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AN H∞ SLIDING MODE OBSERVER FOR TAKAGI–SUGENO NONLINEAR
SYSTEMS WITH SIMULTANEOUS ACTUATOR AND SENSOR FAULTS

ALI BEN BRAHIM a,∗, SLIM DHAHRI a, FAYÇAL BEN HMIDA a, ANIS SELLAMI a

aResearch Unit on Control, Monitoring and Safety of Systems
High School of Sciences and Techniques of Tunis (ESSTT)

5, av. Taha Hussein, BP 56-1008 Tunis, Tunisia
e-mail: {benibrahimmali,dhahri_slim}@yahoo.fr,
{faycal.benhmida,anis.sellami}@esstt.rnu.tn

This paper considers the problem of robust reconstruction of simultaneous actuator and sensor faults for a class of uncertain
Takagi–Sugeno nonlinear systems with unmeasurable premise variables. The proposed fault reconstruction and estimation
design method with H∞ performance is used to reconstruct both actuator and sensor faults when the latter are transformed
into pseudo-actuator faults by introducing a simple filter. The main contribution is to develop a sliding mode observer
(SMO) with two discontinuous terms to solve the problem of simultaneous faults. Sufficient stability conditions in terms
linear matrix inequalities are achieved to guarantee the stability of the state estimation error. The observer gains are obtained
by solving a convex multiobjective optimization problem. Simulation examples are given to illustrate the performance of
the proposed observer.
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1. Introduction

Fault reconstruction and estimation design can determine
the size, location and dynamic behavior of a fault. It
is becoming a powerful alternative to the residual fault
detection approach. Indeed, it is considered a major
problem in modern control theory that has received a
considerable amount of attention during the past few
years. Especially, thanks to its robustness, some research
has exploited the SMO as the best solution to solve the
robust fault reconstruction and estimation problem. Up
to now, this application has been discussed extensively
for both linear and Lipschitz nonlinear systems. In
the context of actuator fault estimation, constructing a
diagnosis model in order to reconstruct faults is not
possible if sensor faults occur simultaneously. The
same difficulty is present when trying to estimate sensor
faults. Several design methods have been developed in a
precise and effective way when actuator and sensor fault
reconstruction is divided into two steps:

• If actuator fault reconstruction is considered, fault
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estimation is possible without sensor faults (Edwards
et al., 2000; Ng et al., 2007; Tan and Edwards,
2003b; Dhahri et al., 2012; Raoufi et al., 2010;
Xing-Gang and Edwards, 2007a).

• If sensor fault estimation is considered, fault
reconstruction is solved without considering actuator
faults (Tan and Edwards, 2002; Alwi et al., 2009;
Xing-Gang and Edwards, 2007b).

Nevertheless, in practical systems, it is often the case
when actuator and sensor fault occur simultaneously. In
this framework, reconstruction of simultaneous faults is
highly important. So far, only the work of Tan and
Edwards (2003a) has addressed the fault reconstruction
and estimation problem in a simultaneous actuator and
sensor fault scenario. It is worth pointing out that the
previous work referred to above considers only certain
linear systems. This paper deals with the problem of fault
reconstruction and estimation with simultaneous actuator
and sensor faults.

The actual physical systems are often more complex
and nonlinear. Due to their excellent ability of nonlinear
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system description, very interesting approaches have
represented these systems in the Takagi–Sugeno (T–S)
form. T–S models have been introduced by Takagi and
Sugeno (1985). Roughly speaking, the feature is to
understand the overall system behavior by a set of local
linear models. Each local model represents the system’s
operation in a particular area. The local models are then
aggregated using an interpolation mechanism by premise
variables satisfying the convex sum property.

Taking the T–S representation, several attempts have
been oriented to the diagnosis of nonlinear systems (e.g.,
Ichalal et al., 2010; 2012; Gao et al., 2010; Zhao et al.,
2009; Asemani and Majd, 2013; Mechmeche et al., 2012;
Bouattour et al., 2011). Special attention has already
been paid to the application of SMO design to fault
reconstruction and estimation schemes for T–S systems
subject to actuator and sensor faults (Akhenak et al., 2007;
2008; Xu et al., 2012). The authors assume that the
premise variables are measurable so that they depend on
the inputs or the measurement outputs. This requires the
development of two different T–S representations of the
same system, depending on the reconstruction of sensor or
actuator faults. More recently, to overcome this problem,
Ichalal et al. (2009a; 2009b), Hamdi et al. (2012) and
Ghorbel et al. (2012) have supposed that the premise
variables depend on a state variable. This implies that
these variables are unmeasurable.

In this paper, we will extend the method of fault
diagnosis based on H∞ optimization, developed for
Lipschitz nonlinear systems by Dhahri et al. (2012),
in order to achieve reconstruction of simultaneous
actuator and sensor faults for a T–S system subject
to disturbances. It should be noticed that the T–S
system is with unmeasurable premise variables which
satisfy the Lipschitz constraints. By considering the
sensor faults vector as “fictitious” actuator faults, an
augmented T–S system is introduced. The main
contribution is to construct H∞ T–S SMO with the
generation of two equivalent injection measurement
signals to solve the problem of simultaneous faults in
actuators and sensors. In this study, we use an LMI
optimization approach in which the admissible Lipschitz
constant and the disturbance attenuation level are
maximized simultaneously through convex multiobjective
optimization.

