix is equal to the number of points in the system, and the
number of rows is the maximum number of iterations which does not exceed n — 1
(see the proof of Lemma 1). After completion of the algorithm, it is sufficient to read
the suitable sequence of subsequent indices from the destination point to the starting
point.

Lemma 3. The problem of finding the shortest route in a street network with sig-
nalised intersections is of complexity class P.

Proof. The complexity of Dijkstra’s algorithm, when looking for the shortest path
in the graph, is of order N3, where N is the number of nodes (Dreyfus, 1969).
This refers to the situation where each subsequent state of the system is calculated
according to (14) with A composed of constant elements. In the situation of a street
network with signalised intersections, the state equation is similar to (18), although
B(k) changes during each iteration, in accordance with (18). Based on (18) it can
be shown that the number of operations needed to calculate B(k) of size N x N
during each iteration is equal to mN?, where m is a constant independent of N.
Thus the complexity of the problem of finding the shortest route in a street system
with signalised intersection is O(N°®). |

Therefore the procedure aimed at determining a route with the shortest travel
time can be seen as a modification of the standard Dijkstra algorithm in which the
system matrix B(k) depends on the previous state vector.

5. Allocation of Signal Timings

In the section a (max,+) algebraic model of a TRS is introduced and an illustrative
example is presented.

5.1. The Time Marked Graph of the TRS

If each of the time moments of changing signals is treated as an event, then the
considered TRS is a particular case of the discrete-event dynamic system (DEDS). If
a signal scheduling (SS) is chosen and the “green lines” are determined, then there
exists an order of events. It results from two facts. The events of SS corresponding to
the same intersection follow each other (see Fig. 2) and this order can be represented
by a cyclic traffic-light process (TLP). The quasi-rendez-vous synchronisation of TLPs
corresponding to a given “green line” is required. Let = and 27 be respectively the
time moments (events) at which the green and red signals start at intersection I for
vehicles moving along the “green” route. Similarly, z7; and z7; are these moments



An algebraic approach to modelling and performance . .. 355

at intersection I1. The quasi-rendez-vous synchronisation of the neighbouring TLPs
forces two relations between them (see Fig. 8):

9 ) g g g 9
Tyt g 2 T = T 22T~y g

(34)
T 2 T+ g
where iy ;5 is the average travel time between the intersections.
!
1
! -
! r r : o
1 E Ly =vigtiy =vigtiy i yi4 /
1 J

A
Y

Fig. 8. An illustration of relation (34).

The first relation of (34) means that the vehicle which started from intersection I
at time zj cannot reach intersection IT before the time z; (it cannot be forced to
wait for the green signal). The other means that the red signal at intersection I
cannot start before the last vehicle arriving from intersection I reaches intersection I1.
In general, the identity ¢} ;; = {7 ;; is not necessary (these two time intervals can
be different when a road narrows from two lanes into one), but we assume that
t7.11 = t7 ;1 = tr, 11 for simplification. The relations (34) allow us to connect the
TLPs corresponding to the neighbouring intersections in order to get a time market
graph (Fig. 9).
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b)

Fig. 9. (a) The TMG of the TRS consisting of two intersections (I and II) and one
“green” route. Three dashed arcs describe an alternative dependence of events.
(b) A modification of the preceding TMG, which represents only a stationary
realisation of the system. This graph contains a non-realistic connection with
negative time, but it avoids alternative arcs.

The first relation of (34) shows that =3 depends on z%; and some negative time
parameter —tr rr. It can be substituted by the relations

p . 4>z
T 2 T — bt — 9 (35)
T = T+tror
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where the event z precedes z7; by the time ¢7 r;. Unfortunately, it is difficult to say
which event of the TLP corresponding to intersection II precedes z in a real steady-
state realisation (see Fig. 9(a)). Thus one can create a set of alternative TMGs which
differ from one another in only one arc of alternative arcs (dashed in Fig. 9(a)).

In order to obtain the steady state of the system, each TMG from this set has to
be examined. The number of considered TMGs increases exponentially against the
number of “green” routes. This disadvantage can be overcome in the case when the
arcs labelled with negative weights are introduced to the graph instead the sets of
alternative arcs (Fig. 9(b)). Such a modified graph describes the unique steady state
of the system, but it does not have any classical interpretation of TMGs. It turns
out, however, that there are no obstacles to apply the (max, +) algebraic formalism
to create a state equation based on a modified TMG and to obtain all the desired
quantities, such as the TRS period and the traffic-signal timetable.

