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The main purpose of this work is to propose new notions of equivalence between polynomial matrices that preserve both
the finite and infinite elementary divisor structures. The approach we use is twofold: (a) the ‘homogeneous polynomial
matrix approach’, where in place of the polynomial matrices we study their homogeneous polynomial matrix forms and
use 2-D equivalence transformations in order to preserve their elementary divisor structure, and (b) the ‘polynomial matrix
approach’, where some conditions between the 1-D polynomial matrices and their transforming matrices are proposed.
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1. Introduction

Consider a linear homogeneous matrix difference equa-
tion of the form

A(σ)β(k) = 0, k ∈ [0, N ], (1)

A(σ) = Aqσ
q + Aq−1σ

q−1 + · · ·+ A0 ∈ R[s]r×r, (2)

where σ denotes the forward shift operator. From (An-
toniou et al., 1998) it is known that (1) exhibits forward
behavior due to the finite elementary divisors ofA(σ)
and backward behavior due to the infinite elementary di-
visors of A(σ) (and not due to its infinite zeros, as in the
continuous time case). Actually, ifA(s) is nonsquare or
square with zero determinant, then, additionally, the right
minimal indices play a crucial role in both the forward
and backward behavior of the AR-representation (Karam-
petakis, 2002b). Therefore it seems quite natural to search
for relations that preserve both the finite and infinite ele-
mentary divisor structures of polynomial matrices. Pugh
and Shelton (1978) proposed the extended unimodular
equivalence relation (e.u.e.) which has the nice property of
preserving only the finite elementary divisors. However,
the e.u.e. preserves the i.e.d. only if additional conditions
are added.

In the present work we use two different ways to
approach and solve this problem of polynomial matrix
equivalence. Specifically, in Section 3 we notice that the
finite elementary divisor structure of the homogeneous
polynomial matrix form Aqσ

q + Aq−1σ
q−1w + · · · +

A0w
q corresponding to (2) gives us complete information

on both the finite and infinite elementary divisor structures

of (2). Based on this line of thought, we reduce the prob-
lem of the equivalence between 1-D polynomial matrices
to an equivalence between 2-D polynomial matrices. A
more direct and transparent approach is given in Section 4,
where we propose additional conditions to the e.u.e. It is
shown that both relations provide necessary conditions for
two polynomial matrices to possess the same elementary
divisor structure. However, in the special set of square and
nonsingular polynomial matrices: (a) the provided condi-
tions are necessary and sufficient, and (b) the proposed re-
lations are equivalent relations and define the same equiv-
alence class.

2. Discrete-Time Autoregressive Representa-
tions and Elementary Divisor Structure

In what follows, R and C denote respectively the fields
of real and complex numbers, andZ and Z+ denote
respectively the integers and non-negative integers. By
R[s] and R[s]p×m we denote the sets of polynomials and
p×m polynomial matrices, respectively, with real coeffi-
cients and indeterminates ∈ C. Consider the polynomial
matrix

A(s) = Aqs
q + Aq−1s

q−1 + · · ·+ A0 ∈ R[s]p×m, (3)

whereAj ∈ Rp×m, j = 0, 1, . . . , q ≥ 1, Aq 6= 0.

Definition 1. Let A(s) ∈ R[s]p×m with
rankR(s) A(s) = r ≤ min (p, m). The valuesλi ∈ C
that satisfy the conditionri = rankC A(λi) < r are
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called the finite zeros ofA(s). Assume thatA (s) has l
distinct zerosλ1, λ2, . . . , λl ∈ C, and let

SC
A(s)(s) =

[
Q(s) 0r,m−r

0p−r,r 0p−r,m−r

]
,

Q(s) = diag
{
1, 1, . . . , 1︸ ︷︷ ︸

k−1

, εk(s), εk+1(s), . . . , εr(s)
}
,

1 ≤ k ≤ r, be the Smith form ofA(s) (in C), where
εi(s) ∈ R[s] are the invariant polynomials ofA(s) and
εj(s)|εj+1(s), j = k, k + 1, . . . , r − 1. Assume that
each invariant polynomialεj(s) is decomposed into ir-
reducible elementary divisors overR, i.e., let

εj(s) =
l∏

i=1

(s− λi)mij ,

wheremij ∈ Z+ and 0 ≤ mi1 ≤ mi2 ≤ · · · ≤ mir are
the partial multiplicities of the eigenvalueλi, i ∈ l. The
terms(s−λi)mij are called thefinite elementary divisors
(f.e.d.)of A(s) at s = λi. We also set

Sλi

A(s)(s) =

[
Qi(s) 0r,m−r

0p−r,r 0p−r,m−r

]
,

Qi(s) = diag{1, 1, . . . , 1︸ ︷︷ ︸
ki−1

, (s− λi)miki , . . . , (s− λi)mi,r}

as the local Smith form ofA(s) at s = λi. Finally, define
n :=

∑l
i=1

∑r
j=1 mij .

