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REGIONAL BOUNDARY OBSERVABILITY: A NUMERICAL APPROACH
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In this paper we review the concept of regional boundary observability, developed in (Michelitti, 1976), by means of sensor
structures. This leads to the so-called boundary strategic sensors. A characterization of such sensors which guarantees
regional boundary observability is given. The results obtained are applied to a two-dimensional system, and various cases
of sensors are considered. We also describe an approach which leads to the estimation of the initial boundary state, which is
illustrated by simulations.
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1. Introduction

For a given distributed parameter system defined on a
spatial domainΩ, we are interested in the knowledge of
system states on the whole domain (Gilliam and Martin,
1988; Kobayashi, 1980). The regional observability con-
cept, introduced by (El Jaiet al., 1995), is focused on state
observation on a given partω of Ω. This concept was
extended in (Zerriket al., 1999) to the case whereω is
located on the boundary ofΩ. The approach, based on
appropriate optimization techniques, shows how to con-
struct the initial state on a part of the boundary, but the
procedure can be adapted, in time, to observe the current
boundary state on the same portion of the boundary.

The introduction of this concept is motivated by real
situations. This is the case, e.g., in the energy exchange
problem, where the aim is to determine the energy ex-
changed in a casting plasma on a plane target which is
perpendicular to the direction of the flow from measure-
ments carried out by thermocouples (Fig. 1). It can also
be of great help for a system which is not observable on
the whole boundary∂Ω of Ω, but observable on a part
Γ ⊂ ∂Ω. For example, consider the system defined on
Ω =]0, 1[×]0, 1[ by

∂h

∂t
(x1, x2, t) =

∂2h

∂x2
1

(x1, x2, t)

+
∂2h

∂x2
2

(x1, x2, t) in Ω×]0, T [,

∂h

∂ν
(ξ, η, t) = 0 on ∂Ω×]0, T [,

h(x1, x2, 0) = h0(x1, x2) in Ω.

(1)

The measurements are given by the output function

z(t) =
∫

Γ0

h(ξ, η, t)f(ξ, η) dξ dη, (2)

where the boundary sensor(Γ0, f) is located in the sub-
domain Γ0 = {0} × [0, 1] and f(ξ, η) = cosπη is the
spatial distribution of the sensing measurements.

 

(1): torch of plasma 
(2): probe (of steel) 
(3): insulator 
Γ: face of exchange 
b1, b2: sensor locations 
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Fig. 1. The problem of estimating the energy exchanged onΓ.

The stateh0(x1, x2) = cos(πx1) cos(2πx2) is not
observable on∂Ω but it is observable onΓ = [0, 1] ×
{0}. This shows that the regional boundary case is more
general.

A regional boundary observability analysis has been
made from a purely theoretical viewpoint (Zerriket al.,
1999), but the study may also become concrete, in some
sense, by using the structure of sensors, which form an
important link between the system and its environment,
have a passive role and allow the system evolution to be
measured. Their structure depends on the geometry, the
location of the support and the spatial distribution of the
sensing measurements.
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Our interest is mainly focused on regional boundary
observability linked with sensor structures, their location
and number. Thus we give some fundamental results re-
lated to sensors so that regional boundary observability
can be achieved. This leads to the so-called boundary
strategic sensors. The achieved results are also applied to
two-dimensional diffusion systems. Secondly, we give a
reconstruction method of the initial boundary conditions.
This is the purpose of this paper, which is organized as
follows.

The second section is devoted to the presentation of
the system under consideration, a brief recall of the re-
gional boundary observability concept and its characteri-
zation in terms of sensor structures. In Section 3 an appli-
cation to a two-dimensional diffusion process is consid-
ered. Examples of various situations are also given and
specific results are summarized in tabular form. In Sec-
tion 4 we develop a technical approach which leads to a
state reconstruction algorithm. In the last section the pro-
posed approach is successfully tested through computer
simulations.

