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A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional
probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering
problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are
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1. Introduction

We study a nonlinear filtering problem with delay using
an approximation result of the Wong-Zakai type for the
corresponding Zakai equation with delay. The nonlin-
ear filtering problem was considered in the literature, e.g.,
by Bucy (1965), Kushner (1967), Zakai (1969), Liptser
and Shiryayev (1977), Pardoux (1979; 1989), Kallianpur
(1980), and others. Their studies concentrated mainly on
finding an equation for the conditional probability density
of an unobserved process given an observed path. It is
known that the conditional expectation gives the best es-
timate in the mean square sense. The conditional density
can be computed by two methods. The first method gives
the so-called Kushner equation (Kushner, 1967), which is
a nonlinear stochastic partial differential equation. The
second method gives the so-called Zakai equation (Bucy,
1965; Zakai, 1969), which is a linear stochastic partial
differential equation for the unnormalized density. There-
fore, the problem of constructing solutions of the Zakai
equation is more important for practical applications be-
cause of the linearity.

In recent years, the Zakai equation has been exam-
ined by many authors, e.g., by Bensoussanet al. (1990)
using a splitting method, by Lototskyet al. (1997) us-

ing a spectral approach, by Crisanet al. (1998) using
a branching particle method, by Cohen de Lara (1998)
using invariance group techniques, by Elliot and Moore
(1998) in Hilbert spaces, and by Ataret al. (1999) using
the Feynman-Kac formula.

In our study we apply the approximation problem
of the Wong-Zakai type for stochastic partial differential
equations. It was considered by Gyöngy (1989), Gyöngy
and Pröhle (1990), Brzeźniak and Flandoli (1995), and
Twardowska (1995). They showed that if in the Zakai
equation we replace the disturbance by its good approxi-
mations, then the approximations converge to a limit equa-
tion with the so-called Itô correction term. The above
problems were considered without delays.

The well-known result for the existence and unique-
ness of a filtering problem with delays but in the lin-
ear case belongs to Kolmanovsky (1973), see also (Kol-
manovskyet al., 2002). The approximation result is not
considered.

In this paper, the Zakai equation is a linear stochas-
tic parabolic partial differential equation with delay. It
corresponds to our nonlinear filtering problem with de-
lay. We prove the existence and uniqueness theorem for
this equation. Also, we establish the approximation result
using the correction term derived in (Twardowska, 1991;
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1993; 1995) in the approximation theorems of the Wong-
Zakai type.

An important part of the present paper contains a nu-
merical example showing that a good stability result is
achieved because in the approximation sequence of equa-
tions we have added the appropriate correction term for
stochastic linear differential equations with delay. Us-
ing the Galerkin technique and some numerical schemes
(Kloeden and Platen, 1992; Sobczyk, 1991) we transform
the Zakai equation to a simpler finite-multidimensional
form. We solve this equation without any correction term
and with a correction term in the approximation sequence.
It is evident that the correction term has a crucial role and
improves our approximation results.

In the paper by Ahmed and Radaideh (1997), a nu-
merical method for the approximation of a nonlinear fil-
tering problem was developed. Using the Galerkin tech-
nique, the solution of Zakai’s equation was approximated
by a sequence of nonstandard basis functions given by
a parameterized family of Gaussian densities. We take
some ideas from that paper. Other numerical techniques
for the Zakai equation can be found in the papers by Beneš
(1981), Elliot and Głowínski (1989), Florchinger and Le
Gland (1995), and Itô (1996).

2. Definitions and Notation

We consider the probability space(Ω,F ,Ft∈[0,∞), P )
such that it is the cannonical space of a process
{(X(t), Y (t)), t ∈ [0,∞)} ∈ RM × RN , where

Ω = Ω1 × Ω2,

Ω1 = C(R+,RM ), Ω2 = C(R+,RN ),

X(t, ω) = ω1(t), Y (t, ω) = ω2(t),

Ft = σ{(X(s), Y (s)), 0 ≤ s ≤ t} ∪ N,

F is a σ-algebra of Borel sets onΩ ∪ N, where N is a
class of subsets with theP -measure equal to zero,P is
the probability law of the process(X,Y ), C(R+,RM )
is the class of continuous functions, andCb(R+,RM ) de-
notes the class of bounded continuous functions.

For the stochastic processX(t, ω) and for a fixed
t ∈ [0,∞) we define

Xt(θ, ω) = X(t+ θ, ω), θ ∈ I = [−r, 0].

ThereforeXt(·, ω) denotes the segment of the trajectory
X(·, ω) on [t− r, t].