Definition 2. If A0 6= 0, thedual matrix Ã(s) of A(s)
is defined asÃ(s) := A0s

q + A1s
q−1 + · · ·+ Aq. Since

rank Ã(0) = rank Aq, the dual matrixÃ(s) of A(s) has
zeros ats = 0 iff rank Aq < r. Let rank Aq < r and
let

S0
Ã(s)

(s) =

diag{1, 1, . . . , 1︸ ︷︷ ︸
g−1

sµg+1 , . . . , sµr} 0r,m−r

0p−r,r 0p−r,m−r


(4)

be the local Smith form ofÃ(s) at s = 0, where µj ∈
Z+ and 0 ≤ µg+1 ≤ µg+2 ≤ · · · ≤ µr. The infinite
elementary divisors (i.e.d.)of A(s) are defined as the
finite elementary divisorssµj of its dual Ã(s) at s = 0.
Also, defineµ =

∑r
i=g+1 µi.

An interesting consequence of the above definition is
that in order to prove that the polynomial matrix (3) has
no infinite elementary divisors, it is enough to prove that
rank Aq = r. It is also easily seen that the finite elemen-
tary divisors ofA(s) describe the finite zero structure of

the matrix polynomial. In contrast, the infinite elementary
divisors give a complete description of the total structure
at infinity (the pole and zero structure) and not simply that
associated with the zeros (Haytonet al., 1988; Vardulakis,
1991).

The structured indices of a polynomial matrix (finite-
infinite elementary divisors and right-left minimal in-
dices) are connected with the rank and the degree of the
matrix as follows:

Proposition 1. (Antoniouet al., 1998; Praagman, 1991)
(a) If A(s) = A0+A1s+ · · ·+Aqs

q ∈ R[s]r×r and
detA(s) 6= 0, then the total number of elementary divi-
sors (finite and infinite ones and multiplicities accounted
for) is equal to the productrq, i.e., n + µ = rq.

(b) If A(s) = A0 + A1s + · · ·+ Aqs
q is nonsquare

or square with zero determinant, then the total number of
elementary divisors plus the left and right minimal indices
of A(s) (order accounted for) is equal torq, where r
denotes now the rank of the polynomial matrixA(s).

Example 1. Consider the polynomial matrix

A(s) =

[
1 s2

0 s + 1

]

=

[
1 0
0 1

]
︸ ︷︷ ︸

A0

+

[
0 0
0 1

]
︸ ︷︷ ︸

A1

s +

[
0 1
0 0

]
︸ ︷︷ ︸

A2

s2

and its dual

Ã(s) =

[
s2 1
0 s + s2

]
= A2 + A1s + A0s

2.

Then

SC
A(s)(s) =

[
1 0
0 s + 1

]
, S0

Ã(s)
(s) =

[
1 0
0 s3

]
.

ThereforeA(s) has one finite elementary divisor(s+1)
and one infinite elementary divisors3, i.e., n + µ = 1 +
3 = 2× 2 = r × q. �

The elementary divisor structure of a polynomial ma-
trix plays a crucial role in the study of the behavior of
discrete-time AR-representations over a closed time inter-
val. Consider, e.g., theq-th order discrete time autore-
gressive representation

Aqξk+q + Aq−1ξk+q−1 + · · ·+ A0ξk = 0. (5)

If σ denotes the forward shift operatorσiξk = ξk+i,
then (5) can be written as

A (σ) ξk = 0, k = 0, 1, . . . , N − q, (6)
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whereA (σ) is as in (3) andξk ∈ Rr, k = 0, 1, . . . , N
is a vector sequence. The solution space or behavior
BN

A(σ) of the AR-representation (6) over the finite time
interval [0, N ] is defined as

BN
A(σ) :=

 (ξk)k=0,1,...,N ⊆ Rr|

ξk satisfies (6) fork ∈ [0, N ]

 ⊆ (Rr)N+1

(7)
and we have the following result:

Theorem 1. (a) (Regular case, (Antoniou et al., 1998))
If A(s) ∈ R[s]r×r, detA(s) 6= 0, then the dimension
of the behavior of (6)BN

A(σ) over the finite time interval
k = 0, 1, . . . , N ≥ q is given by

dim BN
A(σ) = rq = n + µ.

(b) (Non-regular case, (Karampetakis, 2002a)) If
A(s) is nonsquare or square with zero determinant, then
by

R
(
ξ1 (k) , ξ2 (k)

)

=


(ξ1 (k) , ξ2 (k)) ∈ BN

A(σ) ×BN
A(σ) : ξ1 (i) = ξ2 (i)

for i = 0, 1, . . . , q − 1 (same initial conditions)

andi = N − q + 1, . . . , N (same final conditions)

,

we define the equivalence relation that divides the space
BN

A(σ) into equivalence classes and creates the space

B̂N
A(σ) := BN

A(σ)/R. The dimension ofB̂N
A(σ) is n +

µ + 2ε, where ε denotes the total number of right mini-
mal indices (since the left minimal indices play no role in
the construction of the right solution space).

BN
A(σ) consists of two subspaces (Karampetakis,

2002a): the one corresponding to the finite elementary di-
visors of A (σ) (and right minimal indices for the non-
regular case), which gives rise to solutions moving in the
forward direction of time, and the other corresponding to
the infinite elementary divisors ofA (σ) (and right min-
imal indices for the nonregular case), which gives rise to
solutions moving in the backward direction of time.

Example 2. Consider the AR-representation[
1 σ2

0 σ + 1

]
︸ ︷︷ ︸

A(σ)

[
ξ1
k

ξ2
k

]
︸ ︷︷ ︸

ξk

= 02×1.

