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APPROXIMATION OF THE ZAKAI EQUATION IN A NONLINEAR
FILTERING PROBLEM WITH DELAY

KRYSTYNA TWARDOWSKA*, ToMASZ MARNIK **
MoONIKA PASEAWSKA-POLUDNIAK**

* Faculty of Mathematics and Information Science
Warsaw University of Technology
Plac Politechniki 1, 00-661 Warsaw, Poland
e-mail:tward@alpha.mini.pw.edu.pl

** Department of Mathematics
Technical University of Rzeszow
ul. W. Pola 2, 35-959 Rzeszéw, Poland
e-mail:ma_poludniak@poczta.onet.pl

A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional
probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering
problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are
illustrated by a numerical example.
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1. Introduction ing a spectral approach, by Crisah al. (1998) using

a branching particle method, by Cohen de Lara (1998)
We study a nonlinear filtering problem with delay using using invariance group techniques, by Elliot and Moore
an approximation result of the Wong-Zakai type for the (1998) in Hilbert spaces, and by Atat al. (1999) using
corresponding Zakai equation with delay. The nonlin- the Feynman-Kac formula.
ear filtering problem was considered in the literature, e.g., In our study we apply the approximation problem
by Bucy (1965), Kushner (1967), Zakai (1969), Liptser of the Wong-Zakai type for stochastic partial differential
and Shiryayev (1977), Pardoux (1979; 1989), Kallianpur equations. It was considered by Gyongy (1989), Gyongy
(1980), and others. Their studies concentrated mainly onand Prohle (1990), Brzezniak and Flandoli (1995), and
finding an equation for the conditional probability density Twardowska (1995). They showed that if in the Zakai
of an unobserved process given an observed path. It isequation we replace the disturbance by its good approxi-
known that the conditional expectation gives the best es-mations, then the approximations converge to a limit equa-
timate in the mean square sense. The conditional densitytion with the so-called Ité correction term. The above
can be computed by two methods. The first method givesproblems were considered without delays.
the so-called Kushner equation (Kushner, 1967), which is The well-known result for the existence and unique-
a nonlinear stochastic partial differential equation. The ass of a filtering problem with delays but in the lin-
second method gives the so-called Zakai equation (Bucy,ggr case belongs to Kolmanovsky (1973), see also (Kol-

1965; Zakai, 1969), which is a linear stochastic partial manovskyet al, 2002). The approximation result is not
differential equation for the unnormalized density. There- ~nsidered.

fore, the problem of constructing solutions of the Zakai
equation is more important for practical applications be-
cause of the linearity.

In this paper, the Zakai equation is a linear stochas-
tic parabolic partial differential equation with delay. It
corresponds to our nonlinear filtering problem with de-

In recent years, the Zakai equation has been exam-lay. We prove the existence and unigqueness theorem for
ined by many authors, e.g., by Bensouseaal. (1990) this equation. Also, we establish the approximation result
using a splitting method, by Lototskgt al. (1997) us- using the correction term derived in (Twardowska, 1991;
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1993; 1995) in the approximation theorems of the Wong- Let {(X(t),Y(¢)),t € [0,00)} be the solution to
Zakai type. the following system of stochastic equations with delay:

An important part of the present paper contains a nu-
merical example showing that a good stability result is
achieved because in the approximation sequence of equa- .
tions we have added the appropriate correction term for ) )
stochastic linear differential equations with delay. Us- +/0 £, Yo (,0), Xo(,0) AV (5)
ing the Galerkin techniqgue and some numerical schemes .

