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With reference to the work of Verriest and Lewis (1991) on continuous finite-dimensional systems, the linear quadratic
minimum-time problem is considered for discrete distributed systems and discrete distributed time delay systems. We treat
the problem in two variants, with fixed and free end points. We consider a cost functiondiich includes time, energy

and precision terms, and then we investigate the optimal (@éir:) which minimizes.J.
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1. Introduction R € L(U) is a self-adjoint positive definite operator.

) . o ) Then we investigate the optimal paftV*, v*) € N* x
The linear quadratic minimum-time problem was con- N \yhich minimizes the cost functional (N, u) un-
sidered before (Athans and Falb, 1996; Schwartz andyer constraints ’

Gourdeau, 1989), but is was not fully exploited. Verri-
est and Lewis (1991) treat the case of continuous finite- (N,u) € {(M,v) e Nx UN: z,(M) = x4},
dimensional systems. Discrete systems in the finite-
dimensional case were considered later (El Alatal.,
1998). In the present paper, we investigate discrete-time
distributed systems. In the first part of this work, we con-
sider systems described by

where N* is taken to be as small as possible; is a
given desired final statey, (-) is the trajectory of system
(1) corresponding to the contral, and N* is the set of
all non-zero integers.

We establish that the optimal solutiqdV*, u*) ex-

z(i+1) = Az(i) + Bu(i), 0<i< N -1, ists, is unique and is obtained by solving a finite sequence
1) of algebraic equations and by minimizing a time func-
z(0) = wo, tional over a finite sub-interval dN. An example is given

to illustrate the results. The case where the final end point
z(N) is free, is also considered. In this case, the func-
tional cost includes time, energy and precision terms, i.e.

where N is taken to be freez(i) € X is the state vari-
able and u(i) € U is the input variable. X and U
are Hilbert spaces, the operatafs and B are bounded
(Ae L(X) and B € L(U, X)). N-1

We consider a cost functional (N, ) which in- J(N,u) :W(N)"'Z [(u(i), Ru(i))+ (x (i), Ma(i)]
cludes time and energy, that is to say, =0

N-1 + (z(N), Gz(N)), 4)
J(N,u) = ¢(N) + Z (u(?), Ru(7)), (2) where M, G € L£(X) are self-adjoint positive operators.
=0 Since J contains both the final timeV and quadratic
where u = (u(0),...,u(N —1)) € UV, o1 N — Rt components ofx(i) and (i), we shall call.J a linear
is assumed to be positive and increasing, i.e. quadratic minimum-time performance index. In the sec-
ond part of this paper, we treat the case of discrete dis-
¢(N) >0, VNEN, tributed time delay systems. To settle the problem, we de-

fine a new state variable which satisfies a discrete system
without delays.

and In what follows, we denote by, -) and (-, )y the

NE{EOO p(N) = +oo. 3) inner products defined respectively 6h and U. We also

N <M = o(N) < @(M), VN,MEeN,



M. Rachik and A. Abdelhak

amcs

denote byN* and R* the set of non-zero integers and the
set of non-zero reals, respectively.

2. The Case of a Fixed End Point

Consider the linear discrete-time system given by
x(i+1) = Az(i) + Bu(i), 0<i< N -1, )
5

x(0) = zo,

where N is free, z(i) € X is the state variable and
u(i) € U is the input variable. X and U are Hilbert
spaces.A € L(X) and B € L(U, X). Let ¢ be a posi-
tive increasing function such that

li N) = .
wim, () = oo

(6)

The problem can be stated as follows: Given the per-
formance index

N—

J(N,u) = o(N) + ) (u(i), Ru(i))

=0

=

(7

and a desired final state; € X, we investigate the opti-
mal pair (N*,u*) € N* x UN" where N* is as small as
possible and

J(N*,u*) = min J(N,u),

(Nu)ey

(8)

with V = {(N,u) € N* x UN: 2(N) = 24}

Definition 1. An integer N is said to beadmissible
if there exists a control sequenae € UY such that
z(N) = zg4.

To determine the optimal sequencéN*, u*),
we proceed as follows: For each admissible inte-
ger N, we determine an optimal controk
(uMN(0),...,uN(N — 1)) which minimizes the cost
J(N,u) overall controlsu = (u(0),...,u(N—1)) such
that (N) = x4. The optimal timeN* is the smallest
integer which minimizes/(N, ") over all admissible
integers V.