2. Regional Boundary Observability
and Sensors

2.1. Problem Statement

Let Ω be a regular bounded open set ofRn (n ≥ 2) with
boundary∂Ω and Γ be a nonempty subset of∂Ω, with
positive Lebesgue measure. For a givenT > 0, setQ =
Ω×]0, T [ and Σ = ∂Ω×]0, T [. The system considered is
described by the equation

(S)



∂y

∂t
(x, t) = Ay(x, t) in Q,

∂y

∂νA
(ξ, t) = 0 on Σ,

y(x, 0) = y0(x) in Ω,

(3)

where A is a second-order linear differential opera-
tor with compact resolvent, which generates a strongly
continuous semi-group(S(t))t≥0 on the state space
X = H1(Ω). A∗ indicates the adjoint operator ofA
and ∂y/∂νA denotes the co-normal derivative associated
with A.

Here y0 is supposed to be inH1(Ω) and unknown,
and the measurements are obtained through the output
function

z(t) = Cy(x, t), (4)

C: H1(Ω) −→ Rp being a bounded linear operator de-
pending on the structure of the sensors considered. The
observation space isO = L2(0, T ; Rp).

We define the operator:

X −→ O,
K :

h −→ CS(·)h,

which is, in the zonal case, linear and bounded with an
adjoint K∗: O −→ X given by

K∗z∗ =
∫ T

0

S∗(s)C∗z∗(s) ds.

We also consider the trace operator of order zeroγ0:
H1(Ω) → H

1
2 (∂Ω), which is linear, surjective and con-

tinuous. γ∗0 denotes its adjoint andχ: H
1
2 (∂Ω) −→

H
1
2 (Γ) is the operator restriction toΓ when its adjoint is

denoted byχ∗.

Let y1
0 = χγ0y0 be the restriction of the trace of

y0 to Γ. Boundary regional observability explores the
state reconstruction in the case where the subregionω is a
subset of the boundary∂Ω. More precisely, we only have
to reconstruct the componenty1

0 of the unknown initial
state. In this case we have to pay particular attention to
space functions and the operators considered.

Definition 1. The system (3) together with the output (4)
is said to beexactly (resp. approximately) regionally
boundary observableon Γ if

Im(χγ0K
∗)=H

1
2 (Γ) (resp. Ker(Kγ∗0χ

∗)={0}). (5)

Conventionally, we shall say that the system isexactly
(resp.approximately) B-observable(B for the boundary)
on Γ.

This is a natural definition of regional boundary ob-
servability extending those given in (Curtain and Zwart,
1995; El Jai and Pritchard, 1988) to the case where we re-
strict the state reconstruction to the boundary subregionΓ.

Obviously, we have the following assertions:

1. If the system (3) is exactlyB-observable, then it is
approximatelyB-observable.

2. If the system (4) is exactly (resp. approximately)B-
observable onΓ, then it is exactly (resp. approxi-
mately)B-observable on every subsetΓ1 of Γ.

2.2. Boundary Strategic Sensor

The aim of this section is to give a characterization of sen-
sors (number and location) in order for a system to be re-
gionally approximately boundary observable.

Consider the system (3) and assume that the mea-
surements are made byp sensors(Di, fi)1≤i≤p. The
output function is then given byz(t) = (z1(t), . . . , zp(t))
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with zi(t) = y(bi, t), bi ∈ Ω for 1 ≤ i ≤ p in the point-

wise case, andzi(t) =
∫

Di

y(x, t)fi(x) dx, Di ⊂ Ω for

1 ≤ i ≤ p in the zonal case.

Definition 2. A sequence of sensors(Di, fi)1≤i≤p is
said to beboundary strategicon Γ if the correspond-
ing observed system is approximatelyB-observable on
Γ. (In what follows we shall say that such sensors are
Γ-strategic.)