(Kloeden and Platen, 1992; Sobczyk, 1991) we transform +/ 9(s5,Ys (), Xs (-, w)) AW (s), (1)
the Zakai equation to a simpler finite-multidimensional 0

form. We solve this equation without any correction term +

and with a correction term in the approximation sequence. Y (t,w) = Yy(w) + / h(s,Ys(w), Xs(w)) ds

It is evident that the correction term has a crucial role and 0

improves our approximation results. +W(b), )

X(tvw) = XO(W) +A b(s,}/;(~,w),X5(',w))dS

In the paper by Ahmed and Radaideh (1997), a nu- where X,(w) is an initial constant random vari-
merical method for the approximation of a nonlinear fil- apje independent of the standard Wiener processes
tering problem was developed. Using the Galerkin tech- {(V(t),W(t)),t € [0,00)} with values inRM x RV,
nique, the solution of Zakai's equation was approximated Yo(w) = 0. Moreover,b, f, g and h are measurable map-
by a sequence of nonstandard basis functions given prings fromR.x C(I,RN) x C(I,RM) with values
a parameterized family of Gaussian densities. We takejy RM RM RMxN gndRY, respectively. We assume
some ideas from that paper. Other numerical techniquesthat they satisfy Lipschitz and growth conditions (see §4
for the Zakai equation can be found in the papers by Benespe|ow). Then the system of equations (1)=(2) has exactly
(1981), Elliot and Glowski (1989), Florchinger and Le  one solution. The uniqueness is understood in the sense

Gland (1995), and It6 (1996). of trajectories. We shall calK (¢) the state and’(¢) the
observation process.
We define
2. Definitions and Notation a(t,y,z) = fo f*(t,y,x) +gog*(t,y,z) (3)

for t € Ry, y € C(I,RN) and z € C(I,RM), where
f* and g* are the transpose matrices pfand g, respec-
tively. Moreover,

We consider the probability spac?, F, Ficjo,c), P)
such that it is the cannonical space of a process
{(X(#),Y(t),t€]0,00)} € RM x RN, where

Q=0 x 0, Z(t) = exp ( / (b, Vo), X () dY(s,m)

O = CR,RM), Qy=C(R,,RY),

2
] ds (&)

1 t
_7/ ‘h(san(aw)7Xs(7w))
2 0
for ¢t € [0, 7).
We make the following assumptions:

X(t,w) =wi(t), Y(t,w)=wslt),
Fi = oc{(X(s),Y(s)), 0<s<t}UN,

(Al) Fort > 0, n € N and for a measurable function

F is a o-algebra of Borel sets of2 U N, whereN is a
p: Qo — [0,1] such that

class of subsets with th&-measure equal to zerd; is

the probability law of the procesgX,Y), C(R,,RM) p(y) =0 if sup |y(s)|>n,
is the class of continuous functions, a6g(R, , R*) de- 0<t<s
notes the class of bounded continuous functions.
we have
For the stochastic procesk (¢,w) and for a fixed t )
t € [0,00) we define E[p(Y)/ |h(s,Ys(-,w), X (-, w))]| ds} < 0.
0
Xi(O,w)=X(t+0,w), 0€l=][-r0]. (A2) E[Z(t)~'] =1 for eacht > 0.

(A3) The coefficients b, f,g and h are uniformly

Therefore X, (-,w) denotes the segment of the trajectory bounded by a constant

X(,w) on [t —r,t].
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Having Assumption (A2), we define a new probabil-
ity law P° on (Q,F) by

aP°|

AP s ©)

Zt),

We know (Pardoux, 1989, p. 13) that for each> 0,
¢ € L'(Q, F, P) we then havet Z(t) € L*(Q, F;, P°)

and
_EYEZ(1) | V)
EOZ(t) | )
where); = o{Y(s): 0 < s <t}, E° being the condi-
tional expectation operator undét®.
Let M, (RM) denote the space of finite measures

on RM. We define the processe&(t),t > 0} and
{I1(¢),t > 0} with values in M (RM) by

E(& [ )

() (@) = E°(p(X (1) Z(t) | V) (6)
and
() (p) = E(p(X (1)) | V1) ()
for t > 0, and ¢ € Cy(R.,RM). The space

Cy(Ry,RM) is endowed with the topology of the uni-
form convergence.

Let us remark that{(0) = II(0) = law of X(0).
We introduce some families of partial differential opera-
tors indexed by(t,y) € Ry x Qs for ¢ € CZ(R;,RM),
ye C(I,RY), z € C(I,RM):

1 .. 32¢
— Zq¥
Layelr) = 507ty 2) 5 5 (@)
¥ty ) 2 () ®
y Y, O y
Al, o) = fU(ty x)a—@(x) (9)
(t,y) P ) gl )
i i Oy
Bl ye(@) =g (t,y@)W(m) (10)
X
and
Liy (@) = W (ty, 2)p(@) + By ye(z) (1)

fori=1,...,N andj =1,..., M. We have used here
the convention of repeated indices summation.

