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PERIODIC COORDINATION IN HIERARCHICAL

AIR DEFENCE SYSTEMS

Piotr ARABAS∗, Krzysztof MALINOWSKI∗

The subject of this work is the defence planning of a point target against an air
attack. The defence system is decomposed into a number of sectors. A direct
method of coordination is used at the upper level, while the sectors use a discrete-
time event-based model and the description of uncertainty by multiple scenarios
of an attack. The resulting problems are solved using linear programming. A
comparison of two coordination strategies for realistic attack scenarios and an
analysis of effectiveness are provided.
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1. Introduction

The second half of the 20th century brought about a rapid development of various
kinds of missiles, initiated by the first operational use of V1 and V2 during the Second
World War. While it was to some extent possible to destroy relatively slow V1s flying
at medium attitudes and similar winged missiless, the problem of the anti-ballistic
missile defence remained in fact unsolved until the introduction of the first effective
surface-to-air missiles (SAMs) in the 1950s (Zdrodowski, 1998). The high speed of
both targets and weapons created a demand for control systems which, although the
first anti-missile systems were designed for a point defence (e.g. Russian A-35 for
defence of Moscow (Lenox, 1998; Zdrodowski, 1999)), would usually cover the whole
area of a country. Recent conflicts (especially the wars in the Persian Gulf and former
Yugoslavia) demonstrated the role played by the systems responsible for the defence
against weapons of a shorter range, such as tactical and cruise missiles.

The objective of this paper is to develop a model for simulating and controlling an
anti-missile defence system. Most solutions to this problem (Piasecki, 1968; Piasecki
and Boratyn, 1968) take advantage of the probabilistic approach, control theory (e.g.
the Lanchester model) (Kimbleton, 1969; Parkhideh and Gafarian, 1996; Przemie-
niecki, 1994), or game theory (Ardema et al., 1985; Przemieniecki, 1994). The main
idea here is to build a hierarchical model which could help to describe real system
dependencies and understand their importance better than in the case of a centralized
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one. Another significant issue is that decomposition allows us to use parallel compu-
tations and thus to increase the efficiency. The multiscenario algorithm (Warchoł and
Malinowski, 1993; 1995) used in this model, although based on classic control theory,
introduces new ideas of representing uncertainty.

2. System Description

The system considered is dedicated to defend an important object of moderate size,
e.g. an air base or a factory, against an air attack. The weapons are dislocated near
the defended object and the protected space can be outlined by a semi-sphere. The
radius of this semi-sphere equals the range of weapons. Such a scheme is known as a
point defence (Hill, 1988; Zdrodowski, 1998) and is used when limited resources do
not allow an area defence system to be organized. The assets of the system may con-
sist of various types of SAM missiles with radar guidance and appropriate command
stations. The system is focused on fighting against various kinds of missiles, includ-
ing ballistic (tactical) and cruise ones. The most important assumption is that the
attacking objects come in a limited number of groups. Such an assumption is similar
to the situation when the attacker tries to eliminate the SAM radars first (e.g. using
anti-radar missiles) to allow better execution of the second phase of the attack, i.e. the
attack on the main target. An argument for this can be actions against Iraqi airfields
during the war in the Persian Gulf, when within several minutes after eliminating the
air defence (often with HARM anti-radar missiles) the runways were mined and the
airplanes destroyed.

The proposed command system comprises two levels. The lower level consists
of a number (3–5) of sectors commanded by Weapon Directors. The aim of each
Weapon Director is to protect his sector using the resources allocated. The upper
level—the Air Defence System Commander—coordinates the efforts of the Weapon
Directors by allocating resources (mainly weapons) and assigning tasks to sectors. It
is important to note that it does not directly define physical borders of the sectors—
this allows a more flexible management and is a solution to some common problems
(e.g. overlapping sectors). For illustrative purposes, it is still possible to identify the
range of the sector as a sector of the fire of its batteries (see Fig. 1).

The framework for the defence system is provided by the use of a hierarchical
control scheme and a direct method of coordination. Such a technique is chosen not
only for its effectiveness and simplicity, but also for better modelling of the information
and responsibility pattern in the real system. That makes this model a better tool for
an analysis.

The solution to the decision problem of a Weapon Director is computed with
the use of a multiscenario algorithm (Warchoł and Malinowski, 1993) which implies
special construction of a model for the sector. As the algorithm assumes multiple
scenarios of the attack (uncontrolled inputs), the state values may evolve in several
ways following an attack scenario. In other words, at the moments when a particular
attack scenario allows for multiple variants of the attack, multiple variants of the
state values must also be considered. This is the reason behind marking all variables



Periodic coordination in hierarchical air defence systems 495

Sector 1

Sector 2

Sector 3

Object

Fig. 1. Schema of the air defence system.

with upper index i denoting the number of the node in the scenario graph instead of
time (as is typical for dynamic systems). The idea of multiple scenarios is described
more precisely in the next section. Formally, the decision problem of the j-th Weapon
Director can be defined as follows: Find