Let {(X(t), Y (t)), t ∈ [0,∞)} be the solution to
the following system of stochastic equations with delay:

X(t, ω) = X0(ω) +
∫ t

0

b(s, Ys(·, ω), Xs(·, ω)) ds

+
∫ t

0

f
(
s, Ys(·, ω), Xs(·, ω)

)
dV (s)

+
∫ t

0

g
(
s, Ys(·, ω), Xs(·, ω)

)
dW (s), (1)

Y (t, ω) = Y0(ω) +
∫ t

0

h
(
s, Ys(·, ω), Xs(·, ω)

)
ds

+W (t), (2)

where X0(ω) is an initial constant random vari-
able independent of the standard Wiener processes
{(V (t),W (t)), t ∈ [0,∞)} with values in RM × RN ,
Y0(ω) = 0. Moreover,b, f, g andh are measurable map-
pings from R+× C(I,RN ) × C(I,RM ) with values
in RM , RM , RM×N and RN , respectively. We assume
that they satisfy Lipschitz and growth conditions (see §4
below). Then the system of equations (1)–(2) has exactly
one solution. The uniqueness is understood in the sense
of trajectories. We shall callX(t) the state andY (t) the
observation process.

We define

a(t, y, x) = f ◦ f∗(t, y, x) + g ◦ g∗(t, y, x) (3)

for t ∈ R+, y ∈ C(I,RN ) and x ∈ C(I,RM ), where
f∗ and g∗ are the transpose matrices off and g, respec-
tively. Moreover,

Z(t) = exp
( ∫ t

0

(
h(s, Ys(·, ω), Xs(·, ω)

)
dY (s, ω)

)

− 1
2

∫ t

0

∣∣∣h(s, Ys(·, ω), Xs(·, ω)
)∣∣∣2 ds (4)

for t ∈ [0, T ].

We make the following assumptions:

(A1) For t > 0, n ∈ N and for a measurable function
ρ : Ω2 → [0, 1] such that

ρ(y) = 0 if sup
0≤t≤s

| y(s) |> n,

we have

E
[
ρ(Y )

∫ t

0

∣∣h(s, Ys(·, ω), Xs(·, ω)
)∣∣2 ds

]
<∞.

(A2) E[Z(t)−1] = 1 for eacht ≥ 0.

(A3) The coefficients b, f, g and h are uniformly
bounded by a constantc.
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Having Assumption (A2), we define a new probabil-
ity law P 0 on (Ω,F) by

dP 0

dP

∣∣∣
Ft

= Z(t)−1, t ≥ 0. (5)

We know (Pardoux, 1989, p. 13) that for eacht ≥ 0,
ξ ∈ L1(Ω,Ft, P ) we then haveξZ(t) ∈ L1(Ω,Ft, P

0)
and

E(ξ | Yt) =
E0(ξZ(t) | Yt)
E0(Z(t) | Yt)

,

whereYt = σ{Y (s) : 0 ≤ s ≤ t}, E0 being the condi-
tional expectation operator underP 0.

Let M+(RM ) denote the space of finite measures
on RM . We define the processes{ζ(t), t ≥ 0} and
{Π(t), t ≥ 0} with values inM+(RM ) by

ζ(t)(ϕ) = E0
(
ϕ(X(t))Z(t) | Yt

)
(6)

and
Π(t)(ϕ) = E

(
ϕ(X(t)) | Yt

)
(7)

for t ≥ 0, and ϕ ∈ Cb(R+,RM ). The space
Cb(R+,RM ) is endowed with the topology of the uni-
form convergence.

Let us remark thatζ(0) = Π(0) = law of X(0).
We introduce some families of partial differential opera-
tors indexed by(t, y) ∈ R+×Ω2 for ϕ ∈ C2

b (R+,RM ),
y ∈ C(I,RN ), x ∈ C(I,RM ):

L(t,y)ϕ(x) =
1
2
aij(t, y, x)

∂2ϕ

∂xi∂xj
(x)

+ bi(t, y, x)
∂ϕ

∂xi
(x), (8)

Aj
(t,y)ϕ(x) = f lj(t, y, x)

∂ϕ

∂xl
(x), (9)

Bi
(t,y)ϕ(x) = gli(t, y, x)

∂ϕ

∂xl
(x) (10)

and

Li
(t,y)ϕ(x) = hi(t, y, x)ϕ(x) +Bi

(t,y)ϕ(x) (11)

for i = 1, . . . , N and j = 1, . . . ,M . We have used here
the convention of repeated indices summation.