The outline of this paper is as follows. In Section 2,
we describe an uncertain T–S system with unmeasurable
premise variables in a simultaneous actuator and sensor
faults scenario. In Section 3, we propose an H∞ T–S
sliding mode observer design with two discontinuous
terms. The stability conditions of the T–S observer
are studied via Lyapunov theories and LMI convex
multiobjective optimization. Section 4 is devoted to
reconstruction of simultaneous actuator and sensor faults.
Two simulation examples are described in Section 5,

illustrating the effectiveness of the proposed method.
Finally, Section 6 presents some concluding remarks.

Notation. ‖A‖ denotes the Euclidean norm. The symbol
In illustrates an n-th order identity matrix. R

+ and C

represent the set of nonnegative real numbers and the
complex plane, respectively.

2. Problem statement

2.1. Uncertain T–S system description. Consider
an uncertain T–S system with unmeasurable premise
variables affected both by actuator and sensor faults as
follows:

ẋ(t) =

k∑

i=1

μi(x(t))
{
Aix(t) +Biu(t) +Mifa(t)

+Diξ(x, u, t)
}
, (1)

y(t) = Cx(t) +Nfs(t), (2)

where k represents the number of sub-models, x(t) ∈
R

n is the state vector, u(t) ∈ R
m is the vector of

control inputs and y(t) ∈ R
p denotes the output vector.

fa(t) → R
q and fs(t) → R

h represent the behaviors
of actuator and sensor faults, respectively, which are
assumed unknown but bounded by some known constants
as ‖fa(t)‖ ≤ ρa, ‖fs(t)‖ ≤ ρs. ξ(x, u, t) : R

n ×
R

m × R
+ �→ R

l models the uncertainties and external
disturbances. Ai ∈ R

n×n, Bi ∈ R
n×m, Mi ∈ R

n×q ,
Di ∈ R

n×l, C ∈ R
p×n and N ∈ R

p×h are known real
matrices with appropriate dimensions. We also assume
that the matrices C and N have full row and column
ranks, respectively. Hereμi(x(t)) represent unmeasurable
premise variables on the T–S system which satisfy the
properties of the sum convex

k∑

i=1

μi(x(t)) = 1,

0 ≤ μi(x(t)) ≤ 1, ∀i ∈ {1, . . . , k} .
(3)

In order to transform the sensor faults to fictitious
actuator faults affecting the system states, initially we
assume that there exists an orthogonal matrix TR ∈ R

p×p,
obtained by the QR transformation of the sensor fault
matrix N , such that

TRy(t) :=

{
y1(t) = C1x(t),
y2(t) = C2x(t) +N1fs(t),

(4)

where y2(t) ∈ R
h and N1 ∈ R

h×h is a nonsingular
matrix.

Now define w(t) ∈ R
h as a filtered version of the

potentially faulty sensor signals y2(t),

ẇ(t) = −Afw(t) +Afy2(t)
= −Afw(t) +AfC2x(t) +AfN1fs(t),

(5)
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where −Af ∈ R
h×h is a stable filter matrix.

From the preceding equations, an augmented
uncertain T–S system of order (n+ h) can be obtained:
[
ẋ(t)
ẇ(t)

]

︸ ︷︷ ︸
χ̇(t)

=
k∑

i=1

μi(χ(t))

{[
Ai 0

AfC2 −Af

]

︸ ︷︷ ︸
Ai

[
x(t)
w(t)

]

︸ ︷︷ ︸
χ(t)

+

[
Bi

0

]

︸︷︷︸
Bi

u(t) +

[
Mi

0

]

︸ ︷︷ ︸
Ma,i

fa(t)

+

[
0

AfN1

]

︸ ︷︷ ︸
Ms

fs(t) +

[
Di

0

]

︸ ︷︷ ︸
Di

ξ(χ, u, t)

}
,

(6)

[
y1(t)
w(t)

]

︸ ︷︷ ︸
z(t)

=

[
C1 0
0 Ih

]

︸ ︷︷ ︸
C

[
x(t)
w(t)

]

︸ ︷︷ ︸
χ(t)

. (7)

The T–S system (6)–(7) with unmeasurable premise
variables can be reduced to a T–S system with measurable
premise variables as

χ̇(t) =

k∑

i=1

μi(χ̂(t))
{
Aiχ(t) + Biu(t)

+Diξ(χ, u, t) + φ(χ, χ̂)

+Ma,ifa(t) +Msfs(t)
}
, (8)

z(t) = Cχ(t), (9)

such that

φ(χ, χ̂) :=

k∑

i=1

(μi(χ(t))− μi(χ̂(t)))
{
Aiχ(t)+Biu(t)

+Ma,ifa(t) +Msfs(t) +Diξ(χ, u, t)
}
,

where χ̂(t) denote the estimated augmented states, Ai ∈
R

(n+h)×(n+h), Bi ∈ R
(n+h)×m, Ma,i ∈ R

(n+h)×q,
Ms ∈ R

(n+h)×h, Di ∈ R
(n+h)×l and C ∈ R

p×(n+h) are
the matrices defined for the i-th model, ∀ i ∈ {1, . . . , k},
where n+ h > p ≥ q + h.

2.2. Existence assumptions. Each local model for the
T–S system (8)–(9) must satisfy the following conditions:

Condition C1:

rank(C [Ma,i Ms]) = q + h. (10)

Condition C2:

rank

[
sIn+h −Ai Ma,i Ms

C 0 0

]

= n+ h+ rank [Ma,iMs] , (11)

∀s ∈ C such that R(s) ≥ 0.