Q̂j
(
αj , oj

)
= min
{xxxj},{uj}

Qj
(
{xj}, {uj}, αj , oj

)
, (1)

subject to

x
j,s = f j

(
x
j,i, uj,i, z(αj), oj

)
, i = 1, . . . , N, s ∈ S(i), (2)

gj
(
x
j,i, uj,i, z(αj), oj

)
≤ 0, i = 1, . . . , N, (3)

where xj,i is the state vector at node i, S(i) is the set of successor nodes of node i, i.e.
the set of nodes in which the system can evolve due to future actions of the enemy,
so xj,s for s ∈ S(i) represents one of the possible values of the state variable at
the time instant subsequent to i. Furthermore, uj,i is the decision vector at node i,
{uj} is the decision sequence over the full decision horizon (i = 1, . . . , N), z is the
prediction of the attack actions, αj denotes a task assignment, oj are resources
allocated by the coordinator, and z(αj) denotes the part of the global prediction of
attack actions relevant for the j-th Weapon Director. The function f(·) describes the
state transformation, and the mapping g(·) represents local constraints. The function
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Q̂j(αj , oj) denotes the optimal value of the performance index of the j-th Weapon
Director.

At the upper-level, the coordinator minimizes the overall performance index
which is equal to the sum of the Weapon Directors’ performance indices by choosing
suitable values of variables o and α, i.e. by allocating tasks and resources:

Q̂ = min
α,o
Q(α, o) = min

α,o

J∑

j=1

Q̂j
(
αj , oj

)
, (4)

subject to

h(o) = 0, (5)

where J is the number of sectors, and eqn. (5) describes global resources constraints.
The coordination can be performed once, at the beginning of the attack (initial co-
ordination), or it can be repeated during the operation of the system (periodic co-
ordination). The moments suitable for computing a new allocation of resources are
connected with the arrival of new information and important changes in the situation,
e.g. observation of a new group of enemy objects or destruction of a battery allocated
to one of the sectors. This allows us to take advantage of the repetitive control scheme
applied at the lower level of the system. The special case of periodic coordination dis-
cussed in this article is the coordination repeated at each stage, i.e. synchronously
with the repetitions of the multiscenario algorithm used by Weapon Directors.

3. Decision Problem of the Defence Sector

As the decision problems of sectors constitute the lower level of the hierarchical sys-
tem, the model of a sector must provide a compromise between the precision and
efficiency. The effect of this is a partially linear model with a simplified description
of the process of destroying enemy objects and weapons of the sector by casual-
ty functions (described, e.g. in (Piasecki, 1968; Przemieniecki, 1994)), thus avoiding
time-consuming computations typical of stochastic models. An algorithm used for
finding optimal decisions also tries to provide better effectiveness than the traditional
ones (e.g. stochastic dynamic programming) by the use of multiple scenarios (War-
choł and Malinowski, 1993). This allows us to solve a simpler problem, similar to the
deterministic case, without loosing the ability to construct a decision policy.

Modelling the sector involves modelling two different but closely interconnected
subsystems: the attacking objects and the local weaponry of the sector. For the at-
tacking objects important information seems to be the distance from the centre of the
system to any group and the number of missiles in it. The weaponry of the sector is
organized in batteries which may differ in type, number of missiles and capabilities
(sector of fire, range, effectiveness, etc.). This implies storing the state of each battery
as an independent state variable. For more convenient notation, the state vector xj

is divided into the following variables connected with the attack:

w
j,i
k – the number of the attacking objects observed in the k-th group before the
time event associated with node i,
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r
j,i
k – distance from the defence centre to the k-th group of the enemy objects,

and variables connected with the weapons of the sector:

x
j,i
l – the number of missiles in the l-th battery available at node i in sector j.

A link between the two groups of state variables is provided by variable uj,ik,l de-
scribing the actions taken by the Weapon Manager to defend the sector (i.e. launching
missiles) and variable ϕj,ik representing the number of enemy objects shot down.

3.1. State Equations

3.1.1. State Equations of Attacking Objects

The main role for attacking object subsystems is played by the equations describing
the interaction between the number of attacking objects and decisions represented
by the number of missiles launched from the batteries of the sector. The equations
describing the changes in the distances to different groups of objects are less compli-
cated as the Weapon Director cannot influence the movement of these objects (in no
way other than by destroying them). The following equations describe the changes in
the number of attacking objects:

w
j0

k = 0

w
j,s
k =




w
j,i
k + z

i
k − ϕ

j,i
k if rj,ik − v

i
kτ
j,i ≥ 0,

0 otherwise,
(6)

for s ∈ S(i), where zik is the number of objects in the k-th group (part of attack

prediction), τ j,i is the length of the time period between nodes i and s, ϕj,ik is the
random variable describing the number of objects shot down, and S(i) is the set of
successor nodes of node i.

It is important to note that the state variable wj,ik describes the number of
attacking objects as observed before (prior to entering) node i. This implies the zero
initial condition. The total number of attacking objects present at node i is wj,ik +z

i
k.