Example 5. Let the TRS configuration shown in Fig. 1 with two types of SS (see
SS-A and SS-B in Fig. 2) be considered. If 1, 2 and 3 are “green” routes, then the
graphs of the state order for both types of SS are presented in Figs. 10 and 11. If

8la3

&

&lilal 8l a2

8illad 8l a3

Notation:

gr: — minimal time during which the k-th intersection has to be in the i-th state;
trm — average travel time between the k-th and m-th intersection (k,m =1,I1,III).

Fig. 10. The modified TMG for TRS presented in Fig. 1 and SS-A (Fig. 2(a)).
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Fig. 11. The modified TMG for TRS presented in Fig. 1 and SS-B (Fig. 2(b)).

there exists an arc between vertices ¢ and j, then, according to the selected initial
state, the starting time moment z; of the j-th traffic state has to satisty the condition:

z;(k) > zi(k — qij) +wij, @; € {0,1,...,m} (36)

where w;; is the weight of the (i,7) arc and m is a natural number.

Unfortunately, any realisable algorithm of determining the number g¢;; of previ-
ous iterations associated with arc (i,j) is unknown, apart from the full inspection of
all possible sets {gij}7;-,, in order to obtain a sensible system realisation. In most
practical situations, a trial-and-error method is employed. ¢

5.2. (Max,+) Algebraic Model of a Traffic Route System

If x(k) is the vector of the starting moments (events) for traffic states in the k-th
interaction, then the order of system events (36) can be modelled within the (max, +)
algebra framework as follows:

g=0 (37)
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where {A,lg = 0,m} is the set of some (max,+)-algebra matrices such that
@;":0 A, is the matrix corresponding to the TMG of the considered TRS and
{z_4lg =0,m} is the set of initial vectors.

Equation (37) can be simplified using slack variables (Braker, 1993). Let an arc
(i,7) with weight w;; be associated with the relation

zi(k) > zi(k—q) +wi;, 1<qg<m (38)
This arc can be partitioned into ¢ arcs with weights
(0) __ Wi
w,;’ = —= 39
(3] q ( )
and eqn. (38) can be written in the form
) k) 22 Vk- 1) +ul), r=1,...4
2 (k) = (k) (40)
2 (k) = 2 (k)
After such modifications the state equation (37) takes the form
z*(k) = (Ag ® z* (k) & (A} @ z*(k — 1))
(41)
2*(0) = a3

where Aj, A], and x*(k) are of new sizes (owing to inclusion of the slack variables).
It expands to

z*(k)=(A;®@z* (k) ® (A; @ z*(k — 1))
:(A{; ® [(A;; ®z*(k)) @ (A} ® z*(k - 1))}) @ (A} @ z*(k — 1))
:[(A3)2 ® w*(k)} ®[(AjoE)® Aoz (k—1)] =
=[(43)" 22" ®)]
o [((A;;)”‘l @ -0 (A)’ @ A; EBE) ®Af®z*(k—1)] =...
z*(0) = x;
which then can be rewritten in the compact form
{ z*(k) = Aoz (k—1)

z*(0) = o

(42)
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where

A= (EB (A;)p> RAl, (A)F = (43" '®4;, (4)'=E (43)

p=0

E is the identity matrix, i.e. (E); =e and (E)j; =¢ for i # j.

Lemma 4. Consider a TRS and assume that an SS for each intersection is given.
Moreover, assume that the “green lines” are selected. If the vector x*(k) in (42) is
an eigenvector of A in (43), then T attains its minimum.

Proof. The “green lines” and the set of SS determines explicitly the state equation (43).
This equation describes relations included in the TMG of the TRS considered, i.e.
the periodicity of TLPs and the quasi-rendez-vous synchronisation of TLPs associated
with a given “green line”. Since TLPs are cyclic, the steady state of the system is pe-
riodic (Braker, 1993; Obuchowicz and Banaszak, 1995). Hence the state vector has to
possess periodical behaviour and has to satisfy the quasi-rendez-vous synchronisation.
Thus

A@az* (k-1 =z*(k)=T®z (k1) (44)

Accordingly, the vector z*(k — 1) is an eigenvector of A and the period T is its
eigenvalue. If A is irreducible, then there exists a solution to (44), the elements of
the obtained eigenvector satisfy (35) and T is minimised. |

By solving (44), the TRS period T and the traffic-signal timetable z*(k — 1)
are directly obtained. In this way, the (max,+) algebraic model turns out to be a

very useful tool to allocate traffic parameters referred to in the problem formulation
(Section 2).