Condition C3: φ(χ, χ̂) satisfies the Lipschitz constraint
(Ichalal et al., 2010),

‖φ(χ, χ̂)‖ ≤ γ ‖χ− χ̂‖ , (12)

where γ > 0 is a known scalar called the Lipschitz
constant.

Conditions C1 and C2 express the observability
properties for each local model of the T–S system (8)–(9).
These conditions must be satisfied for each vertex of the
original uncertain T–S system (1)–(2).

Furthermore, from (6)–(7), it is easy to see that

C [Ma,i Ms] =

[
C1Mi 0
0 AfN1

]
,

∀ i ∈ {1, . . . , k} . (13)

Premultiplying C [Ma,i Ms] in (13) with a
nonsingular matrix

[
Ip−h 0
0 A−1

f

]
,

we obtain
[
C1Mi 0
0 N1

]
, ∀ i ∈ {1, . . . , k} . (14)

It follows that, ∀ i ∈ {1, . . . , k},

rank(C [Ma,i Ms])=rank(C1Mi)+rank(N1). (15)

Since N1 ∈ R
h×h has full rank, Condition C1 will be

satisfied if and only if

rank [C1Mi] = q, ∀ i ∈ {1, . . . , k} . (16)

The matrix in (16) has p− h rows and q columns. Hence,
since by assumption p ≥ q + h, Condition C1 is fulfilled
for each vertex of system (8)–(9) if (16) is satisfied.

In addition, after expressing (11) in terms of the
partitioned matrices in (6)–(7), it follows that, ∀ i ∈
{1, . . . , k},

rank

⎡

⎣
sIn −Ai Mi 0
−AfC2 0 AfN1

C1 0 0

⎤

⎦ = n+ q + h. (17)

Pre-multiplying the matrix in (17) by the following
nonsingular matrix:

[
In 0
0 T−1

R

]⎡

⎣
In 0 0
0 0 Ip−h

0 A−1
f 0

⎤

⎦ , (18)

we have, ∀ i ∈ {1, . . . , k},

rank

[
sIn −Ai Mi 0

C 0 N

]
= n+ q + h. (19)
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Since N has full rank, we obtain, ∀ i ∈ {1, . . . , k},

rank

[
sIn −Ai Mi

C 0

]
= n+ rank(Mi), (20)

which must be satisfied for the original T–S system
(1)–(2), ∀s ∈ C such that R(s) ≥ 0.

The following section presents a T–S sliding mode
observer design with two discontinuous terms intended
to the reconstruction of simultaneous actuator and sensor
faults for the uncertain T–S system (8)–(9).

3. H∞ T–S sliding mode observer design

3.1. Observer structure. The proposed sliding mode
observer design with two discontinuous terms has the
following T–S structure:

˙̂χ(t) =

k∑

i=1

μi(χ̂(t))
{
Aiχ̂(t) + Biu(t) + Gl,iez(t)

+ Gn,iva,i(t) + Gn,ivs,i(t)
}
,

(21)

ẑ(t) = Cχ̂(t), (22)

where ez(t) := z(t) − ẑ(t) represents the output error
estimation.

Assuming that, ∀ i ∈ {1, . . . , k}, Gn,i have the
following structure:

Gn,i =

[−Li

Ip

]
C−1
2 , (23)

where Li =
[
L1,i 0

]
, together with the design matrices

L1,i ∈ R
(n+h−p)×(p−q−h) will be determined later.

Here va,i(t) and vs,i(t) are nonlinear discontinuous
terms, which compensate fa(t) and fs(t), respectively,
defined by

va,i(t) :=

⎧
⎨

⎩
ηa,i

ez(t)

‖ez(t)‖ if ez(t) 	= 0,

0 otherwise,
(24)

vs,i(t) :=

⎧
⎨

⎩
ηs,i

ez(t)

‖ez(t)‖ if ez(t) 	= 0,

0 otherwise.
(25)

Here ηa,i and ηs,i must be bounded as ηa,i ≥
‖C2Ma2,i‖ ρa + ηa0,i and ηs,i ≥ ‖C2Ms2‖ ρs + ηs0,i,
respectively, ∀ i ∈ {1, . . . , k}. C2, Ma2,i and Ms2 will
be described formally later, ∀ i ∈ {1, . . . , k}.

Under Condition C1, there exists a linear
change of coordinates such that the matrices

(Ai, [Ma,i Ms] ,Di, C) yield, ∀ i ∈ {1, . . . , k},

Ai =

[A1,i A2,i

A3,i A4,i

]
,

[Ma,iMs] =

[
0 0

Ma2,i Ms2

]
,

Di =

[D1,i

D2,i

]
,

C =
[
0 C2

]
, (26)

where A1,i ∈ R
(n+h−p)×(n+h−p), Ma2,i ∈ R

p×q ,
Ms2 ∈ R

p×h, D1,i ∈ R
(n+h−p)×l and C2 ∈ R

p×p is
nonsingular.

We also assume that

A3,i =

[A31,i

A32,i

]
,

Ma2,i =

[
0

Ma0,i

]
,

Ms2 =

[
0

Ms0

]
,

(27)

with A31,i ∈ R
(p−q−h)×(n+h−p), Ma0,i ∈ R

(q+h)×q

and Ms0 ∈ R
(q+h)×h having full rank, ∀ i ∈ {1, . . . , k}.