Now we are in a position to formulate the so-called

Zakai equation in 83 (see Theorem 2.2.3 in (Pardoux,
1989; Chaleyat-Maurel, 1990) for the case without delay):

CB)() = CO)(p) + / C(3) (Lo vy ) ds

t . .
T /0 ) (Lisyyp) AY(s)  (12)

& ac

for every ¢ € CZ(R4,RM) if all coefficients of
Egns. (1)—(2) are bounded.

Note that this is a stochastic linear parabolic partial
differential equation because of the form of the operator

Lty ().
Let us introduce the normalized law by
A1) (p) = E°(p(X()Z(1) | V1) (13)
The corresponding equation for the densities of the con-
ditional probabilitiesII cf. (7) can also be established.

For the case without delay it is called the Kushner-
Stratonovich equation (see, e.g., Pardoux, 1989).

3. Zakai Equation

Theorem 1. Let all coefficients in (1)—(2) be bounded.
Then for everyy € CZ(R,,RM) the solution of (1)—(2)
satisfies the Zakai equation (12).

Proof. From (1) and (2) we have

AW (t)

dY (t) — h(t, Y;(-), Xo(+))dt.

From this we obtain the following relation:
/0g(s,YS(o,w),Xs(~,w))dW(s)

:/O 9(5,Ya (1), Xa(w)) Y (s)

7/ g((s7}/;('aw)aXs(’7w))

0
X h(s,)@(~,w),Xs(~,w))) ds. (14)
Using (14) we get
X(t) = X +/0 [b(s,Y’s(.,w),Xs(.7w))

- 9(3’ }/;("w)’XS('7w))

X h(s,Y;(~,w),Xs(-,w))} ds

+/0 f(SaY;( ,W),XS(',W)) dV(S)
+ g(s,Ys( ,w),XS(-,w)) dY (s). (15)

0
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Using the It6 formula for the multidimensional case (see and

Liptser and Shiryayev, 1977), we obtain
dep(X (2))

= [Lpfp (b(t7Y;f<>7Xt()) - g(t7 }/t("w)’Xt("w))

X h<taYYt('7w)7Xt('7w))>

1

+ 58 (£ o £ (6 Y00, X0)

+g0g"(tYi(), X:()) ) Big] dt
+ L (6, Ya (), Xe() AV (1)
+9,9(1 Vi (), Xe () AY (1)
= Ly e(X(0) dt = b (1, Y w), X (-, w))

X Bft7Yt)‘p( (t)) dt + A(t Y ¥ (X (1)) avi(t)

+ Bly vy (X (1) dY' (). (16)
Writing the above equation in an integral form we have

S(X(1) = p(Xo) + / Loy (X (s)) ds

—/O W (s, Ya(-), Xs () Bl, vy 0 (X (s)) dt

+ / ALy (X (s)) dVE(s)

+/0 B, y.p(X(s)) dY'(s).

From the Girsanov theorem (see Liptser and

Shiryayev, 1977), we have

Z(t) =1 +/0 Z(s)h' (s, Ys(-), Xs(-)) dY(s).

Using once more the It6 formula for the multidimensional

case forf(t,z1,x2) = x1 - 2, We get

Z()p(X (1) = ¢(Xo) + / 2(5)Lay,y 0 (X(s)) ds

+ / 2(5) Al y. o (X (5)) dVY(s)
0

+/0 Z(s)Li, v,y 0 (X (5)) dY"(s).

Taking the expected valug®(- | ) of both the sides and
using Lemma 2.2.4 from (Pardoux, 1989), we have

EO(/Ot U(s)dY'i(s) | y) - /Ot E°(U(s) | Y) dY'i(s)

EO(/OtU(s) dyd(s) | y) -

fort >0,¢=1,...,N, 5 =1,...,M and for a pro-
gressively measurable proce§§ (t),t > 0}. From the
definition of {(¢)(¢) we get

CB)(p) = CO)(p) + / C()(Lioyyp) ds

4 / ()L ) Y (s). .