Then

SC
A(s)(s) =

[
1 0

0 s + 1

]
, S0

Ã(s)
(s) =

[
1 0

0 s3

]
,

BN
A(σ) =

〈(
1
−1

)
(−1)k

︸ ︷︷ ︸
due toSC

A(s)(s)

,

(
δN−k

0

)
,

(
δN−k+1

0

)
,

(
δN−k+2

−δN−k

)
︸ ︷︷ ︸

due toS0
Ã(s)

(s)

〉
,

where 〈 · 〉 denotes the space spanned by the included
discrete-time vectors, and the discrete-time impulseδi is
defined by

δi =

{
1 if

0 if

i = 0,

i 6= 0.

It is easily seen that

dim BN
A(σ) = rq = 2× 2 = 1 + 3 = n + µ,

wherer is the dimension of the square polynomial matrix
A(σ) and q is the highest degree among the coefficients
of the matrixA(s). �

Example 3. Consider the polynomial matrix description(
σ2
)
ξk = −uk,

yk = (σ + 1) ξk.

In order to find the state-input pair which gives rise
to the zero output (the output zeroing problem), we have
to solve the following system of difference equations:[

σ2 1

σ + 1 0

]
︸ ︷︷ ︸

P (σ)

[
ξk

uk

]
︸ ︷︷ ︸

xk

= 02×1.

It is easily seen that the above discrete time AR-
representation is the one we have already studied in the
previous example and therefore the state-input pair which
gives rise to the zero output is given by a simple transfor-
mation of the spaceBN

A(σ) defined in the previous exam-
ple, i.e.,(

ξk

uk

)
=

 −l1 (−1)k − l4δN−k

l1 (−1)k+l2δN−k+l3δN−k+1+l4δN−k+2

.

�

Since the elementary divisor structure of a polyno-
mial matrix plays a crucial role in the study of discrete
time AR-representations and/or polynomial matrix de-
scriptions over a closed time interval, we are interested
in finding relations that leave invariant the elementary di-
visor structure of polynomial matrices.
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3. Homogeneous Polynomial Matrix
Approach

We present two different approaches to study the infi-
nite elementary divisor structure of a polynomial matrix.
The first approach is to apply a suitably chosen conformal
mapping to bring the infinity point to some finite point,
while the second approach is to use homogeneous poly-
nomials to study the infinity point.

Let P (m, l) be the class of(r + m)× (r + l) poly-
nomial matrices in any number of variables, wherel and
m are fixed integers andr ranges over all integers which
are greater thanmax (−m,−l).

Definition 3. (Pugh and Shelton, 1978)A1(s), A2(s) ∈
P (m, l) are said to beextended unimodular equivalent
(e.u.e.) if there exist polynomial matricesM(s) and
N(s) such that[

M(s) A2(s)
] [ A1(s)

−N(s)

]
= 0, (8)

where the compound matrices[
M(s) A2(s)

]
,

[
A1(s)

−N(s)

]
(9)

have full rank∀s ∈ C.

The e.u.e. relates matrices of different dimensions
and preserves the f.e.d. of the polynomial matrices in-
volved (Pugh and Shelton, 1978). In the case in which
we are interested to preserve only the elementary divisors
at a specific points0, we introduce the {s0}-equivalence
relation.

Definition 4. (Karampetakiset al., 1994)A1(s), A2(s) ∈
P (m, l) are said to be{s0}-equivalentif there exist ratio-
nal matricesM(s) and N(s), having no poles ats = s0,
such that (8) is satisfied and where the compound matrices
in (9) have full rank ats = s0.

The {s0}-equivalence preserves only the f.e.d. of
A1(s), A2(s) ∈ P (m, l) of the form (s− s0)

i
, i > 0

(Karampetakiset al., 1994).

Based on the above polynomial matrix relations,
we can easily define the following polynomial matrix
relation:

Definition 5. A1(s), A2(s) ∈ P (m, l) are said to be
strongly equivalentif there exist

(i) polynomial matricesM1(s), N1(s), such that (8)
is satisfied and where the compound matrices in (9) have
full rank ∀s ∈ C,

(ii) rational matricesM2(s), N2(s), having no poles
at s = 0, such that (8) between the dual polynomial ma-
trices Ã1(s), Ã2(s) is satisfied and where the respective
compound matrices in (9) have full rank ats = 0.

Theorem 2. (a) The strong equivalence is an equivalence
relation on P (m, l).

(b) A1(s), A2(s) ∈ P (m, l) are strongly equiva-
lent iff SC

A1(s)
(s) is a trivial expansion ofSC

A2(s)
(s) and

S0
Ã1(s)

(s) is a trivial expansion ofS0
Ã2(s)

(s), i.e., the s.e.

leaves the finite and infinite elementary divisors invariant.

Proof.
(a) The e.u.e. and the{s0}-equivalence are equiv-

alence relations onP (m, l) (Karampetakiset al., 1994;
Pugh and Shelton, 1978), and thus the strong equivalence
is an equivalence relation onP (m, l) since it is an inter-
section of the e.u.e. and the{s0}-equivalence.

(b) The strong equivalence is an intersection of
the e.u.e. and{s0}-equivalence relations. However,
A1(s), A2(s) ∈ P (m, l) are (i) e.u.e. iff SC

A1(s)
(s) is

a trivial expansion ofSC
A2(s)

(s), and (ii) {s0}-equivalent

iff S0
Ã1(s)

(s) is a trivial expansion ofS0
Ã2(s)

(s).