Remark 1. Condition C2 implies that the invariant zeros
for each vertex of the T–S system (8)–(9) are given, ∀ i ∈
{1, . . . , k}, by the system triple (Ai, [Ma,i Ms] , C).
By construction, (A1,i,A31,i) must be detectable and
the system zeros are actually the unobservable modes of
(A1,i,A31,i) which must lie in C

− ∀ i ∈ {1, . . . , k}.

Define e(t) := χ(t) − χ̂(t) as the state estimation
error. From (8)–(9) and (21)–(22), the dynamics of state
estimation error is given by the equation

ė(t) =

k∑

i=1

μi(χ̂(t))
{
Al,ie(t) + φ(χ, χ̂)

+Diξ(χ, u, t) +Ma,ifa(t)−Gn,iva,i(t)

+Msfs(t)−Gn,ivs,i(t)
}
,

(28)

where Al,i = Ai − Gl,iC.

In order to identify the sliding motion, it is required
to apply a further change of coordinates according to

TL :=

[
In+h−p Li

0 C2
]
. (29)

Then, in the new coordinates system, it is
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straightforward to see that, ∀ i ∈ {1, . . . , k},

AL,i =

[ AL1,i AL2,i

AL3,i AL4,i

]
,

[MaL,iMsL] =

[
0 0

MaL2,i MsL2

]
,

DL,i =

[DL1,i

DL2,i

]
,

GnL,i = CT
L=

[
0
Ip

]
,

GlL,i =

[ GlL1,i

GlL2,i

]
,

(30)

such that AL1,i = A1,i + LiA3,i must be stable, AL3,i =
C2A3,i, MaL2,i = C2Ma2,i, MsL2 = C2Ms2, DL2,i =
C2D2,i and GlL,i = AL4,i−As,i. As,i are stable matrices.

It can be easily verified that, in the coordinate
system (30), the state estimation error dynamics can be
partitioned as

ė1(t) =
k∑

i=1

μi(χ̂(t))
{
(A1,i+LiA3,i)e1(t)

+ (D1,i+D2,i)ξ(χ, u, t)

+ [In+h−p Li]φ1(χ, χ̂)
}
,

(31)

ėz(t) =

k∑

i=1

μi(χ̂(t))
{
As,iez(t)

+ C2(A3,ie1(t)+φ2(χ, χ̂))

+ C2Ma2,ifa(t)+C2Ms2fs(t)

− va,i(t)−vs,i(t)+C2D2,iξ(χ, u, t)
}
.

(32)

The objective of this paper is to present a robust
sliding mode observer with two discontinuous terms for
estimating both actuator and sensor faults, as well as
the T–S system states. It will be shown that sufficient
conditions for the stability with H∞ performances of
the observer error (31)–(32) are established by using
Lyapunov stability and LMIs.

3.2. Stability of the sliding motion. Let

g(t) = H

[
e1(t)
ez(t)

]
(33)

stand for the controlled output error estimation system,
where H is a full rank design matrix having the following
structure:

H :=

[
H1 0
0 H2

]
. (34)

The purpose is to design the observer parameters Li,
∀ i ∈ {1, . . . ,K}, where the observer error dynamics

are asymptotically stable with an achieved disturbance
attenuation level ς . Hence, the following specified H∞
norm upper bound is guaranteed:

‖g‖22 ≤ ς2 ‖ξ‖22 . (35)

The following theorem provides sufficient conditions
to ensure the desired properties of stability. It is based on
the results of Dhahri et al. (2012).

Theorem 1. The state estimation error is asymptot-
ically stable with simultaneously maximized admissible
Lipschitz constant γ∗ and minimized gain ς∗, if there exist
fixed scalars 0 ≤ λ ≤ 1, ε > 0, θ > 0 and α > 0, and
matrices P1 > 0, P2 > 0, Wi and Li, such that the fol-
lowing LMI convex multiobjective optimization problem
has a solution:

min [λ(α + ε) + (1 − λ)θ]

subject to

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11,i AT
3,iCT

2 P2 P1D1,i +WiD2,i P1

(∗) ψ22,i P1D2,i 0
(∗) (∗) −θIl 0
(∗) (∗) (∗) −εIn+h−p

(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)
(∗) (∗) (∗) (∗)

(36)
0 In+h−p 0
P2 0 Ip
0 0 0
0 0 0

−εIp 0 0
(∗) −αIn+h−p 0
(∗) (∗) −αIp

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

where ψ11,i = AT
1,iP + PA1,i +WiA3,i + AT

3,iW
T
i +

HT
1 H1, ψ22,i = AT

s,iP2 + P2As,i + HT
2 H2, ∀ i ∈

{1, . . . ,K}.

Once the convex multiobjective problem is solved,

ς∗ = min(ς) =
√
θ,

ε∗ = min(ε),

α∗ = min(α),

γ∗ = max(γ) =
1

‖TL‖2
√
α∗ε∗

,

Li = P−1
1 Wi.