Now we are in a position to formulate the so-called
Zakai equation in §3 (see Theorem 2.2.3 in (Pardoux,
1989; Chaleyat-Maurel, 1990) for the case without delay):

ζ(t)(ϕ) = ζ(0)(ϕ) +
∫ t

0

ζ(s)
(
L(s,Y )ϕ

)
ds

+
∫ t

0

ζ(s)
(
Li

(s,Y )ϕ
)
dY i(s) (12)

for every ϕ ∈ C2
b (R+,RM ) if all coefficients of

Eqns. (1)–(2) are bounded.

Note that this is a stochastic linear parabolic partial
differential equation because of the form of the operator
L(t,y)ϕ(x).

Let us introduce the normalized law by

µ̃(t)(ϕ) = E0
(
ϕ(X(t))Z(1) | Yt

)
. (13)

The corresponding equation for the densities of the con-
ditional probabilitiesΠ cf. (7) can also be established.
For the case without delay it is called the Kushner-
Stratonovich equation (see, e.g., Pardoux, 1989).

3. Zakai Equation

Theorem 1. Let all coefficients in (1)–(2) be bounded.
Then for everyϕ ∈ C2

b (R+,RM ) the solution of (1)–(2)
satisfies the Zakai equation (12).

Proof. From (1) and (2) we have

dW (t) = dY (t)− h
(
t, Yt(·), Xt(·)

)
dt.

From this we obtain the following relation:∫ t

0

g
(
s, Ys(·, ω), Xs(·, ω)

)
dW (s)

=
∫ t

0

g
(
s, Ys(·, ω), Xs(·, ω)

)
dY (s)

−
∫ t

0

g
((
s, Ys(·, ω), Xs(·, ω)

)
× h

(
s, Ys(·, ω), Xs(·, ω)

))
ds. (14)

Using (14) we get

X(t) = X0 +
∫ t

0

[
b
(
s, Ys(·, ω), Xs(·, ω)

)
− g

(
s, Ys(·, ω), Xs(·, ω)

)
× h

(
s, Ys(·, ω), Xs(·, ω)

)]
ds

+
∫ t

0

f
(
s, Ys(·, ω), Xs(·, ω)

)
dV (s)

+
∫ t

0

g
(
s, Ys(·, ω), Xs(·, ω)

)
dY (s). (15)
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Using the Itô formula for the multidimensional case (see
Liptser and Shiryayev, 1977), we obtain

dϕ(X(t))

=
[
ϕ′x

(
b
(
t, Yt(·), Xt(·)

)
− g

(
t, Yt(·, ω), Xt(·, ω)

)
× h

(
t, Yt(·, ω), Xt(·, ω)

))
+

1
2
ϕ
′′

xx

(
f ◦ f∗

(
t, Yt(·), Xt(·)

)
+ g ◦ g∗

(
t, Yt(·), Xt(·)

))
Big] dt

+ ϕ′xf
(
t, Yt(·), Xt(·)

)
dV (t)

+ ϕ′xg
(
t, Yt(·), Xt(·)

)
dY (t)

= L(t,Yt)ϕ
(
X(t)

)
dt− hi

(
t, Yt(·, ω), Xt(·, ω)

)
×Bi

(t,Yt)
ϕ
(
X(t)

)
dt+Al

(t,Yt)
ϕ
(
X(t)

)
dV l(t)

+Bi
(t,Yt)

ϕ
(
X(t)

)
dY i(t). (16)

Writing the above equation in an integral form we have

ϕ(X(t)) = ϕ(X0) +
∫ t

0

L(s,Ys)ϕ
(
X(s)

)
ds

−
∫ t

0

hi
(
s, Ys(·), Xs(·)

)
Bi

(s,Ys)ϕ
(
X(s)

)
dt

+
∫ t

0

Al
(s,Ys)ϕ

(
X(s)

)
dV l(s)

+
∫ t

0

Bi
(s,Ys)ϕ

(
X(s)

)
dY i(s).

From the Girsanov theorem (see Liptser and
Shiryayev, 1977), we have

Z(t) = 1 +
∫ t

0

Z(s)hi
(
s, Ys(·), Xs(·)

)
dY i(s).

Using once more the Itô formula for the multidimensional
case forf(t, x1, x2) = x1 · x2, we get

Z(t)ϕ(X(t)) = ϕ(X0) +
∫ t

0

Z(s)L(s,Ys)ϕ
(
X(s)

)
ds

+
∫ t

0

Z(s)Al
(s,Ys)ϕ

(
X(s)

)
dV l(s)

+
∫ t

0

Z(s)Li
(s,Ys)ϕ

(
X(s)

)
dY i(s).