Based on the properties of the e.u.e. and the {s0}-
equivalence of preserving respectively the f.e.d. and the
i.e.d. at s = s0, we can easily observe that the above
relation has the nice property of preserving both the finite
and infinite elementary divisors ofAi(s).

Example 4. Consider the polynomial matrices

A1(s) =

[
1 s2

0 s + 1

]
, A2(s) =


s 0 −1 0
0 s 0 −1
1 0 0 s

0 1 0 1

 ,

and their dual polynomial matrices

Ã1(s)=

[
s2 1
0 s + s2

]
, Ã2(s) =


1 0 −s 0
0 1 0 −s

s 0 0 1
0 s 0 s

 .

Then we can find polynomial matricesM(s), N(s) and
M̃(s), Ñ(s) such that

0 0
0 0
1 0
0 1


︸ ︷︷ ︸

M(s)

[
1 s2

0 s + 1

]
︸ ︷︷ ︸

A1(s)

=


s 0 −1 0
0 s 0 −1
1 0 0 s

0 1 0 1


︸ ︷︷ ︸

A2(s)


1 0
0 1
s 0
0 s


︸ ︷︷ ︸

N(s)

is an e.u.e. and
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

M̃(s)

[
s2 1
0 s + s2

]
︸ ︷︷ ︸

Ã1(s)

=


1 0 −s 0
0 1 0 −s

s 0 0 1
0 s 0 s


︸ ︷︷ ︸

Ã2(s)


s 0
0 s

1 0
0 1


︸ ︷︷ ︸

Ñ(s)
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is a {0}-equivalence relation. ThereforeA1(s) and
A2(s) are s.e. and thus, according to Theorem 2, they
possess the same finite and infinite elementary divisors,
i.e.,

SC
A(s)(s) =

[
1 0

0 s + 1

]
, SC

A2(s)
(s) =

[
I3 0

0 s + 1

]
,

S0
Ã1(s)

(s) =

[
1 0

0 s3

]
, S0

Ã2(s)
(s) =

[
I3 0

0 s3

]
.

�

The strong equivalence relation has the disadvantage
of consisting of two separate relations. In order to over-
come this difficulty, we use the homogeneous variable to
represent the infinity.

As thehomogeneous formof A(s) define the matrix

AH(s, w) = A0s
n + A1s

n−1w + · · ·+ Anwn. (10)

It is easily seen that the finite elementary divisors ofA(s)
are actually the finite elementary divisors ofAH(s, 1).
Similarly to the previous definition, we can easily see that
the infinite elementary divisors ofA(s) are actually the fi-
nite elementary divisors ofAH(1, w) at w = 0. An alter-
native definition of the finite and infinite elementary divi-
sors in terms of the homogeneous polynomial matrix (10)
is given below.

Definition 6. (Praagman, 1991) LetDi be the great-
est common divisor ofi × i minors of AH , and de-
fine D0 = 1. Then Di|Di+1, and let Di|Di−1 =:
ci

∏
(as− bw)`i(b/a), where the product is taken over all

pairs (1, b) and (0, 1), and 1/0 is denoted by∞. The
factors (as− bw)`i(b/a) with `i (b/a) 6= 0 are called the
elementary divisors ofA(s), and the integers̀i are said
to be the elementary exponents ofA(s).

It is easily seen that the pairs(0, 1) correspond to
the i.e.d. while the remaining pairs to the f.e.d.

Example 5. Consider the polynomial matrixA(s) de-
fined in Example 4, i.e.,

A(s) =

[
1 s2

0 s + 1

]
.

Also, define the homogeneous polynomial matrix

AH(s, w) =

[
w2 s2

0 sw + w2

]
.

Then

D0 = 1, D1 = 1, D2 = w3 (s + w) ,

and therefore the Smith form ofAH(s, w) over R[s, w]
is given by

SC
AH(s,w)(s, w) =

[
1 0

0 w3 (s + w)

]
,

where we have the following pairs of(a, b): (1, 1) with
the exponent 1 and(0, 1) with the exponent 3. The first
pair corresponds to the f.e.d.(s + 1)1, while the second
pair corresponds to the i.e.d.w3. �

An extension of the e.u.e. to the 2-D setting is given
by two relations, factor and zero coprime equivalences
(Johnson, 1993). While both of them preserve the in-
variant polynomials of the equivalent matrices (Johnson,
1993), the latter has the additional property of preserving
the ideals of a polynomial matrix (Pugh and El-Nabrawy,
2003) and therefore is more restrictive. Since we are in-
terested only in the invariant polynomials of the homoge-
neous polynomial matrices and not in their corresponding
ideals, we present and use only the former relation.

Definition 7. A1(s, w), A2(s, w) ∈ P (m, l) are said to
befactor coprime equivalent(f.c.e.) if there exist polyno-
mial matricesM(s, w) and N(s, w) such that[

M(s, w) A2(s, w)
] [ A1(s, w)

−N(s, w)

]
= 0, (11)

where the compound matrices[
M(s, w) A2(s, w)

]
,

[
A1(s, w)

−N(s, w)

]
(12)

are factor coprime, i.e., if all(r + m) × (r + m) (resp.
(r+l)×(r+l)) minors of [ M(s, w) A2(s, w) ] (resp.[

A1(s,w)
−N(s,w)

]
) have no polynomial factor.