Proof. Write

ẽ(t) =

[
e1(t)
ez(t)

]
. (37)
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Then we have

˙̃e(t) =

k∑

i=1

μi(χ̂(t))
{
A0,iẽ(t)+TLφ(χ, χ̂)

+DL,iξ(χ, u, t) +MaL,ifa(t)− GnL,iva,i(t)

+MsLfs(t)− GnL,ivs,i(t)
}
,

(38)

where

A0,i =

[ A1,i + LiA3,i 0
C2A3,i As,i

]
.

The proof of this theorem proceeds by using the
following quadratic Lyapunov function:

V (ẽ(t)) = ẽT (t)P ẽ(t), P = PT > 0, (39)

where

P =

[
P1 0
0 P2

]
,

P1 ∈ R
(n+h−p)×(n+h−p), P2 ∈ R

p×p. (40)

The time derivative of V (ẽ(t)) along the system
trajectories is

V̇ (ẽ(t)) =

k∑

i=1

μi(χ̂(t))
{
ẽ(t)(AT

0,iP+PA0,i)ẽ
T(t)

+ 2ẽT(t)P (TLφ(χ, χ̂)+DL,iξ(χ, u, t)

+MaL,ifa(t)− GnL,iva,i(t)

+MsLfs(t)− GnL,ivs,i(t))
}
.

(41)

For actuator faults, from (24) and (30) it follows that

ẽT (t)PMaL,ifa(t)− ẽT (t)PGnL,iva,i(t)

= ẽT (t)

([
P1 0
0 P2

][
0

C2Ma2,i

]
fa(t)

−
[
P1 0
0 P2

][
0
Ip

]
va,i(t)

)

= eTz (t)P2C2Ma2,ifa(t)− eTz (t)P2va,i(t)

≤ ∥∥P2e
T
z (t)
∥∥
(
‖C2Ma2,i‖ ‖fa(t)‖

− ηa,i
ez(t)

‖ez(t)‖
)

≤ ∥∥P2e
T
z (t)
∥∥ (‖C2Ma2,i‖ ρa − ηa,i)

≤− ∥∥P2e
T
z (t)
∥∥ ηa0,i < 0.

(42)

In the same way, for sensor faults, from (25) and (30)
it follows that

ẽT (t)P (MsLfs(t)− GnL,ivs,i(t)

≤ − ∥∥P2e
T
z (t)
∥∥ ηs0,i < 0. (43)

Applying the inequality

2XTY ≤ 1

ε
XTX + εY TY, (44)

valid for any scalars ε > 0, and using the Lipschitz
constraint in Condition C3, the following inequalities are
satisfied:

2ẽT (t)PTLφ(χ, χ̂)

≤ 1

ε
ẽT (t)P 2ẽ(t) + εφT (χ, χ̂)T T

L TLφ(χ, χ̂)

=
1

ε
ẽT (t)P 2ẽ(t) + ε‖TLφ(χ, χ̂)‖2

≤ 1

ε
ẽT (t)P 2ẽ(t) + ε‖TL‖2γ2‖ẽ(t)‖2

≤ 1

ε
ẽT (t)P 2ẽ(t) + εγ̃2‖ẽ(t)‖2,

(45)

where γ̃ = ‖TL‖ γ.
Substituting (42)–(43) and (45) into (41) yields

V̇ (ẽ(t))

≤
k∑

i=1

μi(χ̂(t))
{
ẽT(t)(AT

0,iP+PA0,i

+
1

ε
P 2+εγ̃2)ẽ(t)

+ 2ẽT (t)PDL,iξ(χ, u, t)
}
.

(46)

Now define

J(t) := V̇ (ẽ(t))+gT (t)g(t)

− ς2ξT (χ, u, t)ξ(χ, u, t).
(47)

We have

J(t) ≤
k∑

i=1

μi(χ̂(t))
{
ẽT (t)

(
AT

0,iP

+ PA0,i +
1

ε
P 2+εγ̃2 +HTH

)

ẽ(t)+2ẽT(t)PDL,iξ(χ, u, t)

− ς2ξT (χ, u, t)ξ(χ, u, t)
}
.

(48)

Define the new variable

α :=
1

εγ̃2
(49)

We get

γ̃ =
1√
αε
, θ := ς2.

Maximization of γ̃ guarantees the stability of the
T–S system for any Lipschitz nonlinear function with
a Lipschitz constant less than or equal to an unknown
constant γ̃∗. Maximization of γ̃ and minimization of θ
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can be accomplished by simultaneous minimization of γ,
ε and θ. This leads to a multiobjective optimization.

Therefore, we have

J(t)

≤
k∑

i=1

μi(χ̂(t))
{
ẽT(t)(AT

0,iP

+ PA0,i+
1

ε
P 2+α−1 +HTH)ẽ(t)

+2ẽT(t)PDL,iξ(χ, u, t)

− θξT (χ, u, t)ξ(χ, u, t)
}

=

k∑

i=1

μi(χ̂(t))

×
{
ẽT(t)

( [AT
1,i+AT

3,iL
T
i AT

3,iCT
2

0 AT
s,i

][
P1 0
0 P2

]

+

[
P1 0
0 P2

][A1,i+LiA3,i 0
C2A3,i As,i

]

+ ε−1

[
P 2
1 0
0 P 2

2

]
+ α−1

[
In+h−p 0

0 Ip

]

+

[
H1 0
0 H2

]T[
H1 0
0 H2

] )
ẽ(t) + 2ẽT(t)

×
[
P1 0
0 P2

][D1,i + LiD2,i

C2D2,i

]
ξ(χ, u, t)

− θξT (χ, u, t)ξ(χ, u, t)
}

=
k∑

i=1

μi(χ̂(t))
{
ẽT (t)

[
Q1,i AT

3,iCT
2 P2

P2C2A3,i Q2,i

]
ẽ(t)

+ 2ẽT(t)

[
P1D1,i+P1LiD2,i

P2C2D2,i

]
ξ(χ, u, t)

− θξT (χ, u, t)ξ(χ, u, t)
}
,

(50)

where

Q1,i=(A1,i + LiA3,i)
TP1 + P1(A1,i + LiA3,i)

+ ε−1P 2
1 + α−1In+h−p +HT

1 H1,

Q2,i = AT
s,iP1 + P1As,i + ε−1P 2

2 + α−1Ip +HT
2 H2.