Taking the expected valueE0(· | Y) of both the sides and
using Lemma 2.2.4 from (Pardoux, 1989), we have

E0
( ∫ t

0

U(s) dY i(s) | Y
)

=
∫ t

0

E0
(
U(s) | Y

)
dY i(s)

and

E0
( ∫ t

0

U(s) dY j(s) | Y
)

= 0

for t ≥ 0, i = 1, . . . , N , j = 1, . . . ,M and for a pro-
gressively measurable process{U(t), t ≥ 0}. From the
definition of ζ(t)(ϕ) we get

ζ(t)(ϕ) = ζ(0)(ϕ) +
∫ t

0

ζ(s)(L(s,Y )ϕ) ds

+
∫ t

0

ζ(s)(Li
(s,Y )ϕ) dY i(s).

The existence and uniqueness of the solution of (12)
follows, e.g., from the classical result of (Pardoux, 1979;
Bensoussanet al., 1990).

4. Approximation Results of the
Wong-Zakai Type

We recall that for our numerical computations we shall
need the approximation result of the Wong-Zakai type
(Wong and Zakai, 1965) of our filtering problem when the
noise in our Zakai equation is replaced by its polygonal
approximations. In practice we obtain the “real observa-
tions” as a result of measurements of the processY (t).
But then, instead of the observations{Y (t) : s ≤ t}, we
obtain the paths{Yn(t) : s ≤ t}, where the processes
Yn(t) have bounded variations and they are approxima-
tions of Y (t). Using realYn(t) instead ofY (t), we solve
the approximate equations with the operator (11), i.e., we
solve the equations

ζn(t)(ϕ) = ζn(0)(ϕ) +
∫ t

0

ζn(s)(L(s,Yn)ϕ) ds

+
∫ t

0

ζn(s)(Li
(s,Yn)ϕ) dY i

n(s). (17)

So we obtainζn(t)(ϕ) as the solutions and, consequently,
we obtain the densitiespn(t)(ϕ) = dζn(t)(ϕ)/dx.

In our theorem we shall show that ifWn(t) →
W (t) and so Yn(t) → Y (t), in a certain sense, as
n → ∞, then alsoζn(t)(ϕ) → ζ(t)(ϕ) in an appro-
priate sense.

We shall further see that applying the Galerkin tech-
nique we shall obtain from (12) a finite multidimensional
system of stochastic ordinary differential equations with
delay (Ahmed and Radaideh, 1997).

So now we start from the investigation of a stochastic
ordinary differential equation with delay (in a more gen-
eral form, i.e., the stochastic functional differential equa-
tion when the delay is not constant with respect to time).
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Let us restrict our deliberations tot ∈ [0, T ].
For J = (−∞, 0] we introduce some metric spaces
C− = C(J,Rd), C1 = C((−∞, T ],Rd) and C0

2 =
C((−∞, T ],Rm) = Ω̃ of continuous functions. The
spaceC− is endowed with the metric

(f, g)C− =
∞∑

n=1

2−n ‖f − g‖n

1 + ‖f − g‖n

for f, g ∈ C−, ‖h‖n = max−n≤t≤0 h(t).

For further consideration we also setI = [−r, 0],
0 < r < ∞, and we introduce the norm spaces
C− = C(I,Rd), C1 = C([−r, T ],Rd) and C0

2 =
C([−r, T ],Rm) = Ω̃ of continuous functions with the
usual norms of the uniform convergence.

Here d is the dimension of the state space andm is
the dimension of the Wiener process; in the spaceC0

2 all
functions are equal to zero at zero.

Below we denote byX one of the above spaces. Let
F(X ) denote the Borelσ -algebra of the spaceX . It is
obvious thatC0

2 is identical with theσ -algebra generated
by the family of all Borel cylinder sets inX (see Ikeda
and Watanabe, 1991). So we construct the Wiener space
(C0

2 ,B(C0
2 ), Pw), wherePw is a Wiener measure. The

coordinate processB(t, w) = w(t), w ∈ C0
2 , is an m-

dimensional Wiener process.

The smallest Borel algebra that containsB1,B2, . . .
is denoted byB1∨B2∨. . . ; Bu,v(X) denotes the small-
est Borelσ−algebra for which a given stochastic process
X(t) is measurable for everyt ∈ [u, v], and Bu,v(dB)
denotes the smallest Borel algebra for whichB(s)−B(t)
is measurable for every(t, s) with u ≤ t ≤ s ≤ v.

Let Bn(t, w) = wn(t) be the following piecewise
linear approximation ofB(t, w) = w(t):

Bn,p(t, w) = wp

(
k

2n

)
+ 2n

(
t− k

2n

)

×
[
wp

(
k + 1
2n

)
− wp

(
k

2n

)]
(18)

for eachp = 1, . . . ,m and kT/2n ≤ t < (k + 1)T/2n

for k = 0, 1, . . . , 2n − 1.