Let N € N be a fixed integer. From (5) it follows
that for every controku = (u(0),...,u(N — 1)) € UV,
we have

z(N) = AVzy + Hyu, 9
where Hy is the operator defined by
" UN - X,
N N—-1 . (10)

((0),...,u(N = 1)) =Y "AN"1I Bu(j).

=0

Consider the inner product ofi’¥ given by

(w,0)r = Y (u(i), Ro(i))u, (11)
=0
u = (u(0),...,u(N —1)),v = (v(0),...,0(N — 1)),

and let H, be the adjoint operator off ;y defined with
respect to the inner products -) and (-, ) g, i.e.

(Hyu,z) = (u, Hyx)r, YueUY, VzeX. (12)
Define the functional| - || 7, by
zlley = [[Hy2lr, Vo e X, (13)

where|| - ||z is the norm corresponding to the inner prod-
uct (-, -)g. Then the functional| - || 7, describes a semi-
norm on X and a norm onky, where Fy is the subspace
of X defined by

Fo=Tm Hy = (Ker Hy) . (14)
Indeed, ifz € Fy and ||z||r, = 0, then we deduce that
x € (Ker Hy) N (Ker Hy )%, which implies thatz = 0.
We denote by(-,-) ; the inner product orFy given by

(x,y)n = (Hyz, Hyy)r, Va,y € Fo. (15)
Now, we introduce the operator
Fy — Fy,
o r— HyHyz. (16)
For everyx € Fy, we have
[Avz|Fy = [[HNANz||r = [HyHNHy | R

< [HYHN| 2]l -

Hence Ay is a bounded operator of;, endowed with
the norm|| - || py -

Let Iy be the completion off, with respect to the
norm || - || sy . Since we have

\V/.T, ) S F07
(17)

it is classical thatA has a unique extension denoted

also by Ay and defined fromFy to its dual Fj, (Li-

ons, 1988). Indeed, for any € F, we define the map

Yo by

[(Ana,y)| = [z, y)n| <zl ey lyllFy

F() — R,
(18)

Uy (Ayay).
The map+,. is linear and continous with respect to the
norm | - ||y . Since Fy is dense inFy, v, can be ex-
tended to a bounded linear operator denotedhywhich
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belongs to the spacé“j\,. Now consider the mapr de-
fined by
An(Fy) — Fu,
T ~(Fo) 7N (19)
ANLL' — ’(/Jx

We verify that the mapr is well defined onA x (Fp).
Moreover, 7 is linear and injectif. This allows us to iden-
tify the spaceA y (Fp) with a subspace oF]/V. Using the
operatorm, we rewrite the operatoA 5 as follows:

Fy — Fy,
Ay: 0N (20)

T 1y

We show thatA  is linear and continous with respect to
the norm | - ||F,, Which implies thatAx has a linear
and bounded extension also denoted/Xy and defined
from Iy to its dual FN Moreover, this extension is an

isomorphism fromFy to FN To show this, we prove
that

(Anz, ) pr g, = llzlh,, YoeFy,  (21)

where we denote by, x>F1'\,,FN the range ofr € Fi

by the operatorp € FN From (21) it follows thatA y
is injectif. Consequently A is an isomorphism from
Fx to Ax(Fy). This implies thatAx(Fy) is a closed
subspace of"y,, and hence\ y (Fy) = Ax(Fy). Onthe
other hand, ifA C F]'V we denote byA° the subspace
of Fy given by

A° = {2 € Fn /(¢ 2} gy =0, VO €A} (22)

If B C Fy,we denote byB° the subspace QFN given
by

B°={¢¢c FJ’V/<¢,:C>F;V,FN =0, Vo€ B}. (23)

Let x € (An(Fn))°. Then from (22) it follows that
(ANy,x>F]/V)FN =0, VyeFy. (24)
This implies
ANz, @) pr = 0= Jal|3,.

Hencez = 0. Consequently(Ay (Fx))° = {0}. Thus

An(Fy) = An(Fy) = (An(Fn))°)° = {0}° = Fy,

(25)
which implies that Ay is an isomorphism fromFy
to F.

&

Remark 1. Suppose thatr € ImH . Then there exists
u € UV such thatz = Hyu. Consider the functionp,,
defined by

FO - Ra
P - (26)
y = (z,9).
We have
lex(y)| = [(Hnu,y)|
= [(u, HNy)rl < [ullrlyllFy, Yy € Fo.