Assume that there exists a complete set of eigen-
functions (ϕmj

)m∈I; j=1,...,rm
of A in H1(Ω) associ-

ated with the eigenvaluesλm of multiplicities rm and
r = supm∈I rm is finite. For x = (x1, . . . , xn) ∈ Ω
and m = (m1, . . . ,mn) ∈ I, let x = (x1, . . . , xn−1)
and m = (m1, . . . ,mn−1). Suppose that the functions
ψmj

(x) = χγ0ϕmj
(x), m ∈ I, form a complete set in

H
1
2 (Γ).

Proposition 1. The sequence of sensors(Di, fi)1≤i≤p is
Γ-strategic if and only if

1. p ≥ r and

2. rankGm = rm,

where

(Gm)ij =

 〈ϕmj
, fi〉L2(Di) in the zonal case,

ϕmj
(bi) in the pointwise case,

for 1 ≤ i ≤ p, 1 ≤ j ≤ rm.

Proof. For brevity, the proof is limited to the case of
zonal sensors. The techniques used constitute extensions
of those given in (Fattorini, 1968) and are based on alge-
braic manipulations.

For z∗ ∈ H 1
2 (Γ) we have

Kγ∗0χ
∗z∗(t)

=
(∑

m∈I

eλmt
rm∑
j=1

〈ϕmj
, fi〉L2(Di)〈ϕmj

, γ∗0χ
∗z∗〉H1(Ω)

)
i=1,p

=
(∑

m∈I

eλmt
rm∑
j=1

〈ϕmj
, fi〉L2(Di)〈χγ0ϕmj

, z∗〉
H

1
2 (Γ)

)
i=1,p

=
(∑

m∈I

eλmt
rm∑
j=1

〈ϕmj , fi〉L2(Di)〈ψmj , z
∗〉

H
1
2 (Γ)

)
i=1,p

.

If the system (3) together with the output (4) is not
approximatelyB-observable onΓ, there existsz∗ 6= 0
such thatKγ∗0χ

∗z∗ = 0, which gives

rm∑
j=1

〈ψmj
, z∗〉

H
1
2 (Γ)

〈ϕmj
, fi〉L2(Di) = 0,

∀ m ∈ I, 1 ≤ i ≤ p.

Consider

zm =


〈ψm1 , z

∗〉
H

1
2 (Γ)

...

〈ψmrm
, z∗〉

H
1
2 (Γ)

 .
Since Gmzm = 0, it follows that rankGm 6= rm for
any m.

Conversely, if rankGm 6= rm, then there exists
m ∈ I such that

zm =


zm1

...

zmrm

 6= 0

andGmzm = 0.

Let z∗ ∈ H 1
2 (Γ) be such that

〈ψjk
, z∗〉

H
1
2 (Γ)

= 0 for j 6= m

and

〈ψmk
, z∗〉

H
1
2 (Γ)

= zmk
for 1 ≤ k ≤ rm.

Therefore we have

rj∑
k=1

〈fi, ϕjk
〉Di

〈ψjk
, z∗〉

H
1
2 (Γ)

= 0,

∀ j 6= m, 1 ≤ i ≤ p

and

rm∑
k=1

〈fi, ϕmk
〉Di

〈ψmk
, z∗〉

H
1
2 (Γ)

= 0, 1 ≤ i ≤ p.

Thus there existsz∗ 6= 0 (belonging toH
1
2 (Γ)) such that

Kγ∗0χ
∗z∗ = 0, i.e. the system (3) together with the output

(4) is not approximatelyB- observable onΓ.

Note that the proposition implies that the required
number of sensors is at least equal to the highest multi-
plicity of the eigenvalues.

Remark 1.

1. The above result remains also true for boundary sen-
sors (pointwise or zonal cases).

2. By infinitesimally deforming the domain, the mul-
tiplicity of the eigenvalues can be reduced to one
(Michelitti, 1976). Consequently, theB-obser-
vability can be achieved by using only one sensor.



