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IMPOSING RESTRICTIONS ON DENSITY FUNCTIONS UTILISED
IN COMPUTING WITH WORDS
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Applying the generalised extension principle within the area of Computing with Words typically leads to complex maximisa-
tion problems. If distributed quantities—such as, e.g., size distributions within human populations—are considered, density
functions representing these distributions become involved. Very often the optimising density functions do not resemble
those found in nature; for instance, an optimising density function could consist of two single Dirac pulses positioned near
the opposite bounds of the interval limiting the possible values of the quantity considered. Therefore, in this article, density
functions with certain shapes which enable us to overcome this lack of resemblance are considered. Furthermore, some
considerations on solving the resulting maximisation problems are reported.
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1. Introduction

A generic problem in Computing with Words (CW) is the
following: From a given set of propositions expressed in
a natural language (NL), an answer to a query expressed
in the NL is to be inferred.

Set of propositions in NL

Initial Data Set
(IDS)

infer���
Answer to query � in NL

Terminal Data Set
(TDS)

The meanings of the given propositions can be
expressed as generalised constraints on a variable

�
:���	��

�

, with
�

the constraining relation and
�	��


a
copula, in which



indicates the type of the constraint

(possibilistic, probabilistic, etc.). In the remainder of this
paper, mainly constraints of the possibilistic type will be
of interest.1

One major task in CW is, after translating a set of
given propositions into constraints, to derive from these
constraints consequent constraints applying the rules of
constraint propagation. These rules coincide with the
rules of inference in fuzzy logic. Thus, the principal con-
straint propagation rule is the generalised extension prin-
ciple (Zadeh, 1999).

A typical example is the following: The IDS con-
sists of the proposition � :“Most Swedes are tall”, and

1 In this case, ����� reduces to ��� , and � is a fuzzy relation that
constrains � by playing the role of the possibility distribution
of � .

the query is � :“What is the average height of Swedes?”
(Zadeh, 1999). The proposition � translates to (Zadeh,
1979)

�����������
 "!$#&%('*)�+-,�.0/1

+-,�2 3
�4�657�8 4'09&: :;�657��<�5�=?> (1)

in which �4�657� is a density function defined on the interval@ 5A!$B C�>D5A!$9�EGF , �4�657��<�5 is the proportion of Swedes whose
height is in the interval

@ 5H>D5JIK<�5�F , and �A� is the possi-
bility distribution of � induced by � . The average height
of all the Swedes following from this density function is

L �M+-,�.0/1

+-,�2 3
�4�657��5N<�5HO (2)

The application of the generalised extension princi-
ple yields a membership function which indicates the pos-
sible average heights. This membership function is deter-
mined by solving the following maximisation problem: 

+-.�P;Q
� L ���SR�TAUV ���A�����W> (3)

subject to (2).

In general—as one can easily see—the maximisation
problem to be solved has the following structure: YXZ� L ���[R�TAUV ���������W> (4)

subject to L � � �����WO (5)
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In the following section, a Genetic Algorithm (GA)
to solve this special kind of maximisation problem is pre-
sented. A density function �4���"� 2 maximising (4) and ful-
filling the auxiliary condition (5) is sought. The algorithm
has to be executed several times for different values ofL . The result of each execution is a point � L >� ?X � L ��� .
These points form together a pointwise representation of
the membership function  X � L � .

Handling the auxiliary condition (5) is not an easy
task. Therefore, in Section 3 it is described how to convert
the optimisation problem (4), (5) into a multi-objective
form. Special attention is paid to combining the single ob-
jective function values in order to obtain an overall rank-
ing of potential solutions.

An aspect of special importance within the frame-
work of CW is treated in Section 4, viz., the optimising
density functions very often do not resemble those found
in nature. This could narrow the usability of the results ob-
tained when applying the methods of CW. For this reason,
it is suggested to consider whether—according to the rea-
soning problem given—imposing restrictions on the shape
of the density functions utilised could yield more useful
results.

2. GA-Based Problem Solving

In (Gemeinder, 2000), a GA to solve the afore-mentioned
maximisation problem is presented. Some properties of
the utilised GA will be described in the sequel.