Hence ¢, is a bounded operator o, endowed with
the norm Fy. Using the Hahn-Banach theorem, we de-
duce thatp, € FN Consequently, we may assume that
ImHy C Fy since the map given by

ImHy — F,

P 27)

T = Py
is injectif.
Now, we can formulate the following proposition
which characterizes the admissible integers.
Proposition 1. An integer N is admissible if and only if

x4 — ANzo € Fy.

Proof. If 24 — ANz € FN then there exists a unique
f € Fy suchthatAyf = x4 — AVNxy. Consider the
control v = Hy, f. Then

z(N) = AVzo+ Hyu = AVzo+ Anf =24 (28)

and henceN is admissible.

Conversely, if N is admissible, then there exists a
control u such thatx(N) = x4, which implies x4 —
ANzo = Hyu. Hencexy — ANzo € ImHy C Fy, (see
Remark 1). ]

Proposition 2. If N is an admissible integer, then the
control 4"V being a solution to the optimization problem

J(N,u") = min J(N
(N,u™) = min J(N,u)

subject toz(N) = x4 is given byu” = H¥ f, where
f € Fy is the unique solution of the algebraic equation

ANf =Tq — ANif().
Moreover, the corresponding cost is

J(Nu™) = o(N) + || fII%, -
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Proof. Let N be an admissible integer. From Proposi-
tion 1 it follows that there exists a uniqug € F such
that Ay f = 24— AN . Defineu = Hi f € UN . Then

m(N):ANx0+HNu:AN:EO+ANf:xd.

On the other hand, for each controle UN such
that z,(N) = x4, we have

z(N)

Zy(N) = g,

where x,(-) denotes the trajectory of system (5) corre-
sponding to the controb. Hence

HNu = HNU,
which implies
<HN(U7U)af> =0

or
(u—v,Hyf)r =0.

Sincew = H}; f, we deduce that
(v, u)r = (v, u)r < ||v][rllullr.

Thus |[ullg < |[v]|lg, YoeUN. m

Remark 2.

(a) By convention, if N is not admissible, we set
J(N,u") = +c0.

(b) In order to obtain the minimizing controk’v, we
have to solve the algebraic equatidny f = z4 —
ANz, However, we do not in general have an ex-
plicit expression for the operatotg,l, SO we propose
the Galerkin method to approximaté (the bilinear
form Fy x Fy — R: (x,y) — (Anx,y) is coer-
cive).

Finally, the optimal sequencéNV*,v*) is given by
the following proposition.

Proposition 3. Let A be the set of all admissible integers.
If A is bounded, thenN* is the smallest integer that
minimizes.J(N,u") over A. Otherwise, consideN, €

A and M € A such thatp(M) > J(No,u0). Then
N* is the smallest integer that minimize§ N, v ) over
the interval [1, M].

Proof. If A is bounded, the result is obvious. Suppose
that A is not bounded and considév,, M € A such
that (M) > J(Np,u™0). It follows that Ny € [1, M].
Indeed, if it is not, thenp(Ny) > (M), which implies

J(No,u™) > ¢(No) = (M) > J(No,u™"),

a contradiction. ThusVy € [1, M].

On the other hand, for eaclV € N such thatNV >
M, we havep(N) > o(M). Consequently,

J(N,u™) 2 p(N) = (M) > J(No,u™). m

Example 1. Consider the discrete-time system described
by

|

where N is free, Q =]0,1], z(i) € L*(Q) is the state
variable,u; € R is the input variable and

N -1

z(i+1) = Az(i) + Bu(i), ,
(29)

i=0,...,
x(0) =0,

A=5(0) € L(L*(®)), (30)
S(t)i>0 being the strongly continuous semigroup gener-
ated by the Laplacian operatd, i.e.

S(0)z = ie*i%z‘s(x, eiYes, VxeL*(Q), (31)

i=1

- is the usual inner product oh?(Q2), § > 0

where (-,
) = /2sin (ins), ((e;); is a basis ofL2(Q)).

and e;(

(-
S
The operatorB is defined by

3
B:/O S(o)Ddo, (32)

where
R — LQ(Q)
u— ueq(+).