The presence of the random variable ϕj,ik implies calculation of the expected
value of the performance index during optimization. To avoid this inconvenience, the
casualty function approach was used, which is equivalent to substituting the expected
value of the variable ϕj,ik into (6). Although such a solution is only suboptimal, it
is widely used (Piasecki, 1968; Przemieniecki, 1994) and allows us to significantly
simplify the model as well as speed up the calculations.

The proposed casualty function of the enemy objects is based on the Bernoulli
schema and can be calculated as follows:

ϕ
j,i
k

(
u
j,i
k,l, e

j,i
k,l,m

j
k,l

)
= Eϕj,ik =

L∑

l=1

(
1− ej,ik,l

m
j

k,l

)
u
j,i
k,l

m
j
k,l

, (7)

where ej,ik,l is the percentage of the objects surviving an attack by a single missile

(part of the attack prediction), and mjk,l is the maximal number of missiles which
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can be used to engage a single enemy object. An important advantage of using such
a function is that it is linear and allows us to apply fast and reliable computational
methods.

The object movement is described by the equations below. The velocity of objects
(vik) should be treated as a mean value and may vary between the nodes:

r
j0

k =




f0k if z0k > 0,

0 if z0k = 0,

r
j,s
k =

{
f i+1k if zsk > 0,

max
(
r
j,i
k − v

i
kτ
j,i, 0

)
if zsk = 0,

(8)

for s ∈ S(i), where f ik is the distance to the k-th group of objects when spotted
(part of the attack prediction), and vik is the velocity of the k-th group of objects
(part of the attack prediction).

3.1.2. State Equations of the Weapon

The state of the weapon is defined as a vector representing the number of missiles
in the batteries of the sector. It depends not only on decisions (numbers of missiles
launched from the batteries), but also on the enemy actions. The targets of the enemy
missiles are relatively difficult to predict, and hence a simplified approach was adopted.
It relies on the assumption that the defended object occupies a relatively small area
and the weapons are placed close to it. This leads to a model in which all the batteries
assigned to the sector may suffer from damage. The damage of batteries is calculated
with the use of the casualty function whose parameters may vary for different groups
so as to describe their abilities:

x
j0

l = X
j0

l , (9)

x
j,s
l = max

(
x
j,i
l −

K∑

k=1

u
j,i
k,l − ζ

i
(
w
j,i
k , z

i
k, a
i
k

)
, 0

)
, s ∈ S(i),

where Xj
0

l is the initial value, i.e. the number of weapons allocated by the coordina-
tor, and ζi(·) is the casualty function of weapon.

A typical casualty function for the area targets can be constructed using a cookie
cutter approximation of explosion effects and a Gaussian distribution of the shooting
error (Piasecki, 1968; Przemieniecki, 1994):

ζi?
(
x
j,i
l , w

j,i
k , v

i
k, a
i
k

)
= xj,il

∑

k∈Ki?

(
1− (1− aikWs0)

(wj,i
k
+zik)

)
, (10)

Ws0 = 1− exp

(
−
R2µ

σ2x + σ
2
y

)
, (11)
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where Rµ is the lethal radius, σx and σy are respectively the standard deviations
of the point of hit in the direction parallel and perpendicular to the line of flight,
Ki? is the set of the indices of the groups of objects which cover their targets at
node i, zik is the number of objects in the k-th group, and a

i
k is the coefficient

describing destructive abilities of an object of the k-th group (both are parts of the
attack prediction). The drawback of such a function is that it is nonlinear, and thus
the resulting decision problem cannot be solved directly with linear methods. Another
possible solution is to use the linear approximation

ζi
(
w
j,i
k , z

i
k, a
i
k

)
= min

( ∑

k∈Ki?

aik(w
j,i
k + z

i
k)

L
, x
j,i
l

)
, (12)

where Ki? is the set for indices for the groups of the objects which cover their targets
at node i, zik is the number of objects in the k-th group, and a

i
k is the percentage

of the objects which hit their targets (both are parts of the attack prediction).

The possibility of using such a function in a repetitive control scheme was proved
by experiments. A further discussion of the properties of both the functions together
with numerical results can be found in (Arabas et al., 1999).

3.2. Constraints

Constraints describe various physical limitations of both the weapon and detection
systems of the sector. Among other things, they provide a limit for the maximum
number of missiles that can be launched in particular periods by linking the decision
with the number of missiles in batteries and the number of attacking objects:

∀ l = 1, . . . , L,
K∑

k=1

u
j,i
k,l ≤ x

j,i
l , (13)

∀ k = 1, . . . ,K,

L∑

l=1

1

m
j
k,l

u
j,i
k,l ≤ w

j,i
k + z

i
k, (14)

∀ l = 1, . . . , L,

K∑

k=1

u
j,i
k,l

m
j
k,l

≤ tl, (15)

∀ k = 1, . . . ,K, ∀ l = 1, . . . , L, u
j,i
k,l ≤ x

j,i
l δl

(
r
j,i
k

)
, (16)

where δl(·) is the function returning 1 when the argument (distance to the enemy
object) is less than the range of weapon l, and 0 otherwise. Furthermore, tl is the
maximum number of the enemy objects which can be tracked by radars allocated to
the weapon l.