Now we considerΩ̃ = C0
2 . Let X be a contin-

uous stochastic processX(t, w): [−r, T ] × Ω → Rd,
i.e., X: Ω̃ → X=C1. We take some fixed initial con-
stant stochastic processes forθ ∈ J for i = 1, . . . , d:
Xi(0 + θ, w) = Xi

0(w) = Xn,i
0 (w) = Y i

0 (w).

We also consider operatorsb : C− → Rd, σ :
C− → L(Rm,Rd) (where L(Rm,Rd) is the Banach
space of linear functions fromRm to Rd with the uni-
form operator norm| · |L).

In order to give a meaning to the stochastic integrals
in (19) below, we introduce the following condition:

(A4) for every t ∈ (−∞, T ] the algebraB−∞,t(X) ∨
B−∞,t(dB) is independent ofBt,T (dB).

We consider the following stochastic functional dif-
ferential equation:

Xi(t, w) = Xi
0 +

∫ t

0

bi
(
Xs(·, w)

)
ds

+
m∑

p=1

∫ t

0

σip
(
Xs(·, w)

)
dwp(s) (19)

for i = 1, . . . , d.

Replacing the Wiener process byBn, we obtain the
following approximations of (19):

Xn,i(t, w) =Xn,i
0 +

∫ t

0

bi
(
Xn

s (·, w)
)
ds

+
m∑

p=1

∫ t

0

σip
(
Xn

s (·, w)
)
Ḃn,p(s, w) ds. (20)

We also introduce another stochastic differential equation:

Y i(t, w)

= Y i
0 (w) +

∫ t

0

bi
(
Ys(·, w)

)
ds

+
m∑

p=1

∫ t

0

σip
(
Ys(·, w)

)
dwp(s) (21)

+
1
2

m∑
p=1

d∑
j=1

∫ t

0

D̃jσ
ip

(
Ys(·, w)

)
σjp

(
Ys(·, w)

)
ds

for every i = 1, . . . , d, where the last term on the right-
hand side of (21) is the so-called correction term that is
described as follows (Twardowska, 1991; 1993):

Let Dσip denote the Fréchet derivative fromC− to
L(C−,R) (the necessary assumptions are given below).
From the Riesz theorem it follows that there exists a fam-
ily of measuresµ = µipj

g of bounded variation such that

Dσip(g)(Φ) =
d∑

j=1

∫ 0

−r

Φj(v)µipj
g (dv)

is a directional derivative for anyΦ, g ∈ C−. The mea-
sureµ has the following decomposition:

µ(A) = µ(A ∩ (−∞, 0)) + µ(A ∩ {0})

= µ̃(A) + µ({0})δ0(A),
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where δ0 is the Dirac measure,A ∈ B((−∞, 0)). We
denote byD̃jσ

ip(g) the valueµipj
g ({0}), i.e.,

D̃jσ
ip

(
ξs(·)

)
= µipj

g

(
{0}

)
. (22)

The second integral in (21) is the Itô integral.

Let us introduce the following conditions:

(A5) The initial stochastic processX0 is F0-
measurable andP (|X0(w)| < ∞) = 1, where
|X0(w)| =

∑d
j=1 |Xi

0(w)|, and B−∞,0(X0) is indepen-
dent of B0,T (B);

(A6) For any ϕ, ψ ∈ C− the following Lipschitz
condition is satisfied:∣∣b(ϕ)− b(ψ)

∣∣2 +
∣∣σ(ϕ)− σ(ψ)

∣∣2
L

≤ L1

∫ 0

−∞

∣∣ϕ(θ)− ψ(θ)
∣∣2 dK(θ)

+L2
∣∣ϕ(0)− ψ(0)

∣∣2,
whereK(θ) is a certain bounded measure onJ, andL1,
L2 are some constants;

(A7) For everyϕ, ψ ∈ C− the following growth
condition is satisfied:∣∣b(ϕ)

∣∣2 +
∣∣σ(ϕ)

∣∣2
L
≤ L1

∫ 0

−∞

(
1 + ϕ2(θ)

)
dK(θ)

+L2
(
1 + ϕ2(0)

)
,

whereϕ2(0) =
∑d

j=1 ϕ
2
i (0);

(A8) We have

P
( ∫ T

0

∣∣b(Xs)
∣∣ ds <∞

)
= 1,

P
( ∫ T

0

∣∣σ(Xs)
∣∣2
L

ds <∞
)

= 1;

(A9) Let bi, σip be bounded functions andbi,
σip ∈ C1, for all i = 1, . . . , d, p = 1, . . . ,m.