Remark 3. The difference equation (29) can be inter-
preted as the sampling version ot the following continuous
diffusion system:

oz _ Az = g(s)u(t), seQ,tel0,T],
ot
2(0,) =x()  in®, (33)
x(t,s) =0 in 00x]0, T,
where g = e;.

The linear quadratic minimum-time problem consists
in determining the optimal paifN*,«*) which mini-
mizes the cost functional

N-1
J(N,u) = N>+ ) Ru?(i)
=0

(34)

while driving the system fromzg
where o € R* is given.

0 to g = aeq,
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Lemma 1. The spaceF, defined byFy, = ImHy is Let f € Fy(= E(e1)) be such that
given by

FOZE(61)7 ANf:J?d in FN'
where E(e;) is the subspace of.?(2) spanned by the

vector e;. Then

<ANf7x> = <CCd,£L'>, VSL’QF(). (38)
Proof. For every N > 1 and everyu € R, we have
N1 Since f = aye; forsomeay € R, (38) implies

Hyu= Z AN By (4) an(Aney, fer) = (xq,PBe1), VBER

&
|
o

i

s or, equivalently,
S((N—-1- i)é)u(i)/ S(o)erdo
0 N(Hyei, Hyel)r = (xq,e1) = o

™

@
Il
=)

2

= Z u(s / S(N—-1-4)d+o0)erdo Thus « o) (39)
— anN = " = .
= IHxell?  lleall,
N-1 . . .
_ Z (i / ijTrz((N*l*i)‘”")(el, e;)e; do Consequently, the optimal cost corresponding. b is
=0
TN, uM) = N? 4 ||f |7y = N? + ayller |7
phle g 2 2
= u(z)/ e (N=1=0)0+40) qie, _ A2 o
> uti) | IV o)

i lexlly

.1

(e u(i)e_ﬂz((N_l_i)é))el Using (37), we establish

™

(=)

1=

c2 (6727r2(N71)6 _ e27r25)

2
where c is the constant given by = fo‘s e ™7 do. lexlley = R(1 — e27°9)
HencelmHy C E(ep). Conversely, ifx € E(ey),
there existsg € R such thatx = [e;. Chooseu = For numerical simulation we take = 10, § = 0.1,
(u(0),...,u(N—-1)) suchthatu(0) = --- = u(N-2) = R =1, Ny = 7. Then we apply Proposition 3 to deduce
0 andu(N — 1) = 3/c. Then Hyu = x and that the minimum timeN* exists in the intervall, 147]

and is equal to4. The optimal control isu* = Hy- f,

My = Efey). (35) where f = (2132.4)e;. The evolution of J(N, v™V) with
Consequently, respect toN is given in Fig. 1.
Fo :ImHNZE(el), T
r= )
Fy = E(el). |
Now, for every integerN > 1 we have x4 — e

ANzy € ImHy, sincezy = 0 and x4 € ImH . Hence
from Remark 1 and Proposition 1 it follows that every in-
teger N > 1 is admissible. In order to solve the equation bace
Anf = x4, we first determine the adjoint operatoBs
and Hj,. By simple calculations we establish that for ev-

et
ery z € L*(Q), we have
B*z = c{ey, x), (36)
Hyz = ((H}:,x)o, e (Hj’{,a:)N_l),
215 ™

(Hyz); = R'B* AN i

%e—ﬁz(N—l—i)é@’ e1). (37) Fig. 1. The evolution of/(N,«") with respect toN.
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3. The Case of a Free End Point

In this case, we consider a cost functiondIV, «) which
includes time, energy and precision terms, i.e.

Z

), Ge(N

J(N,u) = p(N + (i), Ma(i)]

+ (z(N

where M € L(X),G
operators andk € L(U
operator.

)>’

€ L(X) are self-adjoint positive
) is a self-adjoint positive definite

(41)

Then we investigate the optimal sequer{¢é*,
where N* is as small as possible and

u*)

J(N*, u*)

= min

J(N,u).
(N,u)eNxUN

(42)

To show that this problem has a unique solut{gW*, u*),

we proceed in two steps: In the first one, for any fixed
integer N, we determine the optimal contral™ which
minimizes the cost/ (N, u) over all controlsu € U™ . In
the second step, we minimiz& N, «") over all integers

N. By convention, we set
J(0,u) = ¢(0) + (x9,Gao), VN €N, VuecUV.
(43)
For a fixed N € N*, if we denote byu™ € U the
optimal control which satisfies
J(N,u™N) = min J(N,u), (44)

ueUN
thenu” is unique and given by the following proposition:

Proposition 4. Let N € N* and K;: X — X, i =

0,...,N — 1 be afamily of operators given by
Kiy1 = A*K;(I+ BR™'B*K;)"'A+ M,
1=0,...,N—1,

Ko =G.