Thus, we obtain

J(t) ≤
⎡

⎣
e1(t)
ez(t)

ξ(χ, u, t)

⎤

⎦
T

Ω

⎡

⎣
e1(t)
ez(t)

ξ(χ, u, t)

⎤

⎦ , (51)

with

Ω=

⎡

⎣
Q1,i AT

3,iCT
2 P2 P1D1,i+P1LiD2,i

(∗) Q2,i P2D2,i

(∗) (∗) −θIl

⎤

⎦ . (52)

If Ω < 0, then J(t) ≤ 0 along the system
trajectories. The system of the state estimation error
(31)–(32) is asymptotically stable with the attenuation
level θ and the admissible Lipschitz constant γ̃∗.

Integrating the expression in (47) from 0 to ∞, we
have

V (ẽ(∞))− V (ẽ(0)) + ‖g‖22 − θ ‖ξ‖22 ≤ 0. (53)

Together with the zero initial condition e1(0) =
ez(0) = 0, we have
{
V (ẽ(0))=0,
V (ẽ(∞))=eT1 (∞)P1e1(∞) + eTz (∞)P2ez(∞) ≥ 0.

(54)
Therefore,

‖g‖22 ≤ θ ‖ξ‖22 . (55)

Notice that Ω < 0 is nonlinear because of the product
P1Li. This problem can be solved by using the changes
of variables Wi = P1Li. Thus, applying the Schur
complement, the inequality (36) can be obtained.

In addition, it is reported that the designation (∗)
in (36) satisfies the symmetric property of the LMIs
technique. �

4. Reconstruction of simultaneous actuator
and sensor faults

A clear distinction of this paper is the proposed H∞
sliding mode observer with two discontinuous terms,
especially designed for reconstruction of simultaneous
faults for a T–S system subject to disturbances. Thus, we
are looking forward to generate two equivalent injection
measurement signals where each one is designed to
compensate a particular fault’s class, actuator or sensor.

If all the conditions of the preceding theorem are
satisfied and the LMI convex multiobjective optimization
is solved, then

‖g‖22 ≤ θ ‖ξ‖22 . (56)

Consequently, the error dynamics of ez(t) in sliding
motion is given by

0 =

k∑

i=1

μi(χ̂(t))
{
A3,ie1(t)+φ2(χ, χ̂)

+D2,iξ(χ, u, t)

+Ma2,ifa(t)−C−1
2 va,i(t)

+Ms2fs(t)−C−1
2 vs,i(t)

}
.

(57)

This is equivalent to

0 =

k∑

i=1

μi(χ̂(t))
{
Ψ(χ, u, t) +Ma2,ifa(t)

− C−1
2 va,i(t) +Ms2fs(t)− C−1

2 vs,i(t)
}
,

(58)
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where Ψ(χ, u, t) := A3,ie1(t)+φ2(χ, χ̂)+D2,iξ(χ, u, t).

Using the Lipschitz constraint (12), Ψ(χ, u, t) is
bounded as follows:

‖Ψ(χ, u, t)‖2
≤ ‖(A3,i + γ)e1(t)‖2 + ‖D2,iξ(χ, u, t)‖2
≤ ‖(A3,i + γ)ẽ(t)‖2 + ‖D2,iξ(χ, u, t)‖2 .

(59)

Since ‖ẽ(t)‖2 ≤ ∥∥H−1
∥∥
2
‖g(t)‖2, it follows that

‖Ψ(χ, u, t)‖2≤ ε∗, (60)

where ε∗ := (
∥∥(A3,i + γ)H−1

∥∥
2
+ ‖D2,i‖2) ‖ξ(χ, u, t)‖2 .

Therefore, approximately, for some small ε∗

0=

k∑

i=1

μi(χ̂(t))

{
[Ma2,i Ms2]

[
fa(t)
fs(t)

]
−C−1

2

[
vaeq ,i(t)
vseq,i(t)

]}
,

(61)
where the equivalent injection measurement signals are

vaeq ,i(t) :=

⎧
⎨

⎩
ηa,i

ez(t)

‖ez(t)‖+ δ
if ez(t) 	= 0,

0 otherwise,
(62)

vseq ,i(t) :=

⎧
⎨

⎩
ηs,i

ez(t)

‖ez(t)‖+ δ
if ez(t) 	= 0,

0 otherwise,
(63)

with δ used to obtain a continuous sliding gain capable of
estimating both actuator and sensor faults that jointly exist
during the T–S system’s operation.