We say that ad−dimensional continuous stochastic
processX : (−∞, T ] × C0

2 → Rd is astrong solution
of (19) for a given processw(t) if Conditions (A4), (A5)
and (A8) are satisfied and (19) is valid with probability1
for all t ∈ (−∞, T ]. The uniqueness of strong solutions
is understood in the sense of the trajectories:

An absolutely continuous stochastic processXn :
(−∞, T ] × C0

2 → Rd is a solution of (20) if Conditions
(A4) and (A5) are satisfied and (20) is valid with proba-
bility 1 for all t ∈ (−∞, T ].

Notice that our conditions ensure the existence
and uniqueness of the strong solutionY of (21) since

D̃jσ
ip(Yt(·, w)) is a real number (it is a value of a mea-

sure). Moreover, for everyn ∈ N, there exists exactly
one solution of the ordinary differential equation (20).

We have the following approximation theorem of
the Wong-Zakai type for stochastic functional differential
equations (Twardowska, 1991; 1993):

Theorem 2. Let Conditions (A4)–(A7) be satisfied. Let
Bn(t, w) be an approximation of the type (18) of a Wiener
process. We assume thatXn and Y are solutions of (20)
and (21), respectively, with a constant initial stochastic
process. Then Conditions (A4) and (A8) are satisfied and
for everyε > 0 we have

lim
n→∞

P
[

sup
0≤t≤T

∣∣Xn(t, ω)− Y (t, ω)
∣∣
H
> ε

]
= 0. (23)

Remark 1. The proof in (Twardowska, 1991; 1993) is
given for the intervalJ = (−∞, 0]. Instead ofJ =
(−∞, 0], we can considerI = [−r, 0], r > 0. Then,
instead of consideringXi(tni + s)−Xi(tni−1 + s) on the
whole interval of the definition of time, we divide it into
some parts (see Twardowska, 1993) and we estimate each
part separately by expressions converging to zero.

For example, consider the initial equation

dX(t) = b(Xt) dt+ σ(Xt) dw(t),

X0(θ, ω) = η(ω) for θ ∈ J, (24)

where for some constantsb0, b1, σ0, σ1 we define
b, σ : C− → R as follows:

b(ϕ) = b0ϕ(0) + b1ϕ(−r),

σ(ϕ) = σ0ϕ(0) + σ1ϕ(−r).

We note that ϕ(0) = Xt(0) = X(t), ϕ(−r) =
Xt(−r) = X(t− r) and

dX(t) =
(
b0X(t) + b1X(t− r)

)
dt

+
(
σ0X(t) + σ1X(t− r)

)
dw(t), (25)

X0 = η.

Then the limit equation (21) takes on the form

dY (t) =
(
b0Y (t) + b1Y (t− r)

)
dt(

σ0Y (t) + σ1Y (t− r)
)
dw(t) (26)

+
1
2
σ0

(
σ0Y (t) + σ1Y (t− r)

)
dt,

Y0 = η

becauseσ0X(t) is the only term for which the support of
the measure contains zero. Thereforeµ({0}) = σ0.
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Now we shall come back to our Zakai stochastic lin-
ear parabolic partial differential equation (11). We have
the following approximation theorem of the Wong-Zakai
type (Twardowska and Pasławska-Południak, 2003).

Theorem 3. Let Conditions (A4)–(A7) be satisfied. Let
Bn(t, w) be an approximation of the type (18) of a Wiener
process. We assume thatζ and ζn are solutions of (12)
and (17), respectively, with a constant initial stochastic
process, and also

ζ̃(t)(ϕ) = ζ̃(0)(ϕ) +
∫ t

0

ζ̃(s)(L(s,Yn)ϕ) ds

+
∫ t

0

ζ̃(s)(Li
(s,Yn)ϕ) dY i(s)

+
1
2

∫ t

0

ζ̃(s)(D̃Li
(s,Yn)ϕ)(Li

(s,Yn)ϕ) ds, (27)

where the last term is the so-called correction term of the
form (22). Then for everyt ≥ 0 we have

lim
n→∞

E
∣∣ζn(t, ω)(ϕ)− ζ̃(t, ω)(ϕ)

∣∣2 = 0. (28)

Proof. For a proof of the Wong-Zakai type theorem for
stochastic partial differential equations in Hilbert spaces,
without delay, see (Twardowska, 1995). The convergence
is of the type (28). The case of the nonlinear filter-
ing equation (12) without delay is covered by the theo-
rem which we can be found in the paper (Pardoux, 1975,
pp. 130–131). Now the technique of proving the Wong-
Zakai theorem with delay can be copied from (Twar-
dowska, 1991; 1993). We get the convergence of the type
limn→∞E(supt |ζn(t, ω)(ϕ)− ζ̃(t, ω)(ϕ)|2) = 0 but the
convergence in (28) is weaker, so we prove (28) in our the-
orem.