Given an initial conditionzy € X, the optimal control
u® is given in feedback form by

uN (i) = —R'B*Kn_1-i(I + BRT'B*Kn_1-;)"!
x Az(i), i=0,...,N—1.
The corresponding cost is
J(N,u™) = (Knwxo, x0).

Proof. For the proof, see (Zabczyk, 1974). =

Finally, the optimal pair(N*,u*) being a solution
of (42) is determined by the following result:

Proposition 5. Consider (Ng, M) € N? such that
©(M) > J(Ng,uNe). Then the minimum tim&/* is the
smallest integer that minimized(N, u ) over the inter-
val [0, M]. Moreover, we have* = vV,

Proof.
tion 3.

The proof is similar to the one of Proposi-
[ |

4. Discrete Time Delay Systems

Consider the discrete time delay system described by

1) =) Aju(i—j)
3=0
q
—l—ZBju(z —J), i=0,...,N—1, (45)
2(0) = xo
az(r):a —m<r<-1,
u(r) = pr, —q<r< -1,
where z(i) € X,u(i) € U,X andU are Hilbert spaces,
Aj e L(X), 7=0,....mand B; € L(U,X), j =

0,...,q. Furthermore,(«,), and (u..), are fixed initial
conditions. Heren > 0 and ¢ > 1 are given integers.

Given the cost functional

N-1
N)+ Y (u(i), Ru(i))
=0

and a desired final state;, we investigate the optimal
pair (N*,u*) which steers the system from the initial
state (o, () —m<r<—1) t0 24 With a minimal cost. We
recall that p: N — R, is a positive increasing map
satisfying (6) andR € L(U) is a self adjoint positive
definite operator. Similarly to the case of discrete sys-
tems without delays, the determination of the optimal pair
(N*,u*) follows from solving the following optimization
problems:

Find vV € UY such that
J(N,u™) = min J(N,u),

ueUN

J(N,u) = (46)

(47)

and z(N) = z4, where N is an admissible integer.

The determination ofN* is then performed by mini-
mizing J (N, u") over an appropriate bounded subse¥of

First, we establish some results which are useful for
the sequel. Define a new state variablg) € X™*! x
U? by

e(i)

((i),2(i = 1),.
u(i — q))T.

u(i— 1),

(48)

(Z 7m)a
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Thene(+) satisfies the difference equation

e(i+1) = ®e(i) + Bu(i), i=0,...,N—1,
e(0) = e,
(49)
where
AoAl...AmBl... Bq BO
I 0 0 0 0 0
0 1o o0 0 o
o= 0 0 o0 . 0 7B: ) (50)
I’ 0
0 I0 0
and ep = (L0, A1,y Oy ety e v vy fig) L

Let P € L(X™F! x U X) be the projection oper-
ator defined by

X+l U1 — X,
P: (51)
(Y15« s Ymt1,01, - -+, Ug) = Y1.

Then from (49) it follows that

z(N) = Pe(N) = P®Ney + PHyu,  (52)
where Hy is the operator
_ UN - X,
H: (53)

N-1
((0),...,u(N = 1)) = > &N """ Bufi).
=0

Let Ky = PHy and Gy = ImK . Then consider the
semi-norm|| - ||, defined onX by

lellay = [Exelr, VaeX, (54)

where K7}, is the adjoint operator ofy defined with
respect to the inner products,-) and (-,-)g. Since
Go = ImKy = (KerK}% )+, we deduce that the func-
tional || - ||gy is @ norm onGy. Denote by Gy the
completion of G, under the norm|| - ||z, and consider
the operatorL ; given by

Go — Go,
LNI (55)
¢ KnKia.

Clearly, Ly defines a bounded operator ¢fy, en-
dowed with the nornl| - ||, . By standard results (Lions,
1988), the operatoi,y may be extended to an isomor-
phism denoted also by.,y and defined fromGy to its
dual G'y.