2.1. Representation of Solutions

The continuous density function � V ���"� , defined on the in-
terval

@ �7!$B C�>��7!$9�E-F , is replaced by a discrete function con-
sisting of � V equidistant Dirac pulses as follows. Firstly,
the function is approximated by a step function with � V
steps of equal width

� � � ���4!$9�E����7!$B C �	� � � (see
Fig. 1(a)). The function value of each step is determined
by the value �4����
6� , with ��
 lying in the middle of the
interval covered by the respective step. And secondly,
a Dirac pulse is positioned at each ��
 . Each pulse is
weighted by a factor 
 
 equal to the area of the rectan-
gle under the corresponding part of the step function (see
Fig. 1(b)). In combination, the Dirac pulses form a sample��� of the density function � (see Fig. 1(c)).3

Now, each individual is a vector of � V real
weights 
 
 .
2.2. Genetic Operators

The GA utilises the widely employed standard two-point
crossover for recombination. The operation of mutation is

2 Here � denotes an element of � , the universe of discourse.
3 Here � is the Dirac distribution.
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Fig. 1. Sampling of the density function HJILKJM .
more complicated: to explore new regions of the solu-
tion space, it is sometimes useful to have large mutations,
but for convergence to an optimum small changes are
needed. Consequently, a mutation operator which prefers
small variations but does not suppress large mutation steps
(Pohlheim, 1999) is implemented: a value out of an inter-
val

@ � 
 > 
 F is added to the selected variable 
 
 . Here



is called the mutation range. This value is determined by
a factor N 
 �PORQ�S#T U , with V being each time randomly
chosen from the interval

@ W >YX F ; the mutation precision Z
globally influences the size of mutation changes. The ‘ I ’
or ‘ � ’ sign is chosen with probability

W O [ each:


 !]\ '
 � 
 
Y^ 
`_ N 
 with N 
Y�aO Q�S#T U and V�b @ W >YX F;O (6)

2.3. Fitness Evaluation and Selection

For fitness assignment linear ranking is employed. All in-
dividuals are ordered with respect to their objective func-
tion (values the possibility of � given � ). Then the fitnessc

depends on the rank of an individual within this sorted
list only (Pohlheim, 1999). For selection, stochastic uni-
versal sampling (Baker, 1987) is utilised.

2.4. Handling of Auxiliary Conditions

The considerations made so far are independent of two
auxiliary conditions: first, the constraining condition (5),
and second, a general condition to be fulfilled by a density
function: the integral d<eQ e

�4���"��<�� has to have the valueX . This second condition is easily fulfilled by normalising
the individuals after applying the genetic operators.
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Considering the first condition is more complicated.
There are two principal methods to choose from: the first
one is to punish an offence against such a condition by
lowering the corresponding fitness; the second one is to
prevent such an offence.

In the application described in (Gemeinder, 2000),
the second way was chosen. Special operators which guar-
antee that the auxiliary conditions are fulfilled have to be
developed. In the case of the example above, an opera-
tor which shifts the sample functions along the 5 -axis in
steps of width

� 5 V until the average height L������ lies in
the interval � L�� �	�
 � 5 V > L�� I��
 � 5 V F (see Fig. 2) has
been implemented:4

� %
�� �657���
��� �65 I Z _ � 5 V � with Z/b �2W > ^ X > ^ O�>�O�O�O � (7)

and

L 9��;'��0� %
�� �657��� � +-,�.0/1

+-,�2 3
���G�65 I Z _ � 5 V ��5N<�5

b � L�� � X
O � 5 V > L�� I X

O � 5 V F;O (8)
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Fig. 2. Shifting of the density function HJI
8�M to fulfill the auxil-
iary condition: (a) density function after applying the
genetic operators; (b) resulting density function after
two shifting steps.

This does not lead to a loss of accuracy, because the
optimum fitness value for each L9� is reported together
with the corresponding actual average height L 9��;'2: � . So

4 Here ;=< denotes the average height considered currently. The
index ‘sh’ stands for shifted.

we obtain �?> accurate points � L 9��;'2: � >� 
+-.�P;Q

� L 9��;'2: � ���
representing the linguistic value 5�9�@ A .