5. Approximation Result for the Zakai
Equation

From the numerical point of view, it is convenient to con-
sider the Zakai equation (12) in the Stratonovich form
(Dawidowicz and Twardowska, 1995), i.e., subtracting the
correction term appearing in (27). Then, after the Wong-
Zakai approximation, we will obtain a limit equation with-
out a correction term.

First, to obtain a system of stochastic ordinary dif-
ferential equations from our Zakai equation, we apply
the Galerkin method. We follow the idea of Ahmed and
Radaideh (1997, §3.3). Therefore, using the Galerkin
method based on the Fourier coefficients{ψN

i } and pro-
jecting the Zakai equation onto the space spanned by
{wi, 1 ≤ i ≤ N} (see Ahmed and Radaideh, 1997, §3.2,

Eqn. (8)) we can approximate the solution of (12) in the
form

ζN (t, x) =
N∑

i=1

ζN (t)wi(t)

and then we obtain a system of stochastic ordinary dif-
ferential equations in a matrix form. In our case it is a
system of linear stochastic ordinary differential equations
with delay, so we can use the theory from §4.

6. Numerical Experiments

We start with the following filtering problem:

dX(t) =
[
b0X

2(t) + b1X
2(t− 1)

]
dt

+
[
σ0X(t) + σ1X

2(t− 1)
]
dW (t), (29a)

dY (t) =
[
a0X(t) + a1X

2(t− 1)
]
dt+ dW (t), (29b)

where a0, a1 b0, b1, σ0 and σ1 are some constants,
X(t) ∈ R, Y (t) ∈ R andW (t) is the one-dimensional
Wiener process. We transform this problem to the fol-
lowing stochastic partial differential equation of the Zakai
type (12):

ϕt =
[1
2
σ2

0X
2(t) + σ0σ1X(t)X2(t− 1)

+
1
2
σ2

1X
4(t− 1)

]
ϕ
′′

xx

+
[
b0X

2(t) + b1X
2(t− 1)

]
ϕ
′

x

+
[
a2
0X

2(t) + 2a0a1X(t)X2(t− 1)

+ a2
1X

4(t− 1)
]
ϕ

+
[
a0X(t) + a1X

2(t− 1)
]
dW (t) (30)

and the correction term is of the form (cf. (22))

1
2
a0

[
a0X(t) + a1X

2(t− 1)
]
dt.

After discretization (see §5 and Ahmed and Radaideh,
1997), we can restrict our analysis to the following
stochastic ordinary differential equation with delay on the
interval [0, 1]:

dX(t) =
(
aX(t) + bX2(t) + c

)
dt

+
(
a0X(t) + a1

)
dW (t), (31)

X0(θ) = X(0 + θ) = 1 for θ ∈ [−1, 0],

X(t− 1) = 1 on [0, 1] as t− 1 ∈ [−1, 0],
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where

a = σ0σ1 + 2a0a1,

b =
1
2
σ2

0 + b0 + a0,

c =
1
2
σ2

1 + b1 + a2
1.

We solve this equation with the following numerical meth-
ods: Euler, Milshtein and Runge-Kutta schemes (Kloe-
den and Platen, 1992; Sobczyk, 1991). But for our case
of stochastic differential equations with delay, we mod-
ify the Milshtein scheme. It is well known that the Mil-
shtein scheme can be obtained as the Euler scheme for the
Stratonovich version of (31) using the relation for the tran-
sition between the Itô and Stratonovich integrals (Dawid-
owicz and Twardowska, 1995).

Below we present some numerical computations to
confirm our theoretical result that the correction term
plays a crucial role in numerical schemes, too.

Consider (31) witha0, a1, b0, b1, σ0 andσ1 given
by

a0 = 1, a1 =
1
2
, b0 = −2, b1 =

1
2
,

σ0 =
√

2, σ1 = −
√

2
4
.

Then b = 1
2σ

2
0 + b0 + a0 = 0. Equation (31) without the

correction term has the following form:

dX(t) =
(

1
2
X(t) +

13
16

)
dt

+ (X(t) +
1
2
) dW (t). (32)

Equation (31) with the correction term is

dX(t) =
9
16

dt+
(
X(t) +

1
2
)
dW (t). (33)

First, we obtain an exact analytical formula fort ∈
[0, 1] in the so-called step method (see §4). We use the
form of the solution derived for the linear equation (4.9),
pp. 119-120 in the book by Kloeden and Platen (1992),
i.e., for Eqn. (31) withb = 0. We have

X(t) = Φ(t)
[
X(0) + (c− a0a1)

∫ t

0

Φ(s)−1 ds

+ a1

∫ t

0

Φ(s)−1 dW (s)
]

with the fundamental solution

Φ(t) = exp
[
(a− 1

2
a2
0)t+ a0W (t)

]
.