The existence and uniqueness of the solution of (12)
follows, e.g., from the classical result of (Pardoux, 1979;
Bensoussast al,, 1990).

4. Approximation Results of the
Wong-Zakai Type

We recall that for our numerical computations we shall
need the approximation result of the Wong-Zakai type
(Wong and Zakai, 1965) of our filtering problem when the
noise in our Zakai equation is replaced by its polygonal
approximations. In practice we obtain the “real observa-
tions” as a result of measurements of the prockgs).

But then, instead of the observatiof¥ (¢) : s < t}, we
obtain the paths{Y,,(¢) : s < t}, where the processes
Y,.(t) have bounded variations and they are approxima-
tions of Y'(¢). Using realY,,(¢) instead ofY (¢), we solve

the approximate equations with the operator (11), i.e., we
solve the equations

Ca®)(2) = Ga(0)() + / (o) Loy, ) ds

t . .
4 / Ca(3) Ly @) AYi(s). (A7)

So we obtain(, (t)(¢) as the solutions and, consequently,
we obtain the densities,, (t)(¢) = d¢,.(¢)(p)/dz.

In our theorem we shall show that W, (t) —
W(t) and soY,(t) — Y(¢), in a certain sense, as
n — oo, then also(,(t)(¢) — ((t)(y) in an appro-
priate sense.

We shall further see that applying the Galerkin tech-
nique we shall obtain from (12) a finite multidimensional
system of stochastic ordinary differential equations with
delay (Ahmed and Radaideh, 1997).

So now we start from the investigation of a stochastic
ordinary differential equation with delay (in a more gen-
eral form, i.e., the stochastic functional differential equa-
tion when the delay is not constant with respect to time).
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Let us restrict our deliberations to < [0,7]. In order to give a meaning to the stochastic integrals
For J = (—o0,0] we introduce some metric spaces in (19) below, we introduce the following condition:

C_ = C(J,RY), C1 = C((~00,T],R?) and C9 = Ad) f T the aloebram X
C((=o00,T]),R™) = Q of continuous functions. The (A4) g everé/Bt Gis(ir:(;)gveglder?t ;%e rzB‘o"’t( )V
spaceC_ is endowed with the metric —o0.t(dB) P v (dB).

We consider the following stochastic functional dif-
Z 9—n Mf=glla ferential equation:
T+ = glln

n=1

t
X(t,w :Xi—|—/ b (X(-,w)) ds
for f,g € C_, ||h|l, = max_,<i<o h(1). (t,w) S (Xs(w)
For further consideration we also sét= [—r,0],

0 < r < oo, and we introduce the norm spaces +Z/ dw”( ) (19)
C. = C(,RY, ¢; = C([-r,T],RY) and C9 =
C([-r,T],R™) = Q of continuous functions with the .

. fori=1,...,d.
usual norms of the uniform convergence. _ . _
Replacing the Wiener process [y, we obtain the

Here d is the dimension of the state space andis following approximations of (19):

the dimension of the Wiener process; in the spateall
functions are equal to zero at zero. oy o t b (xn q
n, If — n,t .

Below we denote by one of the above spaces. Let (t,w) 0 +/0 (X3 (o w)) ds
F(X) denote the Boreb -algebra of the space’’. It is
obvious tha_ltCS is identical wi_th theo -alg_ebra generated +Z/ P(XP(- Bn,p(s w) ds. (20)
by the family of all Borel cylinder sets it (see lkeda
and Watanabe, 1991). So we construct the Wiener space
(C9,B(CY), P¥), where P¥ is a Wiener measure. The We also introduce another stochastic differential equation:

coordinate proces®(t, w) = w(t), w € CY, is an m-

dimensional Wiener process. Yt w)
The smallest Borel algebra that contaiBs, B, . .. ; t ;
is denoted byB; VB, V. ..; B,.,(X) denotes the small- =Yg (w) +/O b (Ys(,w)) ds
est Borelo—algebra for which a given stochastic process
X (t) is measurable for every € [u,v], and B, ,(dB)
denotes the smallest Borel algebra for whiBlis) — B(¢) + Z/ ) dw?(s) (21)
is measurable for everit, s) with v <t < s <.
Let B"(t,w) = w,(t) be the following piecewise
linear approximation ofB (¢, w) = w(t): +5 ZZ/ Do ,w))o?? (Yy(-,w))ds
p=1j=1
k k _ .
B"P(t,w) = wP o +2"(t— on for everyi = 1,...,d, where the last term on the right-

hand side of (21) is the so-called correction term that is
ka1l k described as follows (Twardowska, 1991; 1993).
p + D
x |w —wh | oo (18)

on Let Do denote the Fréchet derivative froGL to
L(C_,R) (the necessary assumptions are given below).

foreachp =1,...,m and kT/2" <t < (k+1)T/2" From the Riesz theorem it follows that there exists a fam-

for k=0,1,...,2" — 1. ily of measuresy = ugpj of bounded variation such that
Now we considerQ = CJ. Let X be a contin-

uous stochastic proces¥ (¢, w): [-r,T] x @ — R<, Do (g Z/ wy (dv)

ie.,, X: Q@ — X=C,. We take some fixed initial con- —r

stant stochastic processes fore J for i = 1,...,d:

X0+ 0,w) = Xj(w) = X5 (w) = Y§(w). is a directional derivative for anyg, g € C_. The mea-

We also consider operatois: €. — R%, o sure 1 has the following decomposition:

C_ — L(R™ R?) (where L(R™,R?) is the Banach A) = (AN (—00.0)) + u(AN {0
space of linear functions fronR™ to R? with the uni- wld) = ul (=00, 0)) +ul o)
form operator norm - |1). = p(A) + p({0})do(A),
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where §; is the Dirac measured € B((—o0,0)). We
denote byD;0?(g) the valuen?’ ({0}), i.e.,

Do (&) = ug” ({0}). (22)
The second integral in (21) is the It6 integral.

Let us introduce the following conditions:

(A5) The initial stochastic processX, is Fo-
measurable andP(|Xy(w)] < oo) = 1, where
| Xo(w)| = X0, | X§(w)], and B_ o(Xo) is indepen-
dent of By r(B);

(A6) For any ¢, ¥ € C_ the following Lipschitz
condition is satisfied:

() — b()|” + | () — ()]

0 2
<2 [ Jelo) - wO) aK(6)

2
+L2|p(0) = (0)[",
where K () is a certain bounded measure gnand L!,
L? are some constants;

(A7) For every ¢, i € C_ the following growth
condition is satisfied:

0

lb()|* + |o(p)]] < Ll/ (1+¢%(0)) dK(0)

—0o0

+L*(1 4 ¢%(0)),

where 2(0) = Y9, 2(0);
(A8) We have

P(/OT\b(XS)\ds<oo) =1,

P(/OT|U(XS)’2Lds<oo) =1

(A9) Let b*, ¢ be bounded functions and’,
o?ecCt foralli=1,....d, p=1,...,m.

We say that ad—dimensional continuous stochastic

processX : (—oo,T] x C9 — R< isastrong solution
of (19) for a given process(t) if Conditions (A4), (A5)
and (A8) are satisfied and (19) is valid with probability

for all ¢t € (—oo,T]. The uniqueness of strong solutions

is understood in the sense of the trajectories:
An absolutely continuous stochastic process :

(—00,T] x C9 — R? is a solution of (20) if Conditions
(A4) and (A5) are satisfied and (20) is valid with proba-

bility 1 forall ¢ € (—o0,T].

D;o™®(Y,(-,w)) is a real number (it is a value of a mea-
sure). Moreover, for every, € N, there exists exactly
one solution of the ordinary differential equation (20).