The main advantage of the prevention method is that
the resulting performance of the algorithm is very good.
But there is obviously a great disadvantage, too: for each
class of problems a special operator has to be imple-
mented. The operator mentioned above can be used to
solve the example problem, but if the query was, e.g., � :
“How many Swedes are small?”, another operator would
be needed.

Owing to this disadvantage, another approach as de-
scribed in the sequel was investigated.

3. Multi-Objective Problem Modelling

Another example—the so-called Robert example (Zadeh,
2001a)—will serve to illustrate the prevention method’s
limits of applicability. In its initial form, based on the
proposition � : “Usually Robert returns from work at
about 6 p.m.” an answer to the query � : “What is the
probability that Robert is at home at 6:30 p.m.?” is to
be inferred. This leads to an optimisation problem with
similar complexity as in the case of the Swedes exam-
ple, which could be handled in a similar way as described
before.

Considering Version 2 of the Robert example, we
obtain a more complex optimisation problem: instead
of only one proposition, here the IDS consists of two
propositions �CB :“Usually Robert leaves office at about
5:30 p.m.” and � � :“Usually it takes him about 30 minutes
to drive home”; the query � is not changed. Let DEB ���"�
and D � ���"� be probability density functions, indicating the
distributions of FGB , the time at which Robert leaves his
office, and the travel time F � , respectively.

The generalised constraints induced by the IDS are
of the type

� �	� � � , which is an abbreviation for usually� �	�N�
. This term leads to the expressionH � � is

� �JI R usually > (9)

where
� �	�[�

is a fuzzy event and usually its fuzzy
probability, which is the possibility distribution of its crisp
probability (Zadeh, 1999).

Therefore, after converting the two propositions in
this way, one obtains the two possibility distributions
(Zadeh, 2001b)5

���LK � D9B �N�  �\�%�\�9&: : M ) � 
1
B

D9B ���"�8 ON=P Q B�R ���"��<�� = > (10)

���+S � D � �N�  �\�%�\�9&: : M ) � 
1
B

D � ���"�8 B P Q B�R ���"��<�� = O (11)

5 The asterisk stands for about.
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For the time when Robert arrives at home we have
F � F B I F � . Therefore, the TDS translates into the fol-
lowing constraint (Zadeh, 2001b):

L � � � D9B > D � ���
� P Q B1
B

) � 
1
B

D9B � 
 � D � ��� � 
 ��< 
 = <�� O (12)

Now, one has to solve the maximisation task

 YX � L ��� R�TAU� K�: � S ) ���LK � D9B ��� ���+S � D � � = (13)

subject to (12). It is obvious that there is no straightfor-
ward way to adjust the density functions DEB and D � af-
ter applying the genetic operators in a way that avoids of-
fences against the auxiliary condition. For this reason, in
(Gemeinder, 2001b) another way of modelling the optimi-
sation problem was proposed.

Adopting this proposal, the constraining condition
(5) is modelled as a further objective function. The op-
timisation problem (4), (5) is converted into

maximise  YXZ� L 9��;'&� �[���������W> (14)

minimise � � L 9��;'�> L � ��� L 9��;' � L � > (15)

subject to L 9��;'�� � �����WO (16)

Now, instead of one objective there are two ob-
jectives, whereby the second one—in conjunction with
(16)—ensures, by lowering the fitness values, that the con-
straining condition (5) is observed. Thereby, the label
‘act’ indicates the actual value of the constraining con-
dition in contrast to the desired value L .

The main advantage of this multi-objective problem
modelling is that the necessity to handle the auxiliary con-
dition induced by the TDS explicitly vanishes. In fact, the
auxiliary condition is observed implicitly by considering
the second objective. There is no need any more to imple-
ment special operators which prevent offences against the
auxiliary conditions when the genetic pool is evolved.