Theorem 3. (Johnson, 1993; Levy, 1981)
1. The f.c.e. is only reflexive and transitive and there-

fore it is not an equivalence relation. The f.c.e. is an equiv-
alence relation on the set of square and nonsingular poly-
nomial matrices.

2. If A1(s), A2(s) ∈ P (m, l) are f.c.e., then they
have the same invariant polynomial.

Since (a) the above relation leaves the invariant poly-
nomials of the equivalent polynomial matrices invariant
and (b) the elementary divisor structure of a polynomial
matrix is completely characterized by the invariant poly-
nomials of its homogeneous polynomial matrix, it seems
quite natural to reduce the problem of the equivalence be-
tween two 1-D polynomial matrices to the problem of the
equivalence between its respective homogeneous polyno-
mial matrices.



N.P. Karampetakis and S. Vologiannidis498

Definition 8. A1(s), A2(s) ∈ P (m, l) are defined to be
factor equivalentif their respective homogeneous polyno-
mial matricesAH

1 (s, w), AH
2 (s, w) are factor coprime

equivalent.

Due to the properties of the factor coprime equivalence, it
is easy to prove the following result:

Corollary 1. (i) The f.e. is reflexive and transitive. It is an
equivalence relation on the set of square and nonsingular
polynomial matrices.

(ii) If A1(s), A2(s) ∈ P (m, l) are f.e., then they
have the same finite and infinite elementary divisors.

Although the factor coprime equivalence does not
satisfy the symmetry property in the general class of two
variable polynomial matrices, this does not necessary im-
ply that the symmetry property is not met for the special
class of homogeneous polynomial matrices, either. How-
ever, as we can see from the following counter-example,
the symmetry property is not satisfied for the class of ho-
mogeneous polynomial matrices either and therefore the
f.e. is not an equivalence relation.

Example 6. Consider the polynomial matrices

A1(s) =
[

1 s
]
, A2(s) =

[
1 s 0

0 1 s

]

and their respective homogeneous polynomial matrices

AH
1 (s, w) =

[
w s

]
, AH

2 (s, w) =

[
w s 0

0 w s

]
.

Then we can find polynomial matricesM(s, w) and
N(s, w) such that[

q31w

q41w

]
︸ ︷︷ ︸

M(s,w)

[
w s

]
︸ ︷︷ ︸

AH
1 (s,w)

=

[
w s 0

0 w s

]
︸ ︷︷ ︸

AH
2 (s,w)

 q31w − q41s q31s

q41w 0

0 q41w


︸ ︷︷ ︸

N(s,w)

,

where

SC
[M AH

2 ] (s, w) =
[

I2 02×2

]
,

SC[
AH

1
−N

] (s, w) =

[
I2

02×2

]
.

Therefore,A1(s) and A2(s) are f.e. and thus, accord-
ing to Corollary 1, they possess the same f.e.d. and i.e.d.
(none). However, it is easily seen that the only symmetry
transformation is of the form[

m1 n6 + m21w
]

︸ ︷︷ ︸
M(s,w)

[
w s 0

0 w s

]
︸ ︷︷ ︸

AH
2 (s,w)

=
[

w s
]

︸ ︷︷ ︸
AH

1 (s,w)

[
m1 − n41s m21w + n6 − n51s m21s

n41w m1 + n51w n6

]
︸ ︷︷ ︸

N(s,w)

,

where the compound matrix[
AH

2 (s, w)

−N(s, w)

]
has the common factorq(s) = n41s

2 −m1s− n51ws +
n6w. Therefore, the symmetric transformation is not fac-
tor coprime or otherwise the symmetry property of f.e. is
not satisfied. �

In the sequel, we give another example where the
finite and infinite elementary divisors of the polynomial
matricesA1(s), A2(s) do not reduce to the empty set.

Example 7. Consider the polynomial matricesA1(s)
and A2(s) defined in Example 4, and their respective ho-
mogeneous polynomial matrices

AH
1 (s, w) =

[
w2 s2

0 sw + w2

]
,

AH
2 (s, w) =


s 0 −w 0
0 s 0 −w

w 0 0 s

0 w 0 w

 .

Then we can find polynomial matricesM(s, w) and
N(s, w) such that

0 0
0 0
1 0
0 1


︸ ︷︷ ︸

M(s,w)

[
w2 s2

0 sw + w2

]
︸ ︷︷ ︸

AH
1 (s,w)

=


s 0 −w 0
0 s 0 −w

w 0 0 s

0 w 0 w


︸ ︷︷ ︸

AH
2 (s,w)


w 0
0 w

s 0
0 s


︸ ︷︷ ︸

N(s,w)

,
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where

SC
[M AH

2 ] (s, w) =
[

I4 04×2

]
,

SC[
AH

1
−N

] (s, w) =

[
I2

04×2

]
.

Therefore A1(s) and A2(s) are f.e. and thus, accord-
ing to Corollary 1, they possess the same f.e.d. and
i.e.d. However, it is easily seen that the compound
matrix [ M A1 ] has singularities ats = w =
0 for any matrix M(s, w) and, therefore,AH

1 (s, w)
and AH

2 (s, w) are not zero coprime equivalent (John-
son, 1993; Levy, 1981), although they possess the same
invariant polynomials. Therefore, it is seen that the
zero coprime equivalence would be quite restrictive for
our purpose. This is easily checked out in the case
where A1(s), A2(s) are of different dimensions. Then
there is no zero coprime equivalence relation between
AH

1 (s, w), AH
2 (s, w). �

For 1-D systems, (Gohberget al., 1982) presented
an algorithm that reduces a general arbitrary polynomial
matrix A(s) to an equivalent matrix pencil. More specif-
ically, given the polynomial matrixA(s) in (3) and the
matrix pencil

sE−A :=



sIm −Im 0 · · · 0
0 sIm −Im · · · 0
...

