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REGIONAL BOUNDARY OBSERVABILITY: A NUMERICAL APPROACH
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In this paper we review the concept of regional boundary observability, developed in (Michelitti, 1976), by means of sensor
structures. This leads to the so-called boundary strategic sensors. A characterization of such sensors which guarantees
regional boundary observability is given. The results obtained are applied to a two-dimensional system, and various cases
of sensors are considered. We also describe an approach which leads to the estimation of the initial boundary state, which is
illustrated by simulations.
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1. Introduction The measurements are given by the output function
For a given distributed parameter system defined on a 2(t) = h(&,n,t)f(&,n)dEdn, 2
spatial domain(2, we are interested in the knowledge of To

system states on the whole domain (Gilliam and Martin, |, 1are the boundary sens¢Fy, f) is located in the sub-
1988; Kobayashi, 1980). The regional observability con- 45main Ty = {0} x [0,1] and f(&,7) = cosm is the

cept, introduced by (El Jait al, 1995), isfocused onstate  gp44iq) distribution of the sensing measurements.
observation on a given patt of Q. This concept was

extended in (Zerrilet al, 1999) to the case wherg is

located on the boundary dR. The approach, based on L e

a ; o ; T B d b b (2 >
ppropriate optimization techniques, shows how to con- (it >

struct the initial state on a part of the boundary, but the ' 3)

procedure can be adapted, in time, to observe the current

boundary state on the same portion of the boundary. (1): torch of plasma v Vv

. . . . . (2): probe (of steel)
The introduction of this concept is motivated by real  (3). insulator

situations. This is the case, e.g., in the energy exchange T face of exchange

problem, where the aim is to determine the energy ex-  bi,ba: sensor locations

changed in a casting plasma on a plane target which is

perpendicular to the direction of the flow from measure- Fig. 1. The problem of estimating the energy exchanged'on
ments carried out by thermocouples (Fig. 1). It can also

be of great help for a system which is not observable on The statehg(z1,22) = cos(mzy) cos(2mzs) is not

the whole boundanp$ of ©, but observable on a part ©observable ond2 but it is observable o™ = [0,1] x

I c 09. For example, consider the system defined on {0}. This shows that the regional boundary case is more

Q =]0,1[x]0, 1] by general.

A regional boundary observability analysis has been
oh 0%h made from a purely theoretical viewpoint (Zerek al.,
a(ajl’ 22,t) = Tx%(xl’@’t) 1999), but the study may also become concrete, in some

2 sense, by using the structure of sensors, which form an
+W(x1,x2,t) in x]0, 77, important link between the system and its environment,
T2 @) have a passive role and allow the system evolution to be
@(S,n,t) -0 on 90x]0,T], measured. Their structure depends on the geometry, the
o location of the support and the spatial distribution of the
h(z1,z2,0) = ho(z1, 22) in Q. sensing measurements.
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Our interest is mainly focused on regional boundary
observability linked with sensor structures, their location

and number. Thus we give some fundamental results re-

lated to sensors so that regional boundary observability

We define the operator:

X —0,

K :
h — CS(-)h,

can be achieved. This leads to the so-called boundary

strategic sensors. The achieved results are also applied t
two-dimensional diffusion systems. Secondly, we give a
reconstruction method of the initial boundary conditions.

This is the purpose of this paper, which is organized as
follows.

wvhich is, in the zonal case, linear and bounded with an
adjoint K*: O — X given by

T
K*z*:/ S* ()0 2*(s) ds.
0

The second section is devoted to the presentation ofwe also consider the trace operator of order zero

the system under consideration, a brief recall of the re-
gional boundary observability concept and its characteri-
zation in terms of sensor structures. In Section 3 an appli-

HY(Q) — Hz(0%), which is linear, surjective and con-
tinuous. ~; denotes its adjoint and: H%(aﬁ) —
Hz(T') is the operator restriction t6 when its adjoint is

cation to a two-dimensional diffusion process is consid- yenoted byx*.

ered. Examples of various situations are also given and

specific results are summarized in tabular form. In Sec-
tion 4 we develop a technical approach which leads to a
state reconstruction algorithm. In the last section the pro-
posed approach is successfully tested through compute
simulations.