To have both representations of the maximisation
problem absolutely consistent, for the second objective it
has to be demanded that the value

W
is reached. But such

an absolute consistence is not necessary. Anyway, as has
been mentioned above, the algorithm has to be executed
several times for different values of L . Altogether, the
executions form a pointwise representation of  ?X .

Therefore, in the multi-objective case L 9��;'	� L is
sufficient if—and this is the crucial point—for this valueL 9��;' the maximum possible value for the first objective is
found. If so, the pair consisting of L 9��;' and the corre-
sponding possibility �A�A����� is part of the pointwise repre-
sentation of the membership function  ?X without any loss
of accuracy.

Nevertheless, employing the multi-objective problem
formulation results in a new problem to be solved: to ob-
tain an overall quality measure it is necessary to combine
the single objective function values (14) and (15). This
topic will be dealt with in the sequel.

3.1. Fitness Assignment

Several strategies for fitness assignment utilised in multi-
objective evolutionary algorithms have been investigated
with respect to their applicability to the optimisation prob-
lem considered (Gemeinder, 2001b). It has turned out that
common approaches like computing a weighted sum de-
pendent on the two objectives are not very suitable for this
application.

Therefore, an evaluation method (called grouping)
making substantial use of the fact that L 9��;'
� L is suf-
ficient has been introduced. In a first step, the solution to
be evaluated is classified by determining its membership
of a certain group of solutions. The groups are assembled
depending on the distance between L 9��;' and L . Thereby,
the range of distances is sub-divided into intervals of equal
width

� � (see Fig. 3), and all the solutions whose dis-
tances � � L 9��;' > L � lie in the same interval form a group.
Only if the solutions to be compared are members of the
same group the objective (14) is decisive.

�
� ��� ��� � �������� �
��� ����� ���  � ! "� #%$ ��� � ���&(' ) ��&(� *�

�+���� �� ����  
Fig. 3. Grouping of distances.

The entire procedure can be performed by calculat-
ing a single quality measure: the objective function value, ����� characterising the solution’s quality is set to6, ����� �
��������� �.- � � L 9��;'������W> L �� � / O (17)

If the distance between L 9��;' and L is small
enough—where small enough is specified by the param-
eter

� � —only the first objective is decisive. For each
combination of L and

� � , the algorithm converges to a
certain L 9��;' , and in a perfect manner to an accurate value
for the membership function  X � L � .

In the remainder of this article the considerations will
focus on the question whether or not applying the gener-
alised extension principle in its general form is satisfac-
tory in any case.

6 Here 0 132 is the largest integer no greater than 1 .



Imposing restrictions on density functions utilised in computing with words 387

4. Restricted Density Functions

Applying the approach described in the two preceding
sections to the Swedes example yields (within a wide
range of average heights L ) optimum possibility values
which rest upon density functions similar to the one de-
picted in Fig. 4.��� ���

������ 	 ����

�
Fig. 4. Maximising density function HJILKJM typical for the

Swedes example.

Such density functions do not resemble those found
in nature; as well as density functions typical for tech-
nical applications—such as, for instance, those describing
the distribution of measures in manufacturing—have other
shapes. Therefore, the values obtained by employing the
theoretical framework of CW may not fit reality. This fac-
tor could narrow the practical usability of the obtained re-
sults.

Therefore, one should determine, depending on the
reasoning problem under consideration, whether utilising
density functions with restricted shapes instead of arbitrar-
ily shaped ones would possibly yield more usable results.

This guiding idea was the main motivation to extend
the application existing so far in a way which allows us
to impose restrictions on the shapes of the utilised density
functions (Gemeinder, 2001a).

Several types of shapes for the density functions are
provided. The functions determining the shapes are de-
fined on the unit interval. Therefore, the values of the
quantities considered have to be mapped onto this inter-
val. The first provided shape is a triangular one, as de-
picted in Fig. 5(a). For the three parameters N � > N 
 and
N Q we have

N ��� N 
 ���-> W�� N 
 � X > N 
 I�� � N Q > (18)

with � being a constant parameter which can be employed
to guarantee a certain width of the support7 of �4���"� . From
(18), parts of the triangle may lie outside the unit interval
(see Fig. 5(b)).