...
...

...
...

0 0 0 · · · −Im

A0 A1 A2 · · · Aqs + Aq−1

 ,

(13)

the following holds:

Theorem 4. The polynomial matrixA(s) defined in (3)
and the matrix pencilsE −A defined in (13) are f.e.

Proof. Consider the relation

[
0(q−1)m,p

Ip

]
︸ ︷︷ ︸

M(s,w)

AH(s, w) = [sE − wA]



wq−1Im

wq−2sIm

...

wsq−2Im

sq−1Im


︸ ︷︷ ︸

N(s,w)

.

Then the compound matrix[ M(s, w) sE − wA ] has

two qm×qm minors equal tos(q−1)m and (−w)(q−1)m,
respectively, and thus the matrices are factor coprime.

These minors are

det



sIm −wIm 0 · · · 0
0 sIm −wIm · · · 0
...

...
...

...
...

0 0 0 · · · sIm

A0w A1w A2w · · · Aq−2w

0
0
...

0
Ip

 ,

det



−wIm 0 · · · 0
sIm −wIm · · · 0

...
...

...
...

0 0 · · · −wIm

A1w A2w · · · Aqs + Aq−1w

0
0
...

0
Im

 ,

and they are equal tos(q−1)m and (−w)(q−1)m, respec-

tively. Similarly, the compound matrix
[

AH(s,w)
−N(s,w)

]
has

two coprimem×m minors, s(q−1)m and w(q−1)m, and
thus it is factor coprime, i.e.,

det
[
wq−1Im

]
= w(q−1)m, det

[
sq−1Im

]
= s(q−1)m.

Therefore, the matrices[ M(s, w) sE − wA ] and[
AH(s,w)
−N(s,w)

]
are factor coprime,AH(s, w) and sE−wA

are factor coprime equivalent, whereasA(s) and sE−A
are factor equivalent.

An illustrative example of the above theorem has al-
ready been given as Example 7. A direct consequence of
the above theorem is given by the following result:

Corollary 2. A(s) and sE − A possess the same finite
and infinite elementary divisor structures.

Proof. A(s) and sE − A are f.e. from Theorem 4 and
thus, according to Corollary 1, they possess the same finite
and infinite elementary divisor structures.

A completely different and more transparent ap-
proach to the problem of the equivalence between 1-D
polynomial matrices, without using the theory of 2-D
polynomial matrices, is given in the next section.

4. Polynomial Matrix Approach

Although the e.u.e. preserves the finite elementary divi-
sors, it does not preserve the infinite elementary divisors,
as we can see in the following.

Example 8. Consider the following e.u.e. relation:[
1 0
0 1

]
︸ ︷︷ ︸

M(s)

[
1 s2

0 s + 1

]
︸ ︷︷ ︸

A1(s)

=

[
1 s3

0 s + 1

]
︸ ︷︷ ︸

A2(s)

[
1 s2 − s3

0 1

]
︸ ︷︷ ︸

N(s)

.
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Although A1(s) and A2(s) have the same finite elemen-
tary divisors, i.e.,

SC
A1(s)

(s) =

[
1 0
0 s + 1

]
= SC

A2(s)
(s),

they have different infinite elementary divisors, i.e.,

S0
Ã1(s)

(s) = S0[
s2 1
0 s+s2

] =

[
1 0
0 s3

]
,

S0
Ã2(s)

(s) = S0[
s3 1
0 s2+s3

] =

[
1 0
0 s5

]
.

�

The above example indicates that further restrictions
must be placed on the compound matrices (9) in order to
ensure that the associated relation will leave both the finite
and infinite elementary divisors invariant. A new relation
between polynomial matrices of the same setP (m, l) is
given in the following definition:

Definition 9. Two matricesA1(s), A2(s) ∈ P (m, l)
are said to bedivisor equivalent(d.e.) if there exist poly-
nomial matricesM(s), N(s) of appropriate dimensions
such that (8) is satisfied, where

(i) the compound matrices in (9) are left prime and
right prime matrices, respectively,

(ii) the compound matrices in (9) have no infinite el-
ementary divisors,

(iii) the following degree conditions are satisfied:

d
[

M(s) A2(s)
]

= d [A2(s)]

or d [M(s)] ≤ d [A2(s)] ,

d

[
A1(s)
−N(s)

]
= d [A1(s)]

or d [N(s)] ≤ d [A1(s)] ,(14)

where d[P ] denotes the degree ofP (s) seen as a poly-
nomial with nonzero matrix coefficients.

Theorem 5. If A1(s), A2(s) ∈ P (m, l) are divisor
equivalent, then they have the same finite and infinite ele-
mentary divisors.

Proof. According to condition (i) of “divisor equiva-
lence”, A1(s) and A2(s) are also e.u.e. and thus they
have the same finite elementary divisors.