E. Zerrik et al.146

3. Applications to Sensor Location

In this section, we present an application of the above
results to a two-dimensional system defined onΩ =
]0, a[× ]0, d[ by

∂y

∂t
(x1, x2, t) =

∂2y

∂x2
1

(x1, x2, t)+
∂2y

∂x2
2

(x1, x2, t) in Q,

∂y

∂ν
(ξ1, ξ2, t) = 0 on Σ,

y(x1, x2, 0) = y0(x1, x2) in Ω.

(6)

The output function is given by (4) and the sensors are
considered to be pointwise or zonal, and located in the
interior of the system domainΩ or on its boundary.

The eigenfunctions associated with the system (6)
are of the form

ϕij(x1, x2) =
2aij√
ad

cos
(
iπ
x1

a

)
cos

(
jπ
x2

d

)
with aij = (1 − λij)−

1
2 . They correspond to the eigen-

values

λij = −
(
i2

a2
+
j2

d2

)
π2

of multiplicity one if a2/d2 6∈ Q. In this case the system
(6) can beB-observable only by one sensor.

Let Γ =]0, a[×{0}, be the subregion target. In this
caseI = N2, (i, j) = i, (x1, x2) = x1, and the functions
ψi(x1) =

√
2/a cos(iπ(x1/a)), i ∈ N, form a complete

set inH
1
2 (Γ).

The following results give information on the loca-
tion of internal pointwise or zonalΓ-strategic sensors.
The case of boundary sensors is given in Tables 1 and 2.

3.1. Internal Pointwise Sensor

Consider the system (6) with the output functionz(t) =
y(b, t) where the pointwise sensor(b, δb) is located in-
side the domain at a pointb = (α, β) ∈ Ω (Fig. 2(a)).

 

(a) (b) (c)

Fig. 2. Location of a pointwise sensor.

Corollary 1. The sensor is notΓ-strategic if there exists
k, l ∈ IN∗ such that2kα/a or 2lβ/d is odd.

 

(a) (b) (c)

Fig. 3. Location of a zone sensor.

This shows that the regional boundary observability
depends on the location of the sensor. We note that in
real applications a sensor is considered as pointwise if the
support area of the measure distribution is very small com-
pared with the system domain.

3.2. Internal Zone Sensor

Here we consider the system (6) with the output func-
tion z(t) =

∫
D
y(x1, x2, t)f(x1, x2) dx1 dx2. Suppose

that the sensor is located inside the domainΩ over D =
]α1, α2[×]β1, β2[ (cf. Fig. 3(a)), andf ∈ L2(D) defines
the spatial distribution of the sensing measurements onD.

For 0 < α1 < α2 < a and 0 < β1 < β2 < d, set

η1 =
α1 + α2

2
, η2 =

β1 + β2

2
,

µ1 =
α2 − α1

2
, µ2 =

β2 − β1

2
.

Corollary 2.

1. If f is uniformly distributed onD, then the sensor
is not Γ-strategic if one of the following properties is
satisfied: µ1/a ∈ Q or µ2/d ∈ Q, or there exists
k, l ∈ N∗ such that2kη1/a or 2lη2/d is odd.

2. If f is symmetric with respect to the point(η1, η2),
then the sensor is notΓ-strategic if η1/a ∈ Q or
η2/d ∈ Q.

3. If f is symmetric with respect to the axisx = η1
(or with respect to the axisy = η2), then the sensor
is not Γ-strategic if there existsk ∈ N∗ such that
2kη1/a is odd (resp. there existsl ∈ N∗ such that
2lη2/d is odd).

Note that the regional boundary observability de-
pends on the geometry of the sensor support and the mea-
surement function. For the case where the sensor is lo-
cated on the boundary, we obtain analogous results (see
Tables 1 and 2).
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Remark 2.

1. Note that the sensor support given above corresponds
to a real geometry of a sensor in the diffusion system.
The hypothesis of symmetry and uniform distribu-
tion are physically realistic. For example, this would
be the case if the sensor was evenly distributed over
its support (f = δχD, whereχ is the characteristic
function andD ⊂ Ω is the zone in which the mea-
surements are carried out).