2. Regional Boundary Observability
and Sensors

2.1. Problem Statement

Let © be aregular bounded open sef®f (n > 2) with
boundaryo2 and I" be a nonempty subset éf2, with
positive Lebesgue measure. For a givEn> 0, set@ =
0x]0,T[ and X = 002x]0, T[. The system considered is
described by the equation

P a0) = Aytart) in @

(5) ;—y(g,t) =0 on ¥, ©)
VA
y(@,0) = pole)  in 9,

where A is a second-order linear differential opera-
tor with compact resolvent, which generates a strongly
continuous semi-group(S(t));>o on the state space
X = HY(Q). A* indicates the adjoint operator od

and 9y/0v4 denotes the co-normal derivative associated
with A.

Here yq is supposed to be i/ (Q) and unknown,

and the measurements are obtained through the outpu

function
Z(t) = Cy(x, t)v (4)

C: H'(Q) — RP being a bounded linear operator de-

Let y§ = x7oyo be the restriction of the trace of
yo to I'. Boundary regional observability explores the
state reconstruction in the case where the subregidha
rsubset of the boundar§<2. More precisely, we only have
to reconstruct the component of the unknown initial
state. In this case we have to pay particular attention to

space functions and the operators considered.

Definition 1. The system (3) together with the output (4)
is said to beexactly (resp. approximately regionally
boundary observablen T" if

Im(xy0K*)=H?z(T) (resp. KetK;x*)={0}). (5)

Conventionally, we shall say that the systemeisactly
(resp.approximately B-observabld3 for the boundary)
onT.

This is a natural definition of regional boundary ob-
servability extending those given in (Curtain and Zwart,
1995; El Jai and Pritchard, 1988) to the case where we re-
strict the state reconstruction to the boundary subregion

Obviously, we have the following assertions:

If the system (3) is exactly3-observable, then it is
approximately3-observable.

2. If the system (4) is exactly (resp. approximately)
observable onl, then it is exactly (resp. approxi-

mately) B-observable on every subsg{ of T.

2.2. Boundary Strategic Sensor

II'he aim of this section is to give a characterization of sen-
sors (number and location) in order for a system to be re-
gionally approximately boundary observable.

Consider the system (3) and assume that the mea-

pending on the structure of the sensors considered. Thesurements are made by sensors(D;, fi)i<i<p. The

observation space i® = L?(0,T;RP).

output function is then given by(t) = (21(¢), ..., zp(t))
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with z;(t) = y(b;, t), b; € Q for 1 <i < p inthe point- Consider
wise case, and;(t) = / y(z,t)fi(z)dz, D; C Q for (Wb, 2%)

o D, ™% ()
1 < < p inthe zonal case.

Zm =
Definition 2. A sequence of sensorgD;, f;)i<i<p IS
said to beboundary strategicon I" if the correspond-
ing observed system is approximateBfrobservable on
I'. (In what follows we shall say that such sensors are
I'-strategic.)

<’(/)me ’ Z*>H

o=

(T)

Since Gz, = 0, it follows that rank G,,, # r,, for
any m.
Conversely, if rank G,, # r,,, then there exists
Assume that there exists a complete set of eigen-,, ¢ 1 such that
functions (¢m; Jmer; j=1 of A in H'(Q) associ-

seesT'm

ated with the eigenvalues,, of multiplicities r,, and Zm,

T = SUp,,c; Tm IS finite. Forz = (z1,...,2,) € Q - £0
andm = (my,...,my,) € I,let T = (z1,...,2p-1)

and m = (mq,...,m,_1). Suppose that the functions Zm,.,,

Y, (T) = XY0Pm,(x), m € I, form a complete set in

I’e (). and G,,z, = 0.

o , Let z* € Hz(I') be such that
Proposition 1. The sequence of sensdiB;, f;)1<i<p IS

T-strategic if ly if . B .
strategic if and only i w;k’z >H%(r)_0 for j +m
1. p>rand

and
2. rank G, = 7y,
Where <wﬁk52*>H%(F) = Zmy, for 1 S k S Tm-
) (¢m,+ fi)L2(p;) inthe zonal case, Therefore we have
m)ij =
©rm,; (bi) in the pointwise case, "

b Qi D (s 2%y 1 =0,

o 1<icn i ;@2 i) D5, ) 4 o)
Vi#Fm, 1<i<p

Proof. For brevity, the proof is limited to the case of

zonal sensors. The techniques used constitute extensionand

of those given in (Fattorini, 1968) and are based on alge-

braic manipulations.