Solving the spectral equation is not straightforward. But if the matrix is irre-
ducible (the graph corresponding to the matrix is strongly-connected, see Remark 2),
then a unique eigenvalue (Proposition 1) and the corresponding eigenvector can be
obtained using a (max,+) algebraic version of the power algorithm (Braker, 1993).

5.3. Allocation of Signal Timings

The following procedure provides a signal timing plan (STP) allocation within a
given configuration of the TRS in order to minimise the overall waiting time Tg of
the vehicles at intersections:

Algorithm 1.

Step 1. Choose a set of SS.

Step 2. For each selected SS construct the corresponding state-order graphs and
calculate the signal timings and relative phases (43).

Step 3. For each plan calculate T and find the best one T§.
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Step 4. If T§ < Tg™*, where TU™* is a satisfactory limit of T, then stop,
otherwise create a new set of SS and go to Step 2.

The time T can be calculated (Step 3) using the (min,+) algebraic model
(Section 4). Let A be a set of “green routes” and a € A. Let 22y and z7, be
respectively the time moments at which the green and red signals for vehicles moving
along the route a start at the first intersection of a. Here 22, can be treated as the
starting time moment of the vehicle which moves at the beginning of some vehicles
packet. Similarly, z}, can be treated as the starting time moment of the vehicle
ending this vehicle packet. From Theorem 1, the travel times y? and y along the
route o of these two vehicles can be calculated. The minimum travel time tGa along
this route can also be calculated as

tGo = Z tij (45)
(i,j)€e

where t;; is the average travel time between the neighbouring intersections ¢ and j.
Then the time Ty can be obtained in the following way:

T = Z (Iyg_tGal‘Fiyg‘tGa{) (46)
€A

where the sum is taken over all “green” routes in the TRS.

Example 6. Consider the TRS configuration shown in Fig. 1 with two types of SS
(see SS-A and SS-B in Fig. 2). Routes 1, 2 and 3 are “green” and the modified the
TMGs of TRSs are presented in Figs. 10 and 11 (Example 5). Assume the following
data:

the distances between the intersections (ft): 1, 11 = 2200; 1, 111 = 1800;

the average speed (miles per hour): v = vy ;1 = vy, 171 = 30;

e the relevant data for Fig. 10 are (sec):
SS-A: g1,a1 =40, 91,02 =30, g1 =40, g1 a4 =20
911,01 =40, grre2 =35, grres =15
g111,a1 = 10, grr1,02 = 40, g111,03 = 10, gr11, 04 = 10
e the relevant data for Fig. 11 are (sec):

SS-B: gr,c1 =40, g1,c2=20, grc3 =30, g1 c4=10
9rr,d1 =40, grr.a2 =10, grr,a3 =15

grir,e1 =10, grrr,e2 = 10, grrr,c3 =40, grrr,c4 = 10

The average travel times can be calculated from (19) (sec): tr,1r = 50, tr, 111 = 40.
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The matrix A4 corresponding to the graph in Fig. 10 has the form (the indices of
the columns: ITal, Ia2, Ia3, Ia4, IIb1, 1162, IIb3, I11al, I11a2, I11a3, I11a4):

- -

E € € 20 —-50 £ € 40 € ¢ ¢
40 ¢ £ € € € E € € €
e 30 € I3 € E € € €
e € 40 € € e 50 € € € €
e € € € € e 15 € € € ¢
Ap=1| ¢ 50 =50 ¢ 40 € € € € € ¢
E € € € e 35 € € € € ¢
€ € € € € e € € € € 10
E € € € € e € 10 € € ¢
E € € € € e € € 40 € ¢
L € € e —40 € E € e 10 € |

In the case of the graph shown in Fig. 11 we have (the indices of the columns:
Icl, Ic2, Ic3, Ic4, I1d1, I1d2, I1d3,11Icl, IIIc2, IIIc3, I11c4):