The constraint (13) describes weapon resources of the sector, as it allows the
use of no more missiles than available at the particular stage. The constraint (14)
limits the number of the missiles which can be used to engage a single enemy object
to mjk,l (for some types of weapon it is a typical procedure to launch more then one
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missile against a single target to attain a higher hit probability). The constraint (15)
describes the tracking ability of radars (or other means of detection) allocated to the
particular weapon, and the inequality (16) forbids firing missiles to the target outside
the range of the weapon.

4. Multiscenario Algorithm

Modelling uncertainty plays an important role in the model of the sector. There are
several sources of uncertainty in the proposed model:

1. the number of new attacking (enemy) objects observed at node i and their
parameters (speed, distance, azimuth, etc.),

2. the number of attacking objects shot down, and

3. damages caused by the enemy objects.

The last two groups of random variables can be modelled by a purely random
process (the values corresponding to subsequent time instants are independent of the
previous realizations), and the damage functions described previously are examples of
such an approach. The first group of variables describes an attack which is deliberately
planned by the enemy and can be changed according to the observations taken during
its execution. Such a process involves correlated variables and thus must be specially
modelled. As most dynamic optimization algorithms are constructed for disturbances
in the form of a white noise, the common solution is state augmentation which allows
us to model correlated disturbances as an output of a dynamic system and apply
standard methods. The drawback of such a procedure is enlarging the dimension of
the whole system, which limits the possibility of using dynamic programming only
to simple problems. Since some variables of the proposed model are discrete, the
resulting problem cannot be solved analytically. Its dimension (5–8 for a typical attack
and system setup) causes a difficulty for dynamic programming even without using
time- and memory-consuming techniques like state augmentation. A solution seems
to be choosing a method which limits the number of realizations of the uncontrolled
variables to a set of a few scenarios considered important for the purpose of defending
the object. An algorithm proposed in (Warchoł andMalinowski, 1993) takes advantage
of a forecast in the form of multiple scenarios. It is important to note that, although
the methods used in the algorithm resemble those used in the deterministic case, the
solution is in the form of a control law giving various values of decisions for various
realizations of the uncontrolled variables.

Attaching probability to each scenario allows us to construct a situation graph
(see Fig. 6), the nodes of which correspond to the time events important for the sys-
tem. The idea of the algorithm is to treat the nodes located in parallel scenarios (e.g.
nodes 2 and 5 in Fig. 6) independently and define state variables at every node (i.e.
xj,2 at node 2 and xj,5 at node 5). Every node needs a different decision, so a natural
solution (taking account of the arrangement of the state variables) is to assign to them
decisions numbered in the same way as the state variables. As every node provides
values of uncontrolled inputs and the initial conditions of state variables are known,
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it is possible to define the state variables as functions of decisions. Substituting these
functions into the performance index allows us to express it in terms of decisions and
to solve the resulting problem in decision space only. The solution techniques range
from a symbolic method, suitable for some classes of nonlinear problems (Warchoł and
Malinowski, 1993), to the use of classical static optimization algorithms. The approach
presented in this paper takes advantage of the linear structure of both the model and
the performance index, and uses mixed linear programming which is relatively fast
and reliable. An additional advantage is that the algorithm can be used in repetitive
control scheme, i.e. the computations can be repeated when new information (graph)
is available.
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Fig. 2. Possible evolution of the state.

Coordinator

Sector 1 Sector J

�
�

�
�

�� �

�
�
�
�
� �����
�

�
�

�� �

�
�
�
�
� ���

QJ(αJ , oJ)Q1(α1, o1)
α1

o1
αJ

oJ

Fig. 3. Hierarchical air defence system.

4.1. Attack Prediction

The possible evolutions of an attack are described by a graph. The example presented
in Fig. 6 shows the situation when two scenarios are possible at node 0 (S(0) = {1, 4}):
one with probability P 1 = 0.7, leading to the branch starting at node 1, and the other,
leading to node 4, with probability P 4 = 0.3. Every node is associated with one of
the following two types of events:

� A new group of attacking objects appeared. The appearance of the k-th group
at node i is indicated by zik > 0;

� Objects were hit by missiles; it is possible to observe results of shooting and to
launch new missiles.
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The following values are defined for each node:

zik – the number of objects appearing in the k-th group at node i; a non-zero
value indicates the number of objects at the moment of detection and we
have zik = 0 for the rest of time,

f ik – the distance to the detection point of the k-th group of objects,

γj,i – the azimuth at which the k-th group of objects was detected,

vik – the velocity of the k-th group of objects (mean value for the period of time
between nodes i and s, s ∈ S(i)),

eik,l – the probability that an object of the group k will evade weapon l,

ak – the probability that an object of group k will hit its target (assuming that it
was not destroyed before),

τ i – the length of the time period between node i and the next node (node s,
s ∈ S(i)),

P i – the probability of transition to node i.