Tm

For z* € H2(T') we have k=1
Kyox"2"(1) Thus there exists* # 0 (belonging toH 2 (T')) such that
i K~gx*z* = 0,i.e. the system (3) together with the output
_ Amt . * k% YoX ? ’ Y g p
- (ZIe Zf‘pmi  fidea (Do) (P Y0 X2 >H1(Q)>,_1 , (@ is not approximately3- observable orf’.
me Jj= =1,

- Note that the proposition implies that the required
- <Ze/\’"tz<apmj,fi>L2(Di)<X'yog0mj,z*>H%(F)) number of sensors is at least equal to the highest multi-
1=1,p

mel j=1 plicity of the eigenvalues. =
mel j=1 i=1,p

If the system (3) together with the output (4) is not 1. The aboye rgsult remains also true for boundary sen-
approximately B-observable orl’, there existsz* # 0 sors (pointwise or zonal cases).

such thatigx ™2 = 0, which gives 2. By infinitesimally deforming the domain, the mul-

rm i} tiplicity of the eigenvalues can be reduced to one
> (2 )ik oy P fidp2(oy) = 0, (Michelitti, 1976). Consequently, the3-obser-
J=1 vability can be achieved by using only one sensor.

Vmel, 1<1i<p.
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3. Applications to Sensor Location

In this section, we present an application of the above
results to a two-dimensional system defined @n =
10, a[ x ]0,d[ by

2

8.%‘% (‘Tla xZat) in Qa
(6)

82

ot

0
%(glag%t) =0 on 27

Y
$1,$2,t)+

(x1,29,t) = 8733%(

y(z1,22,0) = yo(z1,22) in Q.

B

B e

|

(b)
Fig. 3. Location of a zone sensor.

(©

This shows that the regional boundary observability
depends on the location of the sensor. We note that in
real applications a sensor is considered as pointwise if the

The output function is given by (4) and the sensors are Supportarea of the measure_distribution is very small com-
considered to be pointwise or zonal, and located in the Pared with the system domain.

interior of the system domaif or on its boundary.

The eigenfunctions associated with the system (6)
are of the form

(z1,22) 20 cos (z 3:1> cos ( j 3:2>

ij (L1, =7 T T

Pij\T1, T2 od a J d

with a;; = (1 — Aij)*%. They correspond to the eigen-

values
-2 -2
_ v J 2

of multiplicity one if a?/d? ¢ Q. In this case the system
(6) can beB-observable only by one sensor.

Let T' =]0, a[x{0}, be the subregion target. In this
casel = N?, (i,4) =i, (z1,22) = o1, and the functions
Yi(z1) = \/2/acos(in(z1/a)), i € N, form a complete
setin Hz(I).

The following results give information on the loca-
tion of internal pointwise or zonal-strategic sensors.
The case of boundary sensors is given in Tables 1 and 2.

3.1. Internal Pointwise Sensor

Consider the system (6) with the output functieft) =
y(b,t) where the pointwise sensdp, d;) is located in-
side the domain at a poirit= («, 8) € 2 (Fig. 2(a)).

L) L) L)

d d d

Blreem o o

a 5 0 o a B!

0

@ (b) (©

Fig. 2. Location of a pointwise sensor.

Corollary 1. The sensor is not'-strategic if there exists
k,l € IN* such that2ka/a or 23/d is odd.

3.2. Internal Zone Sensor

Here we consider the system (6) with the output func-
tion z(t) = [, y(x1,22,t)f(21,22) dzy dze. Suppose
that the sensor is located inside the dom&irover D =
Jar, aa[x]B1, B2[ (cf. Fig. 3()), andf € L?(D) defines
the spatial distribution of the sensing measurement®on

ForO0<ai <as<aand0 < f; < (s <d,set

_arta B+
m= B y T2 = T
_az— o BB
M1 2 9 H2 = 9 .
Corollary 2.

1. If f is uniformly distributed onD, then the sensor
is not I'-strategic if one of the following properties is
satisfied: u1/a € Q or ps/d € Q, or there exists
k,l € N* such that2kn; /a or 2in./d is odd.

If f is symmetric with respect to the poitiyy, 72),
then the sensor is nof-strategic if ;/a € Q or

UQ/dEQ.

If f is symmetric with respect to the axis= n;
(or with respect to the axig = 7,), then the sensor
is not I'-strategic if there existg: € N* such that
2kny1/a is odd (resp. there exists € N* such that
2lnq/d is odd).