By setting s = 1/w (8) may be rewritten as the
equation

[
M
( 1

w

)
A2

( 1
w

) ] A1

( 1
w

)
−N

( 1
w

)
 = 0.

Then premultiplying and postmultiplying it by

wd[ M(s) A2(s) ] and w
d

[
A1(s)
−N(s)

]
,

respectively, gives

wd[ M(s) A2(s) ]

[
M
( 1

w

)
A2

( 1
w

) ]

×

 A1

( 1
w

)
−N

( 1
w

)
w

d

[
A1(s)
−N(s)

]
= 0

⇐⇒
˜[

M(w) A2(w)
] ˜[

A1(w)

−N(w)

]
= 0, (15)

where ‘~’ denotes the dual matrix. Now, since

d
[

M(s) A2(s)
]

= d [A2(s)]

and

d

[
A1(s)

−N(s)

]
= d [A1(s)] ,

(15) may be rewritten as[
M ′(w) Ã2(w)

] [ Ã1(w)
−N ′(w)

]
= 0. (16)

The compound matrix [ M(s) A2(s) ] (resp.[
A1(s)
−N(s)

]
) has no infinite elementary divisors and

therefore its dual[ M ′(w) Ã2(w) ] (resp.
[

Ã1(w)

−N ′(w)

]
)

has no finite zeros atw = 0. Therefore, the relation (15)
is a {0}-equivalence relation which preserves the finite
elementary divisors ofÃ1(w) and Ã2(w) at w = 0 or
otherwise the infinite elementary divisors ofA1(s) and
A2(s).

Example 9. Consider the polynomial matricesA1(s)
and A2(s) defined in Example 4. Then we can find poly-
nomial matricesM(s) and N(s) such that

0 0
0 0

s− 2 0
0 s− 2


︸ ︷︷ ︸

M(s)

[
1 s2

0 s + 1

]
︸ ︷︷ ︸

A2(s)

=


s 0 −1 0
0 s 0 −1
1 0 0 s

0 1 0 1


︸ ︷︷ ︸

A1(s)


s− 2 0

0 s− 2
s(s− 2) 0

0 s(s− 2)


︸ ︷︷ ︸

N(s)
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is a divisor equivalence relation, i.e.,

SC
[ M A1 ] (s) = S0

[ M̃ Ã1 ] (s) =
[

I4 04×2

]
,

SC[
A2
−N

] (s) = S0[
Ã2

−Ñ

] (s) =

[
I2

04×2

]
,

and

d
[

M A1

]
= 1 = d [A1] ,

d

[
A2

−N

]
= 2 = d [A2] .

ThereforeA1(s) and A2(s) are divisor equivalent and
thus, according to Theorem 5, they possess the same finite
and infinite elementary divisors. �

Although the d.e. preserves both the f.e.d. and i.e.d.,
it is not known if the d.e. is an equivalence relation on
P (p,m) and it provides necessary and sufficient condi-
tions for two polynomial matrices to possess the same
f.e.d. and i.e.d. Also the exact geometrical meaning of
the degree conditions appearing in the definition of the
d.e. is under research. Now, consider the following set of
polynomial matrices:

Rc[s] :=

{
A(s)=A0+A1s+· · ·+Aqs

q ∈ R[s]r×r

detA(s) 6= 0 andc = rq, r ≥ 2

}
.

(17)

Example 10. The polynomial matricesA1(s) and
A2(s) defined in Example 4 belong toR4[s] since
r1q1 = 2× 2 = 1× 4 = r2q2. �

The degree conditions of the d.e. inRc[s] are redun-
dant as we can see in the following result:

Lemma 1. (Karampetakiset al., 2002)
(a) Let A1(s) and A2(s) ∈ Rc[s] with dimensions

m×m and (m+r)×(m+r), respectively, wherer 6= 0.
Then the first two conditions of the d.e. imply the degree
conditions of the d.e., i.e.,deg M(s) ≤ deg A2(s) and
deg N(s) ≤ deg A1(s).

(b) Let A1(s) and A2(s) ∈ Rc[s] have the same
dimensionsm × m and therefore the same degreed. If
A1(s) and A2(s) satisfy (8) and the first two conditions
of the d.e., thendeg M(s) = deg N(s).

Therefore, in this special case we are able to reformulate
the definition of the d.e. onRc[s] with only two condi-
tions.

Definition 10. Two matrices A1(s), A2(s) ∈ Rc[s]
are calleddivisor equivalent(d.e.) if there exist poly-
nomial matricesM(s) and N(s) of appropriate dimen-
sions, such that (8) is satisfied where the compound ma-
trices in (9) have full rank and neither f.e.d. nor i.e.d.

Some properties of the d.e. are given in the following re-
sult:

Theorem 6. (Karampetakiset al., 2002)
(a) A1(s), A2(s) ∈ Rc[s] are d.e. iff they have the

same f.e.d. and i.e.d.
(b) The d.e. is an equivalence relation onRc[s].

A different approach concerning the equivalence be-
tween two polynomial matrices onRc[s] is presented in
(Vardulakis and Antoniou, 2001).

Definition 11. (Vardulakis and Antoniou, 2001)A1(s)
and A2(s) ∈ Rc[s] are calledstrictly equivalentiff their
equivalent matrix pencilssE1 − A1 ∈ Rc×c and sE2 −
A2 ∈ Rc×c proposed in (13) are strictly equivalent in the
sense of (Gantmacher, 1959).