4.2. Performance Index

Similarly to stochastic versions of dynamic programming, the performance index of
node i is the sum of the stage performance function of this node and of the optimal
performance indices of the descendant nodes weighted by the probabilities of those
nodes:

Qj,i
(
u
j,i
k , x

j,i
l , w

j,i
k , z

i
k

)
= qj,i

(
u
j,i
k , x

j,i
l , w

j,i
k , z

i
k

)

+
∑

s∈S(i)

P sQ̂j,s
(
u
j,s
k , x

j,s
l , w

j,s
k , z

i
k

)
, (17)

where Qj,i(·) is the performance index of node i, qj,i(·) is the stage performance

function of node i, Q̂j
s

(·) is the optimal value of the performance index of node s,
S(i) is the set of indices of descendants of the node i, and P s is the probability of
transition to node s.

The stage performance index has the form

qj,i
(
u
j,i
k , x

j,i
l , w

j,i
k , z

i
k

)
= λi

(
p0

K∑

k=1

(
w
j,i
k +z

i
k−ϕ

j,i
k

(
u
j,i
k,l, e

j,i
k,l,m

j
k,l

))

+

L∑

l=1

plu
j,i
k,l+p∗ϑ

(
u
j,i
k,l, w

j,i
k , e

j,i
k,l,m

j
k,l

))
, (18)

where pl is the cost per unit of the l-th weapon, p0 is the ‘cost of the presence’ of
enemy objects in the air space controlled by the Weapon Director, p∗ is the cost of
damage that can be caused by a single enemy object hitting the defended target, λi
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is the weight of node i, ϑ(·) is a function returning the number of the objects hitting
their targets at node i:

ϑ
(
u
j,i
k,l, w

j,i
k , e

j,i
k,l,m

j
k,l

)

=




w
j,i
k − ϕ

j,i
k

(
u
j,i
k,l, e

j,i
k,l,m

j
k,l

)
+ zik if rj,ik − v

i
kτ
i ≤ 0,

0 otherwise.

(18a)

The decision problem of the sector can be defined as minimization of the function
obtained by substituting functions defining the state variables in terms of decisions
u
j,i
k,l and prediction factors into the performance index (17) of node 0. The resulting

function depends only upon the decision scenario ({uj}) and can be optimized in the
space of decision scenarios:

Q̂j(αj , oj) = min
{uj}
Qj,0

(
{uj}

)
(19)

subject to constraints (13)–(16). The result is an optimal decision scenario and an
optimal value of the local performance index for allocation of tasks and resources
given by the coordinator.

The advantage of such a definition of the decision problem is its relatively simple
structure—the constraints (13)–(16) are linear and the performance index is piecewise
linear (if a linear approximation of the weapon casualty function (12) is used). Since
the casualty function is composed of only two linear pieces, the second of which has
the form of a bound (see Fig. 5), it is possible to replace it with the simplified function

ζ̄i
(
w
j,i
k , z

i
k, a
i
k

)
=
∑

k∈Ki?

aik(w
j,i
k + z

i
k)

L
(20)

and additional constraints defining a new variable ζj,il denoting the damages of the
weapon:

ζ
j,i
l − ζ̄

i
(
w
j,i
k , z

i
k, a
i
k

)
≤ 0, (21)

x
j,i
l − ζ

j,i
l ≥ 0. (22)

Substituting ζj,il in place of the casualty function (12) and adding constraints
(21) and (22) results in a linear problem which can be solved with standard meth-
ods. As decisions are integer variables and additional variables ζ j,il are continuous,
it is a problem of mixed linear programming. The solutions were obtained using a
branch-and-bound scheme based on the simplex method chosen for its simplicity and
effectiveness.
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5. Coordinator

As described in Section 2, the coordination is achieved by the allocation of both
weapons and tasks to the sectors. The weapons are allocated in battery units, which
seems to be the best solution from the viewpoint of an army organization. Dividing
weapons into smaller units, e.g. single launchers, is more difficult as these usually need
to share radars and other equipment—this might lead to the situation when radars
and launchers of the same battery belong to different sectors. It is important to note
that batteries may differ not only in the type of weapons, but also in some other
aspects like the number of missiles, sector of fire or effectiveness (i.e. the ability to
destroy enemy objects). During operation of the system the number of missiles in the
batteries may change (such changes may be caused by launching them or by enemy
actions), but even such units can still be reallocated. This means that it is necessary
to distinguish batteries, which results in a multidimensional variable o describing the
allocation of batteries. Particular tasks are assigned by associating groups of enemy
objects with sectors. Formally, the decision problem of the coordinator can be defined
as follows: Find

Q̂ = min
α,o
Q(α, o) = min

α,o

J∑

j=1

Q̂j(αj , oj) (23)

subject to

∀ l = 1, . . . , L,

J∑

j=1

o
j
l ≤ 1, (24)

∀ j = 1, . . . , J, ∀ k : αjk = 1 κ
(
β
j
max,1, β

j
max,2, γ

i
k

)
= 1, (25)