Note that the regional boundary observability de-
pends on the geometry of the sensor support and the mea-
surement function. For the case where the sensor is lo-
cated on the boundary, we obtain analogous results (see
Tables 1 and 2).
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Remark 2.
Table 2. Zonal sensor.

1. Note that the sensor support given above corresponds
to a real geometry of a sensor in the diffusion system. Sensor location ‘Non -strategic cases ‘
The hypothesis of symmetry and uniform distribu-
tion are physically realistic. For example, this would

* f uniformly distributed onD

be the case if the sensor was evenly distributed over p/acQor3keN" |2k /ais odd
its support { = dxp, where x is the characteristic «f symmetric with respect 01, 0)
function and D C Q is the zone in which the mea- or (1, d)
surements are carried out). D =Ja1, as[x {0} or |n Ja€Q

2. From a practical point of view, the distributed system =lai, az[x{d} |[xf symmetric with respect to the axis
is most often approximated by a finite-dimensional z=m
system. Then the conditions of thg-observability 3 keN* | 2kn, /ais odd

on I' can be also verified for the finite-dimensional
system. For instance, in the pointwise sensor X )
case, if the system is approximated by a tree- |P ={0}x]f1, Ba[0r|u2/dcQor31eN" | 2in2/d s odd.

* f uniformly distributed onD

dimensional system, then the condition of the non | = {a}x]B1, B[ |xf symmetric with respect t(0, 72)
B-observability onT" is a/a € I3 where I3 = or (a,n2),
{1/6,1/4,1/2,3/4,5/6} forall 5 €]0,d]. 12 /dEQ

*f symmetric with respect to the axis

3.3. Recapitulating Tables Y =12
31eN* | 2in./dis odd

*f uniformly distributed onD

In this subsection we present the established results of the
previous subsections in tabular form. The cases of bound-

ary sensors (pointwise and zonal) are also considered. p1/a€Qorpuz/deQor
3 keN* | 2kn; /ais odd or

D :]Oth Otg[)(]ﬁhﬁg[a leN* | 2l7}2/d is odd
*f symmetric with respect t(m,72)

Table 1. Pointwise sensor.

’ Sensor location ‘Non -strategic cases ‘ m/a€Qorn:/deQ
a€l0,a] andB = 0 or 8 = d|3 keN* | 2ka/a is odd *f symmetric with respect to the axis
£€]0,d[ anda = 0 or o = a|3 1€N* | 213/d is odd x =m (resp.y = n2)
a€]0,a[ andB €]0,d[ |3 kEN*| 2ka/aisodd o JkeN* | 2kni/ais odd
31eN*|28/dis odd (resp.3 1eN* | 2lny/d is odd).

For the pointwise case, the regional boundary ob-
servability depends on the location of the sensor. For theWith (4) is approximately observable an, then it is ap-
zonal case, it depends on the form of the sensor supporiProximately B3-observable ol (Zerrik et al,, 1999).
and its location (location of the support centre), as well as

) This result links the internal regional observability
on the measurement function.

on w developed by El Jatt al. in (1993) to the regional
B-observability onI” (which is part of dw).

4. Reconstruction Method Let the initial state be decomposed in the following
: . . form:

In this section, we present an approach which allows the

determination of the regional boundary initial condition Y3 onw,

ys on T', based on the internal regional observability. Yo = 3

The method is an extension of those given in (El Jai and vo  onQ\w.

Pritchard, 1988; El Jait al,, 1993; Kobayashi 1980).

Let us consider the system (3) with the output (4) on
the same assumptions as in Section 2, and.lebe an
open subset of2, regular and of positive Lebesgue mea-
sure such thal’ C 992 N Jw. If the system (3) together

The problem consists in reconstructing the initial state

on w and determining its tracg} on T'. Let us go further

in the state reconstruction by considering various types of
Sensors.
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4.1. Pointwise Measurements

In this case the output function is given by

z(t) = y(b, t), (1)

where b € Q denotes the given location of the sensor.