D.e. and s.e. define the same equivalence class onRc[s].

Theorem 7. (Karampetakiset al., 2002) Strict equiva-
lence (cf. Definition 11) gives the same equivalence class
as d.e.

A geometrical meaning of d.e. is given in the sequel.

Definition 12. (Vardulakis and Antoniou, 2001) Two AR-
representations

Ai (σ) ξi
k = 0, k = 0, 1, 2, . . . , N,

where σ is the shift operator,Ai(σ) ∈ Rc[σ]ri×ri , i =
1, 2 will be called fundamentally equivalent (f.e.)over the
finite time intervalk = 0, 1, 2, . . . , N iff there exists a bi-
jective polynomial map between their respective behavior
BN

A1(σ) andBN
A2(σ).

S.e. and f.e. define the same equivalence class on
Rc[s].

Theorem 8. (Antoniou and Vardulakis, 2003)Strict
equivalence (cf. Definition 11) gives the same equivalence
class as fundamental equivalence.

A direct consequence of Theorems 7 and 8 is given
by the following result:

Theorem 9. A1(s), A2(s) ∈ Rc[s] are d.e. iff they are
f.e.

Proof. Although the proof is a direct consequence of The-
orems 7 and 8, here we give an alternative proof of the
“if” part.

From (8) we have

M(σ)A1(σ) = A2(σ)N(σ). (18)
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Multiplying (18) on the right byξ1
k, we get

M(σ)A1(σ)ξ1
k = A2(σ)N(σ)ξ1

k

=⇒ 0 = A2(σ)N(σ)ξ1
k

=⇒ ∃ξ2
k ∈ BA2(σ) s.t. ξ2

k = N(σ)ξ1
k. (19)

The map defined by the polynomial matrixN(σ) :
BN

A1(s)
→ BN

A2(s)
| ξ1

k 7→ ξ2
k is injective iff N(σ)ξ1

k = 0
implies ξ1

k = 0. Sinceξ1
k ∈ BN

A1(s)
, we have additionally

that A1(σ)ξ1
k = 0. Therefore we get[

A1(σ)

N(σ)

]
ξ1
k = 0.

However, the above system has only the zero solution
(Karampetakis, 2002a), i.e.,ξ1

k = 0, iff the compound
matrix [ A1(σ)T −N(σ)T ]T has full rank and neither
f.e.d. nor i.e.d., the condition that is satisfied by the condi-
tions of d.e. Therefore the map defined by the polynomial
matrix N(σ) : BN

A1(s)
→ BN

A2(s)
| ξ1

k 7→ ξ2
k is injec-

tive. Furthermore,dimBN
A1(s)

= c = dimBN
A2(s)

, since
Ai(σ) ∈ Rc[σ]ri×ri , and thusN(σ) is a bijection be-
tweenBN

A1(σ) andBN
A2(σ).

5. Conclusions

The forward and backward behaviour of a discrete time
AR-representation over a closed time interval is connected
with the finite and infinite elementary divisor structures of
the polynomial matrix involved in the AR-representation.
Furthermore, it is known that a polynomial matrix de-
scription can always be written as an AR-representation,
and many problems arising from the Rosenbrock sys-
tem theory can be reduced to problems based on AR-
representation theory. This was the motivation of the
present work, which presents three new polynomial ma-
trix relations, namely, strong equivalence, factor equiv-
alence and divisor equivalence, which preserve both the
finite and infinite elementary divisor structures of polyno-
mial matrices. More specifically, it was shown that strong
equivalence is an equivalence relation and provides nec-
essary and sufficient conditions for two polynomial ma-
trices to possess the same elementary divisor structure.
However, its main disadvantage is that it consists of two
separate relations. We showed that we can overcome this
problem using the homogeneous polynomial matrix form
of univariate polynomial matrices and then using known
relations from 2-D systems theory. Following this rea-
soning, we introduced the factor equivalence relation. Al-
though factor equivalence is simpler in the sense that it
uses only one pair of transformation matrices instead of
two (strong equivalence), it suffers from an extra step (ho-
mogenization) that is needed. A solution to this problem

is given by adding extra conditions to the extended uni-
modular equivalence relation giving rise to divisor equiv-
alence. We showed that both factor and divisor equiva-
lences provide necessary conditions for two polynomial
matrices to possess the same elementary divisor struc-
ture. The conditions become necessary and sufficient in
the case of square and nonsingular matrices. In this spe-
cial set of matrices, both relations are equivalence rela-
tions sharing the same equivalence class. A geometrical
interpretation of the d.e. in terms of maps between the so-
lution spaces of AR-representations is given in the special
case of square and nonsingular polynomial matrices.

Finally, certain questions remain open concerning
the sufficiency of the divisor equivalence for nonsquare
polynomial matrices, or square polynomial matrices with
zero determinant. The work (Vardulakis and Antoniou,
2001) proposed a new notion of equivalence, called the
fundamental equivalence, in terms of mappings between
discrete time AR-representations described by square and
nonsingular polynomial matrices. Further research is now
focused on the following problems: (a) How can funda-
mental equivalence be extended to nonsquare polynomial
matrices? (b) What are its invariants? (c) What is the
connection between the relations presented in this work
and the f.e. relation? An extension of these results to the
Rosenbrock system matrix theory is also under research.
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