We have the following approximation theorem of
the Wong-Zakai type for stochastic functional differential
equations (Twardowska, 1991; 1993):

Theorem 2. Let Conditions (A4)—(A7) be satisfied. Let
B™(t,w) be an approximation of the type (18) of a Wiener
process. We assume that" and Y are solutions of (20)
and (21), respectively, with a constant initial stochastic
process. Then Conditions (A4) and (A8) are satisfied and
for everye > 0 we have

lim P[ sup ‘X"(t,w)—Y(t,w)’H >5} =0. (23)

n—oo OStST

Remark 1. The proof in (Twardowska, 1991; 1993) is
given for the intervalJ = (—o0,0]. Instead of J =
(—o0,0], we can consided = [—r,0], » > 0. Then,
instead of considering(* (¢ 4+ s) — X*(t?_, +s) onthe
whole interval of the definition of time, we divide it into
some parts (see Twardowska, 1993) and we estimate each
part separately by expressions converging to zero.

For example, consider the initial equation
dX(t) = b(X;) dt + o(Xy) dw(t),
Xo(0,w) =n(w) for 6¢€J, (24)

where for some constants,, b, o9, o1 we define
b,o: C_ — R as follows:

b(p) = bow(0) + brp(—7),
a(p) = o0p(0) + o1p(—7).

We note thatp(0) = X,(0) = X(t), o(-r) =
Xi(—r)=X(t—r) and

dX(t) = (boX () + b1 X(t —r))dt
+ (00X (t) + o1 X(t — 1)) dw(t), (25)
Xo=1.
Then the limit equation (21) takes on the form
Ay (t) = (boY (t) + b1 Y (t — 7)) dt

(oY (t) + o1 Y (¢t — 7)) dw(t) (26)

1
—+ 500 (0'0Y(t) + 01Y(t — ’l")) dt,

Yo=n1n

Notice that our conditions ensure the existence becausery X (¢) is the only term for which the support of

and uniqueness of the strong solutidh of (21) since

the measure contains zero. Therefard0}) = oyp.
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Now we shall come back to our Zakai stochastic lin- Egn. (8)) we can approximate the solution of (12) in the
ear parabolic partial differential equation (11). We have form
the following approximation theorem of the Wong-Zakai N N N
type (Twardowska and Pastawska-Potudniak, 2003). ¢M(tx) =) M (wilt)

i=1

Theorem 3. Let Conditions (A4)—(A7) be satisfied. Let
B™(t,w) be an approximation of the type (18) of a Wiener
process. We assume thatand ¢,, are solutions of (12)
and (17), respectively, with a constant initial stochastic
process, and also

and then we obtain a system of stochastic ordinary dif-
ferential equations in a matrix form. In our case it is a
system of linear stochastic ordinary differential equations
with delay, so we can use the theory from §4.

() = S0+ [ Ee) e, o) ds 6. Numerical Experiments

t ; ; We start with the following filtering problem:
+ [ QL) ()
0 AX (t) = [boX2() + by X2(t — 1)] dt

+ % /0 C(s) (DL, y, ) (Lis v,y 0) ds, (27) + [00X () + o X2(t — 1) AW (1), (29a)

where the last term is the so-called correction term of the ~ dY (t) = [ao X (£) + a1 X?(t — 1)] dt + dW (¢), (29b)

form (22). Then for every > 0 we have
where ag,a1 bg,b1,00 and o1 are some constants,

lim E|Cu(t,w) () — (¢, w)(¢)|2 —0. (28) X_(t) €ER, Y(t) e Rand W(t) is the one-dimensional
n—oo Wiener process. We transform this problem to the fol-

lowing stochastic partial differential equation of the Zakai
Proof. For a proof of the Wong-Zakai type theorem for type (12):

stochastic partial differential equations in Hilbert spaces,
without delay, see (Twardowska, 1995). The convergence
is of the type (28). The case of the nonlinear filter-
ing equation (12) without delay is covered by the theo-