The problem consists in constructing the componght
of the initial state onw with the knowledge of (3)—(7).
For that purpose, we consider the set

G ={g € H'(Q) suchthaty =0 on Q\w}. (8)

For a givenyy € G, the system

% (1) = (1) n @
92 e gy = ©)
oo &t)=0 on X,

o(x,0) = @o(x) in Q

has a unique solutionp € L2(0,7; H'(Q2)) N C°(0,T;
L?(Q2)) and the mapping

T
woeawwoué:/o Sb.tdt (10)

defines a semi-norm o&.

If the system (9) is approximately observable ©n
the mapping (10) defines a norm ad (Zerrik et al,
1999). We also denote bg' the completion ofG.

For g € G, (9) gives, which allows us to consider
the system

ov
a—tl(x,t) = —A*Uy(x,t)
—p(b,t)6(z —b) In @,

11)
ow, (
aVA* (f?t) - 0 on Za

Uy(z, T)=0 in Q.

Let ¥, be the solution of ( 11) and consider the operator

G — G*,

12)
po — P(¥1(0)),
where P denotes the projection oG™* .
Now consider the system
ov
o () = —A"y(a, 1)
—y(b,1)d(z —b) in Q,
5w (13)
2
t)=20 b
o (61) on ¥,
Uy(z,T) =0 in Q.

If o is such thaty leads to¥,(0) = ¥5(0) on w,
then the system (13) looks like the adjoint of the system
to be observed (3)—(7) and, consequently, the observation
problem onw is equivalent to solving the equation
N o = P(\IIQ(O)). (14)
If we assume that the operater has a complete set

of eigenfunctions(y;) in H'(£2), then we have the fol-
lowing result:

Proposition 2. If the system (3) together with the output
function (7) is approximately observable an then (14)
has a unigue solutiorpy, € G and the regional boundary
initial state to be observed oh is given byy} = x70o-

Sketch of the proofThe proof proceeds in the following
two steps:

Step 1. We show that the mag, — ||¢ol|% defines
a norm onG using the fact that the sensdr, §;) is
w-strategic (Amourowet al,, 1994).

Step 2. We prove that the operatof is an isomor-
phism. Itis sufficient to multiply the result by and
integrate it on@. Using the Green formula, we ob-
tain (po, Avo) = |l¢ollZ, which proves thatA is
an isomorphism and then (14) has a unique solution.
For more details, see (Zerrét al.,, 1999).

4.2. Case of Zone Measurements

Let us come back to the system (3) and suppose that the
measurements are given by an internal zone sensor defined
by (D, f) with D c Q and f € L?(D). The system is
augmented with the output function

2(t) = /D y(z, 1) f(z) d. (15)

In this case we consider the system (8),being given by
(8), and the mapping

T
0 € G — ol = / o) eyt (16)

which is a semi-norm ortz. Thus with the system

ov
87151(95’75) = —A*Vy(z,t) — <f7¢($7t)>%2(p)
X f(x)xp in Q,
ou, a7
S € =0 on ¥,
Uy (x,T)=0 in €
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we introduce the operaton: ¢o € G — P(¥1(0))
and consider the system

ggz@gw::—AfWﬂmJ)
—2(t)f(z)xp in Q, 8
ov,
%(5’t) =0 on X,
Uy (z,T) =0 in Q.

The observation problem ow reduces to solving the
equation

A o = P(¥5(0)). (19)

Proposition 3. If the system (3) together with the output
function (15) is approximately observable anthen (19)
has a unique solutiorp, € G and the regional boundary
initial state to be observed oh is given byy = xYo¢o-

The proof is (with some minor technical modifica-
tion) similar to the pointwise case. For more details, we
refer the reader to (Zerrigt al,, 1999).

5. Simulations

109 JERIE

In the zonal case the same developments lead to the com-
ponents ofA:

e()‘l+>‘7)T — 1

Nij = ————
’ A+ A

(f, @) .20y (f> @j) 2Dy (23)
Summing up, in the pointwise case, the regional recon-
struction is obtained via the following simplified algo-

rithm:

Step 1. Choose a sensor locatidn an error test, an
initial state .

Step 2. Choose an approximation ordév.
Step 3. Solve (13) to obtain¥,(z, 0).

Step 4. Solve (21) to obtainy, where A;;’s are given
by (22).

Step 5. If [lyo — ¢oll72(,, > & go to Step 2, oth-
erwise o corresponds to the initial state to be ob-
served onw.