Other provided shapes are depicted in Fig. 6.8 The
second shape is a trapezoidal one with parameters defined

7 Support is to be understood analogously to the support of a fuzzy
set.

8 Naturally, it is easily possible to implement further ones.

��� ���
�
��

�� �� � �"! �$#
(a)�%� �����

�� ��"� �$! �$#
(b)

Fig. 5. Triangular shape.

in correspondence with the ones determining the trian-
gular shape. The next one has the form of a double S-
function: �4���"���'&� _)(*( ��� > N � > N 
 > N Q-� with(*( ��� > N � > N 
 > N Q-�

�
+,- ,. ( ��� > N � > N � I N 
O > N 
 � I /�� � N 
 >
X � ( ��� > N 
 > N 
 I N QO > N Q-�10�24365 748 I R95 (19)

and

( ��� > N >;:G>4<��$�
+,,,,,,,,,- ,,,,,,,,,.

W I / � � N >
O>= �-� N</� N@? 


I / N � � � :G>
X � O>= �-��<</� NA? 


I /B: � � � < >
X I / < � � >

(20)

with : � N I�<
O O

For the parameters N 
 conditions (18) hold, too. The
last shape has the form of a Gaussian (or normal) distri-
bution: �4���"� �C&� _ 5"D�UE=�� ���-� N � � 
O N 

 ? > (21)

with N � b @ W >YX F , N 
 bGFIH , and points of inflection at
N � ^ N 
 .

At any rate, the parameter &� is determined by the
parameters N 
 : for a density function we must have1 e

Q e
�4���"��<�� � X O (22)
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Fig. 6. Further shapes for density functions.

Therefore, the parameter &� is calculated as&�J� X
d �B �� � ���"��<��

> (23)

where
�� � denotes one of the restricted functions nor-

malised by a preliminary value &� � � X . The nec-
essary integration is performed numerically, employing
the trapezoidal version of the closed Newton-Côtes rule
(Pozrikidis, 1998). The values of � � ���"� are computed at� I X base points evenly distributed in the interval

@ W >YX F .
The first base point is

W
, and the last one is X . Therefore

the uniform spacing between two adjacent base points is
equal to X�� � . Now, the area below the function is approx-
imated by the area below the polygonal line determined by
the computed points (see Fig. 7(a)).

The number of base points
�

can be chosen freely.
Table 1 provides a clue for a good choice. Regarding the
example above with the interval of interest (the possible
heights) set to

@ X W9W >�O W9W F ,  "'09&: : � ( �65H>YX�� [�>YX
	#[�>YX�� [ �
and  "!$#&%(' � ( �65H> W O [�> W O 	*> W O ��� , the possibility (1) was
computed for different values of

�
, considering the

two density functions with Gaussian shape depicted in
Fig. 7(b). The accurate values were calculated analyti-
cally.
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Fig. 7. Numerical integration.

Table 1. Numerical integration: error estimation.

0�13254-6 7 , 098:254-6 4<; 0�1=254-6 >&?<@�; , 098A254-6 4<@�@�;
B

possibility error/%
B

possibility error/%

5 0.99202 @
C�6 >&7 5 0.99219 C(4-6 D
;
10 0.89476 ?-6 ?<> 10 0.99208 C(4-6 D�D
20 0.81189 E 6 E ;GF<C(4-H

1
20 0.92845 E 6 E�I

50 0.81467 I 6 C(4JF<C(4-H�K 50 0.89838 7-6 C�DLF�C(4-HNM
100 0.81462 E 6 ;�;GF<C(4-HNO 100 0.89830 I 6 ;&7PF�C(4-H�Q
200 0.81462 E 6 ;�;GF<C(4-HNO 200 0.89830 I 6 ;&7PF�C(4-H�Q

4.1. Reasoning

Apart from the motivational considerations above, em-
ploying restricted density functions has a positive side
effect: the computational effort reduces considerably.
Instead of handling samples of arbitrarily shaped den-
sity functions—and, therefore, searching through a high-
dimensional solution space—here the dimension of the
solution space reduces (depending on the chosen shape)
to 2–4, respectively.