∀ j = 1, . . . , J, ∀ l : ojl = 1,

κ
(
β
j
max,1, β

j
max,2, εl,1) + κ

(
β
j
max,1, β

j
max,2, εl,2

)
≥ 1, (26)

∀ j = 1, . . . , J

L∑

l=1

o
j
l ≥ 1, (27)

∀ k = 1, . . . ,K

J∑

j=1

α
j
k = 1, (28)

where Q̂j(αj , oj) is the optimal value of the performance index of the j-th sector
for given values αj (task assignment) and oj (battery allocation), J is the number
of sectors, L is the number of batteries. Moreover, βjmax,1 and β

j
max,2 denote the

maximum scope of sector j, εl,1 and εl,2 describe the sector of fire of the l-th battery,
and γik is the azimuth of the k-th group of enemy objects at node i. If the function
κ(·) equals 1, then its third argument is an azimuth lying in the sector defined by
the first two arguments, otherwise it equals 0. The allocation of batteries is defined
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by the matrix

o =




o11 o
1
2 · · · o

1
L

o21 o
2
2 · · · o

2
L

...
...

...

oJ1 o
J
2 · · · o

J
L




, (29)

where ojl = 1 means that the l-th battery was allocated to the j-th sector. Similarly,
the J ×K matrix α (K is the number of groups of enemy objects) denotes the task
assignment and is composed of the elements αjk such that α

j
k = 1 when the k-th

group of enemy objects is assigned to the j-th sector:

o =




α11 α
1
2 · · · α

1
K

α21 α
2
2 · · · α

2
K

...
...

...

αJ1 α
J
2 · · · α

J
K




, (30)

The constraint (24) describes a limitation imposed on the number of batteries—
a battery may be assigned to one sector only. The constraint (25) forbids assigning
to the defence sector the groups of enemy objects observed outside this sector. In
turn, the constraint (26) allows us to avoid the situation when a battery sector of fire
lies outside the maximum scope of the defence sector. The constraint (27) tries to
minimize the risk related to an unexpected change in the attack (i.e. different than
that provided by the attack prediction) by implying allocation of at least one battery
to every sector. Such a procedure provides a kind of protection for the rear sector of
the system against an unexpected attack. The constraint (28) implies an assignment
of all the groups of enemy objects to the sectors (one group may be assigned to one
sector only while it is possible for this sector to fight with more than one group).

5.1. Algorithm for Finding an Optimal Allocation

Finding an optimal allocation of tasks and batteries is performed in two stages. First,
an optimal allocation of batteries for a given assignment of tasks is determined. Then
a new task assignment is generated and the computations are repeated to obtain the
optimal solution.

An attack scenario describes several variants of the attack by defining groups of
enemy objects. To allocate tasks to the sectors the coordinator needs to assign these
groups to the sectors. This involves simple graph processing—reduction of branches
without a specified group. As a typical attack consists of a few (2–4) groups, the
number of possible assignments is not high (e.g. 26 for the graph used in experiments)
and can be further reduced if global constraints are defined.
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Finding an optimal allocation of batteries is more difficult as the number of
variants may be much higher, e.g. for the system consisting of 3 sectors and 5 batteries
(see Fig. 7) there are 45 = 1024 variants. For each variant the local problems for all
sectors should be solved. The proposed solution generates all the possible allocations of
the batteries for a single sector, as considered separately without taking into account
the global part of the resource constraints (constraint (24)). In our example this means
that for every sector all possible allocations are considered, i.e. from allocating none
of 5 batteries (formally this can be coded as oj = [00000]) to allocating all of them
(oj = [11111]). There are 25 = 32 such allocations for the example discussed; some
of them must be skipped as violating the constraint (26), thus reducing the total
number of variants. The solutions to the sector problems for these allocations can be
stored in tables associated with sectors. To find an optimal allocation for the whole
system, it is necessary to generate all the combinations of variants stored in sector
tables skipping these violating global resource constraints (24, 27), and to compute
sums of optimal performance indices (the overall performance index (23) is the sum of
the sector performance indices). Comparing these sums allows us to find the optimal
one. The advantage of the method is that the number of necessary computations
for the sector problems is substantially reduced (32 times in our example), and they
can be carried out in parallel, as during computations no communication between
sectors is needed (due to relaxing the global constraint). The sequential part finds the
optimal sum, which is a relatively simple arithmetic task and takes very little time
when compared with the optimization algorithms used to solve sector problems.

1 10 0 0

1 1 0 32

25= 32 25= 32 25= 32

1 0 10 0 0 0 0 0 0

Sector 1 Sector 2 Sector 3

1024

Fig. 7. Scheme of battery allocation.