1
br = [5OBXA () + 000 X (Xt~ 1)

rem which we can be found in the paper (Pardoux, 1975, + %a%X‘*(t — 1)} cp;;x

pp. 130-131). Now the technique of proving the Wong-

Zakai theorem with delay can be copied from (Twar- 4 [bOXQ(t) + b X2(t — 1)]%
dowska, 1991; 1993). We get the convergence of the type

limy, o E(sup; |G (t, w) () — C(t,w)(9)]?) = 0 butthe + [ag X3 (t) + 2a0a1 X (£) X>(t — 1)
convergence in (28) is weaker, so we prove (28) in our the- 9 w4

orem. ®m +ar XAt —1)]p

+ [aoX (t) + a1 X?(t — 1) dW(t)  (30)
5. Approximation Result for the Zakai

. and the correction term is of the form (cf. (22))
Equation

From the numerical point of view, it is convenient to con- %ao l[ao X (t) + a X2 (t — 1)] dt.

sider the Zakai equation (12) in the Stratonovich form

(Dawidowicz and Twardowska, 1995), i.e., subtracting the After discretization (see §5 and Ahmed and Radaideh,
correction term appearing in (27). Then, after the Wong- 1997), we can restrict our analysis to the following
Zakai approximation, we will obtain a limit equation with-  stochastic ordinary differential equation with delay on the

out a correction term. interval [0, 1]:
First, to obtain a system of stochastic ordinary dif- )
ferential equations from our Zakai equation, we apply dX(t) = (aX(t) +bX*(t) +c)dt
the Galerkin method. We follow the idea of Ahmed and
Radaideh (1997, §3.3). Therefore, using the Galerkin +(a0X (1) + 1) AW (0), (31)
method based on the Fourier coefficiedts)¥ } and pro- Xo(0) = X(0+6) =1 for 0 € [~1,0],

jecting the Zakai equation onto the space spanned by
{w;;1 <i < N} (see Ahmed and Radaideh, 1997, §3.2, X(t—-1)=1on]0,1] ast—1¢€[-1,0],
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where In our case
a = 0901 + 2apa1, ®(t) =exp (W(t)) and X(0)=1.
b= %0’3 + bo + ao, So we obtain the following solution to (31) fare [0, 1]:
c= %O’% + by + a3, X(t) = exp (W(t)) (1 + % /Ot €xp ( - W(S)) ds

We solve this equation with the following numerical meth- 1 [t

ods: Euler, Milshtein and Runge-Kutta schemes (Kloe- +§/ exp (— W(s)) ds). (34)
den and Platen, 1992; Sobczyk, 1991). But for our case 0

of stochastic differential equations with delay, we mod- _

ify the Milshtein scheme. It is well known that the Mil- We recall that in the step method we s€(t — 1) =
shtein scheme can be obtained as the Euler scheme for thé for ¢ € [0,1], s0 (¢ — 1) € [-1,0]. We have also used
Stratonovich version of (31) using the relation for the tran- the following formula (Kloeden and Platen, 1992, p. 101):

sition between the 1td and Stratonovich integrals (Dawid- .

owicz and Twardowska, 1995). exp (— W(s)) dW(s)
Below we present some numerical computations to  *° Lt
confirm our theore_tlcal resu_,llt that the correction term _ U(W(t)) o U(W(O)) _ 7/ K (W (s)) ds,
plays a crucial role in numerical schemes, too. 2 Jo
Consider (31) withag, a1, by, b1, 09 and oy given where
by
1 1
ap=1, a3 = 3 bo=-2, b = 3 h(z) = exp(—z), U'(z)= h(z).
oo =3 o) = _@ This solution is used to test and compare numerical meth-
0 » ot 4 ods in this paper. We solve the stochastic differential
Thenb — %0_3 + by + ag = 0. Equation (31) without the e_quatlor_l numerlcglly by thg S|_mulat|on of the approxima-
correction term has the following form: tion of discrete trajectories in time. To construct a solution
for a given discretizationts = 0 < t; < --- <ty =T
AX () — 1X ; 13 dat we used the Euler and Milshtein methods. We modified
(t) = 2 (t) + 16 the recursive formulae for the Milshtein method taking
) into consideration the delayed argument.
+(X(t) + 5) dW (t). (32) The Euler approximation for (29) is generated recur-

sively by
Equation (31) with the correction term is

9 1 Yn+1 = Yn + (bOYn + blynfkr)An
dX(t) = —dt+ (X(t) + 5) dw(t).  (33)