Owing to the reduced complexity of the optimisation
problem, simple optimisation methods appear to be more
suitable to perform the optimisation process. Therefore,
two additional optimisation strategies have been imple-
mented: a numerical version of the Gradient Search (GS)
(Hermann, 2001), and Simulated Annealing (SA) (Nissen,
1997). The GS is performed as follows: starting from the
current position in the solution space, a number of steps
of certain length in different directions are undertaken si-
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multaneously. The new potential solutions thus obtained
are evaluated, and the best one is chosen as a new origin.
If no further improvement is possible, the step-length is
reduced. The algorithm terminates if no further improve-
ment is achieved by employing a minimum step-length de-
fined a priori. The modus operandi of SA differs mainly
with respect to two aspects. Firstly, only one potential
solution is computed each time. The direction of the cor-
responding step is determined at random. Secondly, small
degradations of the solution’s quality are accepted with a
probability depending on the degree of degradation. The
threshold for accepting degradations is scaled down with
progressing computing time. Therefore, in later stages of
the algorithm’s execution, only improvements of solutions
are possible, too. The main advantage of SA (in contrast
to the GS) is a certain ability to escape from local optima.

4.2. Comparing Different Approaches

In Fig. 8 two different membership functions for 579�@ A —
evaluated considering the Swedes example—are depicted.
Thereby,  

+-.�P;Q �
� L � was evaluated utilising the GA ap-

proach described in Sections 2 and 3, whereas  
+-.�P;Q


 � L �
was determined employing a restricted density function
with Gaussian shape.
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Fig. 8. Resulting membership functions for 8������ (in both the
cases, ��� ��� � is marked with dotted line).

As was to be expected, the membership functions dif-
fer considerably. In the first case, where arbitrary density
functions are allowed, the membership function reveals
positive values for rather small average heights. This does
not reflect our daily experience, and, especially, will not be
confirmed by any real population in the world. In contrast,
the restrictive approach yields a membership function
which is in better conformance with human perceptions.

In the case of Version 2 of the Robert example, the
situation is different. As has been mentioned before,
D9B ���"� denotes the probability density function indicat-
ing the distribution of FGB , the time when Robert leaves

his office. Now, a distribution like the one depicted in
Fig. 9 may be absolutely possible—not only with regard
to the generalised constraint induced by the correspond-
ing proposition, but especially in reality, too. It is easily
imaginable that Robert usually leaves his office at about
5:30 p.m., but sometimes about two hours later. Thus, it
would not be useful to impose any restriction on the shape
of D9B .
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Fig. 9. Possible probability density function "�#(ILKJM .
The question of whether or not the distribution of

travel times D � should be restricted is not so easy to an-
swer. If one is interested in a general answer to the given
query, arbitrary shapes should, of course, be allowed.
For instance, sporadic events like automobile accidents or
route diversions may result in small isolated peaks. But
possibly one is interested in an answer disregarding such
exceptional events. In this case, employing a restricted
density function could yield better results.

The crucial point is that a user of the methodologi-
cal framework of CW has to decide in advance whether
or not imposing a restriction on the shapes of the utilised
density distributions would be recommendable. This de-
cision may depend on various factors and, therefore, may
not be easy to make. But it can, however, considerably
influence the usability of the obtained results.

5. Conclusions

A Genetic Algorithm-based approach to solve the typi-
cal maximisation problem which arises when applying the
generalised extension principle is described. Special at-
tention is paid to transforming the given problem into a
multi-objective form to provide universal applicability.

Based on the results obtained applying this GA, a
motivation is given for employing restricted density func-
tions (instead of arbitrarily shaped ones) when solving the
maximisation problems considered. Furthermore, an ap-
plication which provides different types of shapes for den-
sity functions as well as different algorithms for optimisa-
tion is described.

The question whether or not such restricted functions
should be employed in a certain situation cannot be an-
swered in general. But this very answer should be sub-
jected to a careful examination.
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