Consequently, simultaneous actuator and sensor
faults estimation for the T–S system is given by

f̂a(t) =

k∑

i=1

μi(χ̂(t)) M+
a2,iC−1

2 vaeq,i(t), (64)

f̂s(t) =
k∑

i=1

μi(χ̂(t)) M+
s2C−1

2 vseq ,i(t), (65)

where M+
a2,i and M+

s2 represent the pseudo-inverses of
Ma2,i and Ms2, respectively.

5. Illustrative examples

The proposed design of robust fault reconstruction and
estimation is illustrated with two simulation examples.

5.1. Illustrative example 1. Firstly, let us consider an
academic T–S system taken from the work of Ichalal et al.

(2009a) with the structure of (1)–(2) and the following
matrices:

A1 =

⎡

⎣
−2 1 1
1 −3 0
2 1 −8

⎤

⎦ , B1 =

⎡

⎣
1
5
0.5

⎤

⎦ ,

M1 =

⎡

⎣
6
3
1

⎤

⎦ , D1 =

⎡

⎣
1
1
1

⎤

⎦ ,

A2 =

⎡

⎣
−3 2 −2
5 −3 0
1 2 −4

⎤

⎦ , B2 =

⎡

⎣
3
1
−7

⎤

⎦ ,

M2 =

⎡

⎣
7
5
2

⎤

⎦ , D2 =

⎡

⎣
1
1
1

⎤

⎦ ,

C =

[
1 1 1
1 0 1

]
, N =

[
5
1

]
.

The parameters are

μ1(x(t)) =
1− tanh(x1(t))

2
,

μ2(x(t)) =
1 + tanh(x1(t))

2
= 1− μ1(x(t)).

5.1.1. T–S sliding mode observer design. A suitable
choice of the matrix TR from (4) can be shown to be

TR =

[−0.44 −0.89
0.89 −0.44

]
,

where we have N1 = −6.70, C1 =
[
0.44 −0.44 0.44

]

and C2 =
[
0.78 −0.19 0.78

]
. The filter matrix Af

from (5) is chosen as Af = 1. Hence, the design T–S
system (6)–(7) can be obtained.

It was found that rank(C1Mi) = q = 1, so that
Condition C1 is fulfilled. In addition, we also assume
that Condition C2 is satisfied. Therefore, the proposed
observer design (21)–(22) exists for the uncertain T–S
system (8)–(9).

The aim of the following study is to simulate states
by the proposedH∞ T–S sliding mode observer, and then
estimate the actuator and sensor faults in the simultaneous
scenario. We assume that

H1 = 5I2,

H2 = 2I2,

As,i = As = diag {−2,−3} ,
λ = 0.99.

The T–S sliding mode observer is designed by using
the Matlab LMI toolbox. Once the convex multiobjective
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problem is solved, we get

μ∗ = 5.96,

ε∗ = 5.55,

α∗ = 5.52,

γ∗ = 0.99,

P1=

[
1.54 −0.18
−0.18 2.60

]
, P2=

[
1.87 0.01
0.01 1.27

]
.

For a given Lipschitz constant in the uncertain T–S
system γ = 0.65 and the maximum admissible Lipschitz
γ∗ = 0.99 ≥ γ, the maximization of γ guarantees the
stability of the error for any Lipschitz nonlinear function.

The T–S siding mode observer gains are

Gl,1 =

⎡

⎢⎢⎣

2.23 −2.37
1.67 0.25
5.03 6.54
−6.75 4.65

⎤

⎥⎥⎦ ,

Gn,1 =

[
3.35 1.67 0.55 0
0.25 −1.18 −1.44 1

]T
,

Gl,2 =

⎡

⎢⎢⎣

−0.39 0.81
4.77 −1.39
2.07 0.88
−2.54 0.73

⎤

⎥⎥⎦ ,

Gn,2 =

[
1.15 0.82 0.32 0
−0.24 0.83 0.45 1

]T
.

5.1.2. Reconstruction of simultaneous faults. In
the corresponding simulations, we assume that x0 =
[0.1, 0.2, 0.1], ηa,i = ηa = 25, ηs,i = ηs = 35,
δ = 0.001, and the scenario with simultaneous actuator
and sensor faults starting at t = 7 s. The simulation was
carried out with the input signal u(t) = 0.5 sin(t) and
uncertainty ξ(x, u, t) = 0.1 sin(0.2t).
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0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Actual and estimated state x2

Time(s)

S
ta

te
 x

2

 

 
Actual
Estimated
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Fig. 4. Trajectories of state x3 (t) and its estimate x̂3 (t).

Figure 1 describes the behaviors of the premise
variables such that 0 ≤ μ1 (x(t)) ≤ 1, 0 ≤ μ2 (x(t)) ≤ 1
and μ1(x(t))+μ2(x(t)) = 1 along the system trajectories.

Figures 2–4 show the states x1 (t), x2 (t) and x3 (t)
plotted for comparison against the estimated values x̂1 (t),
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Fig. 5. Reconstruction of simultaneous actuator and sensor
faults.

x̂2 (t) and x̂3 (t), respectively. It can be seen that the
estimated states can converge towards the original states.

In order to see the effectiveness of the proposed fault
reconstruction and estimation design for T–S system with
unmeasurable premise variables, Fig. 5 shows that the
T–S sliding mode observer faithfully reconstructs faults
simultaneously occurring in the actuator and sensor in
spite of the presence of uncertainties.