2. From a practical point of view, the distributed system
is most often approximated by a finite-dimensional
system. Then the conditions of theB-observability
on Γ can be also verified for the finite-dimensional
system. For instance, in the pointwise sensor
case, if the system is approximated by a tree-
dimensional system, then the condition of the non
B-observability onΓ is α/a ∈ I3 where I3 =
{1/6, 1/4, 1/2, 3/4, 5/6} for all β ∈]0, d[.

3.3. Recapitulating Tables

In this subsection we present the established results of the
previous subsections in tabular form. The cases of bound-
ary sensors (pointwise and zonal) are also considered.

Table 1. Pointwise sensor.

Sensor location Non -strategic cases

α∈]0, a[ andβ = 0 or β = d ∃ k∈N∗ | 2kα/a is odd

β∈]0, d[ andα = 0 or α = a ∃ l∈N∗ | 2lβ/d is odd

α∈]0, a[ andβ ∈]0, d[ ∃ k∈N∗ | 2kα/a is odd or

∃ l∈N∗ | 2lβ/d is odd

For the pointwise case, the regional boundary ob-
servability depends on the location of the sensor. For the
zonal case, it depends on the form of the sensor support
and its location (location of the support centre), as well as
on the measurement function.

4. Reconstruction Method

In this section, we present an approach which allows the
determination of the regional boundary initial condition
y1
0 on Γ , based on the internal regional observability.

The method is an extension of those given in (El Jai and
Pritchard, 1988; El Jaiet al., 1993; Kobayashi 1980).

Let us consider the system (3) with the output (4) on
the same assumptions as in Section 2, and letω be an
open subset ofΩ, regular and of positive Lebesgue mea-
sure such thatΓ ⊂ ∂Ω ∩ ∂ω. If the system (3) together

Table 2. Zonal sensor.

Sensor location Non -strategic cases

?f uniformly distributed onD

µ1/a∈Q or ∃ k∈N∗ | 2kη1/a is odd.

?f symmetric with respect to(η1, 0)

or (η1, d)

D =]α1, α2[×{0} or η1/a∈Q
=]α1, α2[×{d} ?f symmetric with respect to the axis

x = η1

∃ k∈N? | 2kη1/a is odd

?f uniformly distributed onD

D = {0}×]β1, β2[ or µ2/d∈Q or ∃ l∈N∗ | 2lη2/d is odd.

= {a}×]β1, β2[ ?f symmetric with respect to(0, η2)

or (a, η2),

η2/d∈Q
?f symmetric with respect to the axis

y = η2

∃ l∈N? | 2lη2/d is odd

?f uniformly distributed onD

µ1/a∈Q or µ2/d∈Q or

∃ k∈N? | 2kη1/a is odd or

D =]α1, α2[×]β1, β2[ ∃ l∈N? | 2lη2/d is odd

?f symmetric with respect to(η1, η2)

η1/a∈Q or η2/d∈Q
?f symmetric with respect to the axis

x = η1 (resp.y = η2)

∃ k∈N? | 2kη1/a is odd

(resp.∃ l∈N? | 2lη2/d is odd).

with (4) is approximately observable onω, then it is ap-
proximatelyB-observable onΓ (Zerrik et al., 1999).

This result links the internal regional observability
on ω developed by El Jaiet al. in (1993) to the regional
B-observability onΓ (which is part of∂ω).

Let the initial state be decomposed in the following
form:

y0 =

 y2
0 on ω,

y3
0 on Ω \ ω.