6. Experiments

The idea of computational experiments was to check the ability of the system to
provide a suitable protection under conditions different than predicted in the attack
scenario graph, and to check the possibility of using an initial coordination in place
of the periodic coordination repeated at each stage. To make it possible, a simulation
program incorporating a simulation model was built. The simulation model was based
on the model used in computations—(6–10, 12), with an additional modification of
the azimuth of attacking groups (γik) and the number of objects observed (w

j,i
k,l) by

normally-distributed random variables. In the case when two variants of an attack
scenario were possible, their selection was performed at random.
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6.1. Two Scenarios

Simulated scenarios were constructed to correspond to a real situation when the main
part of the attack is to be preceded by an anti-radar missile strike. Each attack
consisted of two stages. The target of the first were the radar and weapon systems—
this was achieved by a large value of aik (the ratio describing the ability to destroy
the weapon of the sector) for the first group of enemy missiles. The second part of
the attack might arrive from one of two possible directions thus creating two variants
represented by two branches of the graph. The value of aik was lower for these groups
as they were aimed at the main target. The difference between the two scenarios is
that in the first one the second part of the attack occurs after a short delay, so for most
of the time both the groups of attacking objects are present. In the second scenario
the final part of the attack is carried out after the time needed by the missiles of
the first group to reach their targets (radars etc.), making it less demanding when
compared with the first situation when the defence system has to fight with two
groups concurrently.

The weapon of the sector consisted of one long-range (80 km) SAM battery and
three medium range (45 km) SAM batteries. In order to assess the number of missiles
needed to defend the object efficiently, three variants were considered; the correspond-
ing details are provided in Table 1.

Table 1. Battery characteristics.

Battery No. 1 2 3 4

Range 80 45 45 45

Sector of fire 360o 0o–170o 80o–200o 160o–360o

Number of missiles—Variant 1 4 4 4 4

Number of missiles—Variant 2 4 8 8 8

Number of missiles—Variant 4 8 16 16 16

6.2. Results

The first set of experiments was carried out using the attack graph presented in
Fig. 8(a). The simulations were repeated 30 times for five values of σγ being the
standard deviation of the disturbance added to the azimuth prediction. As the mean
value was equal to zero, σγ = 0 represents the situation of a perfect prediction. The

number of missiles observed (wj,ik ) was also modified by adding a normally-distributed
random variable with zero mean and a standard deviation of 0.6. The number of hits
by the enemy objects was chosen as the most objective criterion—it is the aim of the
system to protect the defended object against destruction. Multiple hits are very dan-
gerous as they increase exponentially the probability of the target destruction—they
were shown separately. The results for periodic and initial coordination are included
in Tables 2–4.
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Fig. 8. Two variants of the attack.

Table 2. Results for the first variant of batteries (cf. Fig. 8(a)).

Periodic coordination Initial coordination

σγ σγ

0o 45o 90o 135o 180o 0o 45o 90o 135o 180o

# of hits by 1 object 7 7 9 9 4 5 2 3 1 1

# of hits by 2 objects 10 3 9 3 7 7 8 7 7 4

# of hits by 3 objects 6 10 2 5 7 12 6 7 9 7

# of hits by more than 3 objects 0 3 1 2 5 4 13 12 12 17

Maximum # of hits 3 5 4 5 8 4 7 7 7 7

Maximum # of missiles launched 16 14 16 16 16 12 12 12 12 12
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Table 3. Results for the second variant of batteries (cf. Fig. 8(a)).

Periodic coordination Initial coordination

σγ σγ

0o 45o 90o 135o 180o 0o 45o 90o 135o 180o

# of hits by 1 object 5 8 4 3 5 14 5 4 6 7

# of hits by 2 objects 1 0 0 0 0 4 8 3 7 4

# of hits by 3 objects 0 0 0 1 2 0 2 1 3 2

# of hits by more than 3 objects 0 0 0 1 1 0 3 8 5 10

Maximum # of hits 2 1 1 4 4 2 5 5 6 6

Maximum # of missiles launched 20 20 22 22 22 18 18 16 18 16

Table 4. Results for the third variant of batteries (cf. Fig. 8(a)).

Periodic coordination Initial coordination

σγ σγ

0o 45o 90o 135o 180o 0o 45o 90o 135o 180o

# of hits by 1 object 0 0 0 0 0 14 9 8 6 9

# of hits by 2 objects 0 0 0 0 0 3 1 1 5 5

# of hits by more than 2 objects 0 0 0 0 0 0 3 3 6 7

Maximum # of hits 0 0 0 0 0 2 5 5 5 5

Maximum # of missiles launched 18 18 18 18 18 17 18 16 17 17

The analysis of the results for periodic coordination allows us to find out a suitable
size of batteries. Although in the first case (Table 2) all or nearly all SAM missiles
were launched, it is likely that the defended object will be seriously damaged as a
large part of the attacking objects (once even all) avoided a counter-fire. The second
variant provided much better results and not all missiles were launched, even though
not all enemy objects were destroyed either. This suggests that the structure of the
batteries (i.e. the balance between long- and medium-range defences) is not correct.
In the last variant, due to an increasing number of missiles in Battery 1, it is possible
to attain success without using all medium-range missiles. The example shows the
importance of providing a long-range defence as it gives the time necessary to asses
the results of the first SAM salvo and then to repeat the actions if needed.