~ 16 + (00Y; + 01 Y1) AW, (35)

First, we obtain an exact analytical formula fore for n = k+1, k+2,...,N — 1 with initial values
[0,1] in the so-called step method (see §4). We use they0 —Y,=--=Y,=1andA, = T/N (equidistant
form of the solution derived for the linear equation (4.9), step size)k = 1/A,, (an integer parameter related to the
pp. 119-120 in the book by Kloeden and Platen (1992), delay), AW, = W, .. — W,
i.e., for Egn. (31) withb = 0. We have e

The random variablesAW,, are independently
¢ . N (0, 1)-normally distributed random variables. We have
X(t) = o) [X(O) + (e~ aoa1)/0 O(s)" ds generated such random variables in simulations from in-
dependent and uniformly distributed random variables on

t . .
1 [0,1] which are provided by a pseudorandom number gen-
+ o /0 ®(s) dW(S)} erator on a computer. The generation of the sample paths
) _ of the processW (¢) may be realized byiw(0) = 0,
with the fundamental solution W(t) = VA& + "'+§ﬁ)’ where ¢; are indepen-

1 dent and identically\V/ (0, 1)-n'6rmally distributed random
®(t) = exp {(a B §a%)t + aOW(t)] : variables.
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The Milhstein approximation scheme has the modi- : , :
fied form (see Kloeden and Platen, 1992) for the correc- 4
tion term

Yn+1 = Yn + (bOYn + bIYnfkr)An
+ (UOYn + Ulynfk)AWn

1
+*UU(O'0Y»,L + Ulyn,k)(AWT? - An) (36)

2

The Runge-Kutta approximation scheme (Kloeden and
Platen, 1992) is of the form

Yn+1 - Yn + (bOYn + blyn—k)An

+ (Uan + Ulyn,k)AWn 008
- Euler
Milstein
Runge-Kutta

1 _
+§UO(UOFn —0oY, +o1Yn_k

X (AW?2 — A,)AZY2

)

37)

. Simulated trajectory of Euler, Milhstein
and Runge-Kutta schemes.

wherel',, = Y, + bAi/z.

We say that the approximating processconverges
in the strong sense to the proce&s with the ordery €
(0, o] if there exist some finite constanfs and é, > 0
such that \

E(|Xr — Yn|) K&

for any time discretization with the maximum step size
§ € (0,60).

In (Kloeden and Platen, 1992) it is proved that the s}
Euler scheme has the strong order= 0.5 and the Mil-
shtein scheme converges with the strong ordee 1
(under some regularity conditions).

Our computations were performed using the MAT-
LAB package. Figure 1 summarizes graphically the nu-
merical experiment with Egn. (33). It compares simulated T M
trajectories of the examined Euler, Milhstein and Runge- Tom o Rumelum
Kutta schemes with the exact solution (34) of (32) for
the same sample path of the Wiener process. The solid
line represents the exact solution, the dotted line the Eu-
ler method, the dashed line the Milshtein method and the
dotted-dashed line the Runge-Kutta method. In Fig. 2 we Atar R., Viens F. and Zeituni O. (1999):Robustness of
solve Eqn. (32) without the corretion term and we com- Zakai's equation via Feynman-Kac representatidm:
pare it with the exact solution (34) of (32). We can ob- Stochastic Analysis, Control, Optimization and Applica-
serve that the simulated trajectories in Fig. 1 are close to ~ tions (W.M. McEneaney, G.G. Yin and Q. Zhang, Eds.).
the exact solution because in (33) the correction term oc- ~ — Boston: Birkhauser, pp. 339-352.
curs. The results with the correction term in Fig. 1 are Bene$ V.E. (1981): Exact finite-dimensional filters for cer-
better. tain diffusions with nonlinear drift— Stochastics, Vol. 5,

No. 1-2, pp. 65-92.

Bensoussan A., Glowski R. and Rascanu A. (1990pproxi-
mation of the Zakai equation by the splitting up methed
SIAM J. Contr. Optim., Vol. 28, No. 6, pp. 1420-1431.

= 0.025

. Solution of Eqgn. (32) without the correction
term along the exact solution.
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