5.2. Illustrative example 2. In this example, an
application of the proposed reconstruction design for
simultaneous actuator and sensor faults is illustrated by
the nonlinear model of a single link flexible joint robot
arm, taken from the work of Ichalal et al. (2010), whose
model is defined by

⎧
⎪⎪⎨

⎪⎪⎩

θ̇m = ωm,
ω̇m= k

Jm
(θl − θm)− Bν

Jm
ωm + Kι

Jm
(u(t)− fa(t)),

θ̇l = ωl,

ω̇l = k
Jl
(θl − θm)− mgh

Jl
sin(θl),

where θm and ωm are the position and angular velocity
of the DC motor, respectively, θl and ωl represent the
position and angular velocity of the link. The DC motor
is excited with u(t) = sin(t). We choose x1 = θm,
x2 = ωm, x3 = θl, and x4 = ωl.

The flexible joint robot arm system is described in
the nonlinear form as
{
ẋ(t)=Ax(t)+Bu(t)+Γ(x, u, t)+Mfa(t)+Dξ(x, u, t),
y(t)=Cx(t)+Nfs(t),

with the matrices

A =

⎡

⎢⎢⎣

0 1 0 0
−48.64 −1.25 48.64 0

0 0 0 1
1.95 0 −1.95 0

⎤

⎥⎥⎦ ,

B =M =

⎡

⎢⎢⎣

0
21.62
0
0

⎤

⎥⎥⎦ ,

C =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎦ ,

Γ(x, u, t) =

⎡

⎢⎢⎣

0
21.62u(t)

0
−3.33 sin(x3(t))

⎤

⎥⎥⎦ .

The variable fa(t) denotes the signal of the actuator
faults. The potentially faulty sensor signal, which affects

the first output system, is fs(t), with N =
[
1 0 0

]T
.

Γ(x, u, t) encapsulates the nonlinearities present in the
D-C motor.

As described by Ichalal et al. (2010), the flexible
joint robot arm system can be formulated in the T–S
representation (1)–(2), where k = 2, with the system
matrices

A1=

⎡

⎢⎢⎣

0 1 0 0
−48.64 −1.24 48.64 0

0 0 0 1
1.95 0 −22.83 0

⎤

⎥⎥⎦, B1=

⎡

⎢⎢⎣

0
21.62
0
0

⎤

⎥⎥⎦ ,

A2=

⎡

⎢⎢⎣

0 1 0 0
−48.64 −1.24 48.64 0

0 0 0 1
1.95 0 −18.77 0

⎤

⎥⎥⎦, B2=

⎡

⎢⎢⎣

0
21.62
0
0

⎤

⎥⎥⎦ .

The parameters μi (x(t)) are given by

μ1(x(t)) =
ϑ(t) + 0.21

1.21
,

μ2(x(t)) =
1− ϑ(t)

1.21

where

ϑ(t) =
sin(x3 (t))

x3 (t)
.

The matrices TR and Af are chosen respectively as

TR =

⎡

⎣
0 0 1
0 1 0
1 0 0

⎤

⎦

and Af = 1. Hence, the designed T–S system (6)–(7) can
be obtained.

It was found that Conditions C1 and C2 are satisfied.
Therefore, the T–S observer design (21)–(22) exists due to
the T–S system (8)–(9).

After solving the optimization problem with LMI
technique, for a given Lipschitz constant in the T–S
system γ = 0.33 and the maximum admissible Lipschitz
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γ∗ = 0.96 ≥ γ, the obtained observer matrices are given
by

Gl,1 =

⎡

⎢⎢⎢⎢⎣

0 1 0
0.07 1.75 0
1 0 0

−1.99 0 0
0 0 3

⎤

⎥⎥⎥⎥⎦
, Gl,2 =

⎡

⎢⎢⎢⎢⎣

0 1 0
0 1.75 0
1 0 0
2 0 0
0 0 3

⎤

⎥⎥⎥⎥⎦
,

Gn,1 = Gn,2 =

⎡

⎣
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

⎤

⎦
T

.
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Fig. 7. Trajectories of state x1 (t) and its estimate x̂1 (t).

Figure 6 describes the behaviors of the premise
variables, such that they satisfy the properties of the sum
convex.

From the following simulation results, cf. Figs. 7–11,
it clearly appears that the proposed robust fault
reconstruction and estimation method is effective in
estimating simultaneously the actuator/sensor faults and
states for the T–S system with unmeasurable premise
variables subject to uncertainties.
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Fig. 8. Trajectories of state x2 (t) and its estimate x̂2 (t).
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Fig. 10. Trajectories of state x4 (t) and its estimate x̂4 (t).

6. Conclusion

This paper presented a robustH∞ fault reconstruction and
estimation scheme for a T–S system with unmeasurable
premise variables subject both to actuator/sensor faults
and disturbances. An augmented system was constructed
by assuming the sensor faults to be auxiliary actuator
faults. Hence, the proposed T–S sliding mode observer
with two discontinuous terms was constructed through
the search for suitable Lyapunov matrices in order to
decouple simultaneous faults. The LMIs conditions were
formulated by using convex multiobjective optimization
techniques for maximizing simultaneously the admissible
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Fig. 11. Simultaneous reconstruction of actuator and sensor
faults.

Lipschitz constant and the disturbance attenuation level.
Finally, simulation results were presented to verify the
effectiveness of the proposed method in this design
framework. The extension of our work to fault tolerant
control of T–S systems is under study.
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