The problem consists in reconstructing the initial statey2
0

on ω and determining its tracey1
0 on Γ. Let us go further

in the state reconstruction by considering various types of
sensors.
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4.1. Pointwise Measurements

In this case the output function is given by

z(t) = y(b, t), (7)

where b ∈ Ω denotes the given location of the sensor.
The problem consists in constructing the componenty2

0

of the initial state onω with the knowledge of (3)–(7).
For that purpose, we consider the set

G =
{
g ∈ H1 (Ω) such thatg = 0 on Ω\ω

}
. (8)

For a givenϕ0 ∈ G , the system

∂ϕ

∂t
(x, t) = Aϕ(x, t) in Q,

∂ϕ

∂νA
(ξ, t) = 0 on Σ,

ϕ(x, 0) = ϕ0(x) in Ω

(9)

has a unique solutionϕ ∈ L2(0, T ;H1(Ω)) ∩ C0(0, T ;
L2(Ω)) and the mapping

ϕ0 ∈ G→ ‖ϕ0‖2
G =

∫ T

0

ϕ2(b, t) dt (10)

defines a semi-norm onG.

If the system (9) is approximately observable onω,
the mapping (10) defines a norm onG (Zerrik et al.,
1999). We also denote byG the completion ofG.

For ϕ0 ∈ G, (9) givesϕ, which allows us to consider
the system

∂Ψ1

∂t
(x, t) = −A∗Ψ1(x, t)

−ϕ(b, t)δ(x− b) in Q,

∂Ψ1

∂νA∗
(ξ, t) = 0 on Σ,

Ψ1(x, T ) = 0 in Ω.

(11)

Let Ψ1 be the solution of ( 11) and consider the operator

G −→ G∗,
∧ :

ϕ0 −→ P (Ψ1(0)),
(12)

whereP denotes the projection onG∗ .

Now consider the system

∂Ψ2

∂t
(x, t) = −A∗Ψ2(x, t)

−y(b, t)δ(x− b) in Q,

∂Ψ2

∂νA∗
(ξ, t) = 0 on Σ,

Ψ2(x, T ) = 0 in Ω.

(13)

If ϕ0 is such thatϕ leads toΨ1(0) = Ψ2(0) on ω,
then the system (13) looks like the adjoint of the system
to be observed (3)–(7) and, consequently, the observation
problem onω is equivalent to solving the equation

∧ ϕ0 = P
(
Ψ2(0)

)
. (14)

If we assume that the operatorA has a complete set
of eigenfunctions(ϕi) in H1(Ω), then we have the fol-
lowing result:

Proposition 2. If the system (3) together with the output
function (7) is approximately observable onω, then (14)
has a unique solutionϕ0 ∈ G and the regional boundary
initial state to be observed onΓ is given byy1

0 = χγ0ϕ0.

Sketch of the proof.The proof proceeds in the following
two steps:

Step 1. We show that the mapϕ0 −→ ‖ϕ0‖2
G defines

a norm onG using the fact that the sensor (b, δb) is
ω-strategic (Amourouxet al., 1994).

Step 2. We prove that the operator∧ is an isomor-
phism. It is sufficient to multiply the result byϕ and
integrate it onQ. Using the Green formula, we ob-
tain 〈ϕ0,∧ϕ0〉 = ‖ϕ0‖2

G, which proves that∧ is
an isomorphism and then (14) has a unique solution.
For more details, see (Zerriket al., 1999).

4.2. Case of Zone Measurements

Let us come back to the system (3) and suppose that the
measurements are given by an internal zone sensor defined
by (D, f) with D ⊂ Ω and f ∈ L2(D). The system is
augmented with the output function

z(t) =
∫

D

y(x, t)f(x) dx. (15)

In this case we consider the system (9),G being given by
(8), and the mapping

ϕ0 ∈ G→ ‖ϕ0‖2
G =

∫ T

0

〈f, ϕ(t)〉2L2(D) dt, (16)

which is a semi-norm onG. Thus with the system

∂Ψ1

∂t
(x, t) = −A∗Ψ1(x, t)− 〈f, ϕ(x, t)〉2L2(D)

×f(x)χD in Q,

∂Ψ1

∂νA∗
(ξ, t) = 0 on Σ,

Ψ1(x, T ) = 0 in Ω

(17)
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we introduce the operator∧: ϕ0 ∈ G −→ P (Ψ1(0))
and consider the system

∂Ψ2

∂t
(x, t) = −A∗Ψ2(x, t)

−z(t)f(x)χD in Q,

∂Ψ2

∂νA∗
(ξ, t) = 0 on Σ,

Ψ2(x, T ) = 0 in Ω.