&

Proposition 6. An integer N > 1 is admissible if and
only if x5 — P®Ney € Gy

Proof. If N is admissible, then there exists a con-
trol sequenceu € U such thatz(N) = =z, which
implies Pe(N) = P®Ney + Kyu = x4, OF 24 —
P®Ney = Kyu. Since InKy C Gy, we deduce
that 24 — P®Ney € G/N. Conversely, suppose that
xq—PO®Ney € G}V. Then there existy € Gy such that
Lyy =xq4 — PdVe,. Hencexy = P®Ney + KnKyy

or g = z(N), whereuw = K}y. Thus N is admissi-
ble. [ |

Proposition 7. For each admissible integelN, the con-
trol u? exists, is unique and given by¥ = K% g, where
g € G isthe unique solution of the algebraic equation

Lyg=x4— P@Neo.

Moreover, the optimal cost is/(N,u") = ¢(N) +
lgl1Z -

Proposition 8. Let A be the set of all admissible integers.
If A is bounded, thenN* is the smallest integer that
minimizesJ (N, u") over A. Otherwise, consideN, €

A and M € A such thato(M) > J(Ng,u™°). Then
N* is the smallest integer that minimize§ N, v ) over
the interval [1, M].

Remark 4. By obvious modifications, Remark 2 remains
also valid.

4.1. The Case of a Free End Point

In this case, the cost functiondl(V, ) depends on time,
energy, state and also delays in the states, i.e.

N-1
J(N,u)=(N) + ) (u(i), Ru(i))
=0
N—1 mq mi

+y < Mya(i—§),M > Mja(i - j)>

i=0 5=0 7=0

+ (z(N), Gz(N)), (56)
where M; € £(X), j=0,...,m; andm; € N is such
that m; < m.

The problem is to determine the optimal pair
(N*,u*) which satisfies

min

J(N* u*) =
(N,u)eNxUN

J(N,u) (57)
such thatN* is as small as possible. To determine the
unique solution(N*, u*), we proceed in two steps: In the
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first one, for any fixed integeN, we determine the opti-
mal control v’ which minimizes the cost/(N,u) over
all controlsw € U”. In the second step, we minimize
J(N,u™) over all integersN. By convention, we set

<ZM a_J,MZM o ;)

VueUVN.

J(0,u) = ¢(0

+ (0, Gzo), (58)

To settle this problem, we rewrite the cost functional
in terms of the state variable(-) given in (49). Indeed,
since

mia

> Mja(i— j) = Me(i), i=0,...,N—1,
j=0
z(N) = Pe(N), (59)
where M = [My, ..., My, 0, 0], we deduce that
m—mi+q
N-1
J(N,u) = )+ Z ), Ru(i
=0

N—-1
+ > (eli), M MMe(i))
=0

+ (e(N), PTGPe(N)). (60)

Consequently, in order to settle the problem (57), we
consider the cost functional defined by (60), where)
is the solution of the system without delay given by (49).
Then we apply the results of Section 3 to obtain the fol-
lowing propositions:

Proposition 9. Let N € N* and K; : X™+! x U —
Xm+tl % U4, i=0,...,N — 1 be afamily of operators

given by
Ki+1 = (I)*KZ(I + BR_lg*Ki)_lq) + MTMM,
i=0,... N—1,
Ky = PTGP.

Given initial conditions z, (o), the optimal control
vV is given in feedback form by

uN(i) = —R'B*Kn_1_;(I+BR'B*Kyn_; ;)"
x ®e(i), i=0,...,N—1
and the corresponding cost is
J(N,u) = (Kneg, o).

Proposition 10. Consider (Nog, M) € N? such that
©(M) > J(Ng,uNe). Then the minimum tim&/* is the
smallest integer that minimizes(N, «V) over the inter-
val [0, M]. Moreover,u* = uN".

5. Conclusion

We have solved the linear quadratic minimum-time problem
for discrete distributed systems and discrete distributed
time delay systems. On certain assumptions, we can prove
the existence and unigueness of the solution. We consider
the problem in two variants, with fixed and free end point.
In the first variant, we establish that the optimal pair can be
determined by solving a finite sequence of algebraic equa-
tions and by minimizing a time functional over a finite
sub-interval ofN. In the second variant, we use a similar
technique and some results of (Zabczyk, 1974). For dis-
crete distributed time delay systems, in order to solve the
problem we have defined a new state variable which is the
solution of a discrete system without delay.
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