€ 5 e 10 =50 € € € € ¢
40 € € € e 50 € € € ¢
e 20 ¢ € € E € € € €
€ e 30 ¢ € e € € € € 40
-50 € € € € e 15 ¢ € €
Ap = e 50 ¢ e 40 e e € € €
€ € € € e 10 ¢ € € € €
€ € € € € e € € € € 10
€ € € € € e € 10 £ ¢
€ e —-40 ¢ € e € € 10 €
| € € 15 € € E € e 40 e |

In both the cases the system equation has the form
$(k) = (AO &® :lt(k)) (&) (A1 ® :B(k - 1)), ZE(O) =y

without using slack variables, because the average travel times are of the same order
as the minimal periods of TLPs.

First, we have to select the initial states of TLPs. This operation determines
which columns of the matrix A4 (Ap) will be included into Ay and A;. For SS-A
the initial states are Ial, ITb2 and IIIa3. For SS-B the initial states are Icl, I1d3
and IIIc3. The columns corresponding to the states preceding the above-mentioned
states are included in A; and the others in Ay. Using (42) we can obtain A and
solving the spectral equation (43) we can calculate the timetable of TLPs and the
system period.

The results are presented in Fig. 12. It can be seen that the solution to SS-A
guarantees that the overall waiting time T = 0, while the system period T4 = 215.
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200

100 —

100 —

— 7

b)

Notation;
O -statesa) Jal, IIbl; OIal; b) Icl; Hdl; Icl;
©  -statesa) a2, b2, HIa2; b) Ic2; Id2; I c2;
- states a) [a3; Il a3; b) I¢c3;; OI c3;
@ -statesa) Jad, IIb3; IlTad; b) Icd, IId3; IIc4,
—

- represents the travel time between two neighbouring intersections.

Fig. 12. Gantt’s charts of a signal timings realisation in the TRS considered:
(a) SS-A, (b) SS-B.
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In the case of SS-B, we have T = 110, while the overall waiting time T = 10. This
is contradictory with eqn. (34), which represents a quasi-rendez-vous of TLPs and
which forces T to be zero. It is easy to see that in Fig. 12(b) the timings z%(k)
and z9;(k) do not satisfy eqn. (34), but zJ(k) and z%,(k —1) do. Hence this is the
problem whether the TMG arc corresponding to this timings should be represented
in A; or Ag, c.f. (41). If this is the case in A;, then the above results are valid,
otherwise the eigenvalue of (44) (the system period) is equal to infinity. The green
time interval at intersection I is enclosed by the green time interval at intersection I7.
When a green line is designed in both directions, the green time intervals enclose each
other. In general, there is no finite solution when the time distance between these two
intersections is not equal to half the system period. It is easy to see that if the mean
travel time between intersections I and IT were slightly higher (¢7, ;7 = 55 instead
tr, 11 = 50), then T would be equal to zero. Since Ty < T4, the average vehicle
flow through the arterial network in Case B is higher then in Case A. In consequence,
if the speed limit between intersections I and II decreased so that the mean travel
time t7 rr = 55, then the best solution for the TRS considered would be found for
SS-B. ¢

6. Concluding Remarks

Some algebraic models of a collision-free traffic route system are proposed. The first
model is based on the (min, +)-algebra approach. It solves the problems regarding
determination of the travel time along a given route in the street network and the
shortest route in the sense of the travel time among all possible routes joining two
given points. This method allows us to evaluate various settings of signal timings for
a specific combination of traffic lights with the same computation complexity as is
required by Dijkstra’s algorithm determining the shortest path in a graph.

The extension of the above results to the problem of real-time traffic-light control
s0 as to guarantee a “ smooth” flow of vehicles along presumed routes without violating
timings presumed for other routes is our main concern. A method for the adjustment
of the traffic signal timings so as to minimise the waiting travel time in an urban
traffic system is also considered. The approach is based on the (max,+) algebra
which provides a framework for building an executable performance-oriented model
of an arterial network.

Further open problems regard e.g. the tasks ranging from routing school buses
in the single and multi-school environment, through railway and airway routings, to
special vehicles, e.g. routing and scheduling ambulances, fire guards, and convoys.
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