(18)

The observation problem onω reduces to solving the
equation

∧ ϕ0 = P (Ψ2(0)). (19)

Proposition 3. If the system (3) together with the output
function (15) is approximately observable onω, then (19)
has a unique solutionϕ0 ∈ G and the regional boundary
initial state to be observed onΓ is given byy1

0 = χγ0ϕ0.

The proof is (with some minor technical modifica-
tion) similar to the pointwise case. For more details, we
refer the reader to (Zerriket al., 1999).

5. Simulations

We have seen that the regional boundary observability is
equivalent, in all cases, to solving the equation

∧ ϕ0 = P
(
Ψ2(0)

)
. (20)

The numerical approximation of (20) is realized easily
when one can have a basis(ϕ̃i) of H1(Ω) and the idea is
to calculate the components∧ij of the operator∧. Then
we approximate the solution of (20) by the linear system

N∑
j=0

∧ijϕ0,j = Ψ2,i for i = 0, . . . , N, (21)

whereN is the order of approximation andΨ2,i are the
components ofP (Ψ2(0)) in the basis(ϕ̃i) considered.
Assume that(ϕ̃i) is the set of eigenfunctions of the oper-
ator A∗ associated with the eigenvaluesλi of multiplic-
ity one.

In the case of pointwise measurements we have

〈∧ϕ0, ϕ0〉=
∞∑

i,j=0

〈ϕ̃i, ϕ0〉H1(ω)〈ϕ̃j , ϕ0〉H1(ω)

× −1 + e(λj+λi)T

λj + λi
ϕ̃i(b)ϕ̃j(b).

Then the components of∧ are given by

∧ij =
−1 + e(λj+λi)T

λj + λi
ϕ̃i(b)ϕ̃j(b). (22)

In the zonal case the same developments lead to the com-
ponents of∧:

∧ij =
e(λi+λj)T − 1
λj + λi

〈f, ϕ̃i〉L2(D)〈f, ϕ̃j〉L2(D). (23)

Summing up, in the pointwise case, the regional recon-
struction is obtained via the following simplified algo-
rithm:

Step 1. Choose a sensor locationb, an error testε, an
initial statey0.

Step 2. Choose an approximation orderN .

Step 3. Solve (13) to obtainΨ2(x, 0).

Step 4. Solve (21) to obtainϕ0 where∧ij ’s are given
by (22).

Step 5. If ‖y0 − ϕ0‖2
L2(ω) > ε, go to Step 2, oth-

erwise ϕ0 corresponds to the initial state to be ob-
served onω.

This algorithm converges since the developments are
based on a Dirichlet series. To avoid instabilities in nu-
merical calculations, which are suspected to arise, we
must take some care with the numerical method for solv-
ing the linear system (21) and also with the choice of the
sensor location.

5.1. Example

For an illustrative application, consider the parabolic sys-
tem onΩ =]0, 1[×]0, 1[ given by

∂y

∂t
(x1, x2, t) = 0.01

[
∂2y

∂x2
1

(x1, x2, t)

+
∂2y

∂x2
2

(x1, x2, t)
]

in Q,

∂y

∂ν
(ξ, η, t) = 0 on Σ,

y(x1, x2, 0) = y0(x1, x2) in Ω.

(24)

The measurements are given by a pointwise sensor
z(t) = y(b, t), with b = (0.30, 0.65) and T = 2. Here
the boundedness of multiplicitiesrm does not hold, but it
holds for Ω? =]0, 1 + ε[×]0, 1[ (ε 6∈ Q small enough),
which constitutes a good approximation ofΩ (Michelitti,
1976)), and for which the outlined results are applicable.
We note that numerically an irrational number does not
exist but it can be considered as irrational if the truncation
number exceeds the desired precision.