This algorithm converges since the developments are
based on a Dirichlet series. To avoid instabilities in nu-
merical calculations, which are suspected to arise, we
must take some care with the numerical method for solv-

We have seen that the regional boundary observability ising the linear system (21) and also with the choice of the

equivalent, in all cases, to solving the equation

Ao = P(U5(0)). (20)

The numerical approximation of (20) is realized easily
when one can have a bagig;) of H'(Q) and the idea is
to calculate the components;; of the operatorA. Then
we approximate the solution of (20) by the linear system

N
Z%‘@o,j =W,,; for i=0,...,N, (21)

=0

where N is the order of approximation and,,; are the
components ofP(¥4(0)) in the basis(p;) considered.
Assume that(p;) is the set of eigenfunctions of the oper-
ator A* associated with the eigenvalues of multiplic-
ity one.

In the case of pointwise measurements we have

(Ao, po)= Z (@i, 0) 11 () (B3, P0) 11 ()
i,j=0
14T

o A0

Then the components of are given by

1 4 eNHA)T

Nij = VY @i(b)@;(b). (22)

sensor location.

5.1. Example

For an illustrative application, consider the parabolic sys-
tem on Q =]0, 1[x]0, 1] given by

2

0 0]
aﬁi(ﬂh, Jfg,t) = 001 |:a;§(l‘1,$2,t)

2

+axg(l‘1’$27t>] in Q7 (24)

2
oy B
(91/ (f» , t) - 0

y(r1,22,0) = yo(zr1,22)

on X,

in Q.

The measurements are given by a pointwise sensor
z(t) = y(b,t), with b = (0.30,0.65) and T = 2. Here
the boundedness of multiplicities,, does not hold, but it
holds for * =]0,1 + ¢[x]0, 1[ (¢ € Q small enough),
which constitutes a good approximation @f(Michelitti,
1976)), and for which the outlined results are applicable.
We note that numerically an irrational number does not
exist but it can be considered as irrational if the truncation
number exceeds the desired precision.

LetT' = {0} x [0,1] and

3 2
Iy=2 (T -1 o1
Yo(n) 3 9 +
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L Fig. 6. True (y;) (dashed line) and estimategl .
(continuous line) initial state o
Fig. 4. True initial stateyd on w. 18
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Fig. 7. Evolution of the estimated state error
with respect to the sensor locatiohs.

e The worst locations correspond to a nbrstrategic
sensor as developed in the previous sections, where
by € {1/4,1/2,3/4} (the order of system approxi-
mation is two).

Fig. 5. Estimated statgg . on w.

be the initial state to be observed dn Let w
10,0.24[x]0, 1] and

3 2

3 2
2 L1 I Ly I3
Yo(z1,22) =2 <3 -5+ 0.1) (3 -5t 0~1) 5.3. Relation Subregion Area—Estimated State Error

be an extension ofi} to w. Applying the delineated ap-  The state reconstruction error depends on the subregion
area. Table 3 shows that both the error and the sub-

proach, we obtain the results given in Figs. 4 and 5. ¢ _ ¢
Figure 6 shows that the estimated boundary state jsregion area increase or decrea_se. . Mebservability
very close to the true initial boundary state &n The is realized by means of one pointwise sensor located at

initial state y is estimated with the reconstruction error gfzség's‘l;r’s 0.65). These results are similar for other types
196 — U, ll72(ry = 4951 x 107, :

Table 3. The evolution of the boundary observability

5.2. Subregion-Pointwise Actuator ) .
error with respect to the subregidn area.

The following simulation results show the evolution of the

estimated state error with respect to the sensor location ] Subregionl’ \ llys — y5,6|\2L2(F) \
b= (b1, bg) when by is fixed at 0.81 and>2 E]O, 1[ {0} x [07 1] 1.985 x 10~3
Figure 7 reveals the following facts: {0}x]0.10,0.95] 4.418 x 10~%
e For a given subregiol, there is an optimal sensor {0}x]0.20,0,85[ |  2.786 x 107"
location (optimal in the sense that it leads to a solu- {0}x]0.30,0,65[ | 2.255 x 107"
tion which is very close to the initial boundary state). {0} %x]0.30,0.60[ 2.211 x 1074
. - 0}x]0.33,0.60 9.997 x 1075
e When a sensor is located sufficiently far from the {O}X]o 350 60[ 3,002 8 106
subregionI’, the estimated state error is constant for {03x]0.35,0.60] ouex s

any locations. {0}x]0.40, 0.50[ 3.744 x 10
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