The initial coordination does not seem suitable in such scenarios, as reallocating
batteries allows sectors to adapt and to launch more missiles and so to destroy more
enemy objects. Stiff allocations calculated at the beginning of the attack are relatively
effective in the case of perfect prediction of the direction of attacking objects (σγ = 0),
but they cannot provide protection even when groups of objects slightly change their
route. It is obvious that larger batteries can help to solve this problem, but comparison
of the last two variants (Tables 3 and 4) reveals that it is very ineffecient—doubling
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the number of missiles allows us to reduce the maximum number of hits from 6 to 5
in the last two cases and results in no change in the remaining simulations.

The results obtained for the second attack scenario (Fig. 8(b)) do not differ
much from the previous case. This can be treated as an argument for using periodic
coordination as its abilities to adapt to various conditions are evident (especially
Fig. 8(a) needs such an adaptation, as two groups are present at the same time). The
scenario was chosen as less demanding owing to the separation of two stages of the
attack in time, but it is also important to note that as the second group arrives after
the time necessary for the first group to reach its targets (which are the weapons of the
system), some weapon can be damaged and the defence gets weakened. For Fig. 8(a)
damage may occur at the end of this scenario and does not deteriorate so much the
defence abilities of sectors (e.g. it is not important for the long-range weapon which
turned out to be crucial for an effective defence). The results are briefly presented in
Tables 5 and 6.

The computations were performed on a PC computer with AMD K6 350MHz
processor running a Linux operating system. To compare the effectiveness of the
coordination algorithm, the times of single simulations (i.e. a full course of control)
are provided in Table 7. It is important to note that Fig. 8(b) contains more nodes,
so the resulting problem is more complex. Although the computation times seem
reasonable for off-line simulation purposes, note that such simulations are usually
repeated, e.g. the required times were 2 hours 45 minutes and 8 hours 50 minutes for
the graphs of Figs. 8(a) and 8(b), respectively, to collect the data presented in this
paper. For an on-line decision taking such time is much too long, as the first stage of
the simulated attack scenarios (i.e. the time from the detection of enemy objects to

Table 5. Maximum number of hits for Fig. 8(b).

Periodic coordination Initial coordination

σγ σγ

Variant of batteries 0o 45o 90o 135o 180o 0o 45o 90o 135o 180o

1 3 4 3 5 5 3 6 6 6 6

2 1 3 3 3 3 3 6 6 5 8

3 0 0 0 0 0 2 2 5 4 6

Table 6. Maximum number of missiles launched for Fig. 8(b).

Periodic coordination Initial coordination

σγ σγ

Variant of batteries 0o 45o 90o 135o 180o 0o 45o 90o 135o 180o

1 14 16 16 16 16 12 12 12 12 12

2 18 18 18 18 18 16 16 16 16 16

3 18 18 18 18 18 16 18 18 18 16
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hit by the first salvo) lasts only 32 seconds, but it is important to note that more
general methods are much slower. The results presented in (Arabas et al., 1999)
indicate that only a simplified linear model can be used in a hierarchical scheme. A
more precise model involves solving a lower-level optimization problem with dynamic
programming which was (depending on the problem complexity) several times to
several hundred times slower than linear programming (a typical result was 30 minutes
for dynamic programming and 2 seconds for linear programming). As the lower-level
problem must be solved several hundred times during the coordination, it should be
solved in less than one second, which is attained in the presented program owing to
a further optimization of the proposed algorithm.

Table 7. Times of a single simulation (in seconds).

Graph (a) Graph (b)

Coordination Coordination

periodic initial periodic initial

Stage 1 39 39 89 89

Stage 2 10 < 1 58 < 1

Stage 3 9 < 1 40 < 1

Stage 4 7 < 1 10 < 1

Stage 5 — — 9 < 1

Stage 5 — — 5 < 1

Total 66 40 212 89

7. Conclusions

A hierarchical system for decision support in sectored anti-missile defence systems
was proposed together with simulation results. The main part of the work was con-
centrated on the design of algorithms being efficient enough for practical use. For
that purpose, some simplifications were necessary, related mainly to linearization and
modelling damage by casualty functions instead of a full stochastic description. As a
result, using the direct method of coordination with a simple, but reliable algorithm
of finding, the allocation of batteries and tasks was possible. The advantage of this
approach is not only a reliability higher than in the case of a centralized system, but
also the better modelling of the information flow in a real system.

Although remarkable effectiveness was attained, there are still several possible
ways of improving the performance of this algorithm. The simplest of these, but
suitable only for large systems and relatively uncomplicated scenarios of the attack,
consists in using only an initial coordination—such an approach was presented in
(Arabas and Malinowski, 1999). The disadvantage is not only a suboptimal nature of
solutions, but also a long time necessary to calculate the decisions for the first stage,
which can be a serious obstacle in the case of on-line commands and control. Another
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possibility is to optimize the software, especially by using a better implementation of
the branch-and-bound algorithm applied at the lower level. It is likely that such an
implementation can, e.g. by using better heuristics, speed up the algorithm several
times. Another way is parallelization of the computing tasks, which is possible due to
the construction of the coordinator problem.
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