Let Γ = {0} × [0, 1] and

y1
0(η) = 2

(
η3

3
− η2

2
+ 0.1

)
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Fig. 4. True initial statey2
0 on ω.

 

Fig. 5. Estimated statey2
0,e on ω.

be the initial state to be observed onΓ. Let ω =
]0, 0.24[×]0, 1[ and

y2
0(x1, x2) = 2

(
x3

1

3
− x2

1

2
+ 0.1

) (
x3

2

3
− x2

2

2
+ 0.1

)
be an extension ofy1

0 to ω. Applying the delineated ap-
proach, we obtain the results given in Figs. 4 and 5.

Figure 6 shows that the estimated boundary state is
very close to the true initial boundary state onΓ. The
initial state y1

0 is estimated with the reconstruction error
‖y1

0 − y1
0,e‖2

L2(Γ) = 4.951× 10−7.

5.2. Subregion-Pointwise Actuator

The following simulation results show the evolution of the
estimated state error with respect to the sensor location
b = (b1, b2) when b1 is fixed at 0.81 andb2 ∈]0, 1[.

Figure 7 reveals the following facts:

• For a given subregionΓ, there is an optimal sensor
location (optimal in the sense that it leads to a solu-
tion which is very close to the initial boundary state).

• When a sensor is located sufficiently far from the
subregionΓ, the estimated state error is constant for
any locations.

 

0 ,0 0 ,2 0 ,4 0 ,6 0 ,8 1 ,0
-0 ,02

-0 ,01

0 ,00

0 ,01

0 ,02

Fig. 6. True (y1
0) (dashed line) and estimatedy1

0,e

(continuous line) initial state onΓ.
 

0 ,0 0 ,1 0 ,2 0 ,3 0 ,4 0 ,5 0 ,6 0 ,7 0 ,8 0 ,9 1 ,0

0 ,0

0 ,5

1 ,0

1 ,5

Fig. 7. Evolution of the estimated state error
with respect to the sensor locationsb2.

• The worst locations correspond to a nonΓ-strategic
sensor as developed in the previous sections, where
b2 ∈ {1/4, 1/2, 3/4} (the order of system approxi-
mation is two).

5.3. Relation Subregion Area—Estimated State Error

The state reconstruction error depends on the subregion
area. Table 3 shows that both the error and the sub-
region area increase or decrease. TheB-observability
is realized by means of one pointwise sensor located at
b = (0.44, 0.65). These results are similar for other types
of sensors.

Table 3. The evolution of the boundary observability
error with respect to the subregionΓ area.

SubregionΓ ‖y1
o − y1

0,e‖2
L2(Γ)

{0} × [0, 1] 1.285× 10−3

{0}×]0.10, 0.95[ 4.418× 10−4

{0}×]0.20, 0, 85[ 2.786× 10−4

{0}×]0.30, 0, 65[ 2.255× 10−4

{0}×]0.30, 0.60[ 2.211× 10−4

{0}×]0.33, 0.60[ 9.997× 10−5

{0}×]0.35, 0.60[ 3.002× 10−6

{0}×]0.40, 0.50[ 3.744× 10−8
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6. Conclusion

The concept developed in this paper is related to the re-
gional boundary observability in connection with the sen-
sor structure. It permits us to avoid some ‘bad’ sensor lo-
cations. Various interesting results concerning the choice
of the sensor structure are given and illustrated in specific
situations. Furthermore, we have developed a technical
approach which leads to an implementable state recon-
struction algorithm. The results can be used for the esti-
mation of the current boundary state by updating the initial
time. This can be employed for the knowledge of bound-
ary conditions on a portion of the boundary. An approach
for real applications is now under consideration.
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