In our case

Φ(t) = exp
(
W (t)

)
and X(0) = 1.

So we obtain the following solution to (31) fort ∈ [0, 1]:

X(t) = exp
(
W (t)

)(
1 +

5
16

∫ t

0

exp
(
−W (s)

)
ds

+
1
2

∫ t

0

exp
(
−W (s)

)
ds

)
. (34)

We recall that in the step method we setX(t− 1) =
1 for t ∈ [0, 1], so (t − 1) ∈ [−1, 0]. We have also used
the following formula (Kloeden and Platen, 1992, p. 101):∫ t

0

exp
(
−W (s)

)
dW (s)

= U
(
W (t)

)
− U

(
W (0)

)
− 1

2

∫ t

0

h′(W (s)) ds,

where

h(x) = exp(−x), U ′(x) = h(x).

This solution is used to test and compare numerical meth-
ods in this paper. We solve the stochastic differential
equation numerically by the simulation of the approxima-
tion of discrete trajectories in time. To construct a solution
for a given discretizationt0 = 0 < t1 < · · · < tN = T
we used the Euler and Milshtein methods. We modified
the recursive formulae for the Milshtein method taking
into consideration the delayed argument.

The Euler approximation for (29) is generated recur-
sively by

Yn+1 = Yn + (b0Yn + b1Yn−k)∆n

+ (σ0Yn + σ1Yn−k)∆Wn (35)

for n = k + 1, k + 2, . . . , N − 1 with initial values
Y0 = Y1 = · · · = Yk = 1 and ∆n = T/N (equidistant
step size),k = 1/∆n (an integer parameter related to the
delay), ∆Wn = Wtn+1 −Wtn .

The random variables∆Wn are independently
N (0, 1)-normally distributed random variables. We have
generated such random variables in simulations from in-
dependent and uniformly distributed random variables on
[0,1] which are provided by a pseudorandom number gen-
erator on a computer. The generation of the sample paths
of the processW (t) may be realized byW (0) = 0,
W (t) =

√
∆n(ξ1 + · · · + ξ t

∆n
), where ξi are indepen-

dent and identicallyN (0, 1)-normally distributed random
variables.
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The Milhstein approximation scheme has the modi-
fied form (see Kloeden and Platen, 1992) for the correc-
tion term

Yn+1 = Yn + (b0Yn + b1Yn−k)∆n

+ (σ0Yn + σ1Yn−k)∆Wn

+
1
2
σ0(σ0Yn + σ1Yn−k)(∆W 2

n −∆n). (36)

The Runge-Kutta approximation scheme (Kloeden and
Platen, 1992) is of the form

Yn+1 = Yn + (b0Yn + b1Yn−k)∆n

+ (σ0Yn + σ1Yn−k)∆Wn

+
1
2
σ0(σ0Γ̃n − σ0Yn + σ1Yn−k)

× (∆W 2
n −∆n)∆−1/2

n , (37)

where Γ̃n = Yn + b∆1/2
n .

We say that the approximating processY converges
in the strong sense to the processX with the orderγ ∈
(0,∞] if there exist some finite constantsK and δ0 ≥ 0
such that

E
(
|XT − YN |

)
Kδγ

for any time discretization with the maximum step size
δ ∈ (0, δ0).

In (Kloeden and Platen, 1992) it is proved that the
Euler scheme has the strong orderγ = 0.5 and the Mil-
shtein scheme converges with the strong orderγ = 1
(under some regularity conditions).

Our computations were performed using the MAT-
LAB package. Figure 1 summarizes graphically the nu-
merical experiment with Eqn. (33). It compares simulated
trajectories of the examined Euler, Milhstein and Runge-
Kutta schemes with the exact solution (34) of (32) for
the same sample path of the Wiener process. The solid
line represents the exact solution, the dotted line the Eu-
ler method, the dashed line the Milshtein method and the
dotted-dashed line the Runge-Kutta method. In Fig. 2 we
solve Eqn. (32) without the corretion term and we com-
pare it with the exact solution (34) of (32). We can ob-
serve that the simulated trajectories in Fig. 1 are close to
the exact solution because in (33) the correction term oc-
curs. The results with the correction term in Fig. 1 are
better.
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