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Accurately modeling claims data and determining appropriate insurance premiums are vital responsibilities for non-life
insurance firms. This article presents novel models for claims that offer improved precision in fitting claim data, both
in terms of claim frequency and severity. Specifically, we suggest the Poisson-GaL distribution for claim frequency and
the exponential-GaL distribution for claim severity. The traditional method of assigning automobile premiums based on
a bonus-malus system relies solely on the number of claims made. However, this may lead to unfair outcomes when
an insured individual with a minor severity claim is charged the same premium as someone with a severe claim. The
second aim of this article is to propose a new model for calculating bonus-malus premiums. Our proposed model takes
into account both the number and size of claims, which follow the Poisson-GaL distribution and the exponential-GaL
distribution, respectively. To calculate the premiums, we employ the Bayesian approach. Real-world data are used in
practical examples to illustrate how the proposed model can be implemented. The results of our analysis indicate that the
proposed premium model effectively resolves the issue of overcharging. Moreover, the proposed model produces premiums
that are more tailored to policyholders’ claim histories, benefiting both the policyholders and the insurance companies. This
advantage can contribute to the growth of the insurance industry and provide a competitive edge in the insurance market.

Keywords: bonus-malus system, claim severity, exponential-GaL distribution, motor insurance, number of claims, Poisson-
GaL distribution.

1. Introduction
The bonus-malus system (BMS), also known as a
no-claim discount or experience rating, is a widely
adopted mechanism used in the field of car insurance.
It is designed to reward policyholders for good driving
behavior and penalize those who frequently make claims
or exhibit risky driving habits. The BMS operates on
the principle of adjusting insurance premiums based on
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an individual’s claims history, thereby encouraging safer
driving practices and providing financial incentives for
maintaining a claim-free record.

The BMS has become a widely accepted and
integral part of car insurance in many countries. Its
implementation has contributed to promoting safer driving
habits and reducing the number of claims. Additionally,
it has incentivized policyholders to be more cautious on
the road, leading to a decrease in accidents and ultimately
resulting in lower costs for both insurers and insured
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individuals.
The Bayesian method is applied in the BMS of

car insurance to estimate parameters related to driving
behavior and risk. It involves using prior distributions to
incorporate prior beliefs about the parameters, likelihood
functions to quantify the agreement between data and
parameter values, and Bayes’ theorem to obtain posterior
distributions. These posterior distributions represent
updated probabilities of parameters after incorporating
observed data. The Bayesian method allows for
personalized risk assessment, fair premium adjustments,
and encourages safer driving behavior. It provides a
framework to incorporate prior knowledge, update beliefs
with observed data, and make informed decisions in
the BMS of car insurance. The principles of Bayesian
premium calculation have been extensively utilized in the
literature for many years. A comprehensive exploration
of these principles can be found in the book of Bühlmann
(1970).

The Poisson distribution models the occurrence of
rare events, such as accidents, over a fixed time period.
Policyholders’ claim frequencies are assumed to follow
a Poisson distribution, where the parameter represents
the average number of claims. In the BMS of motor
insurance, claim frequency data are not usually modeled
using a Poisson distribution. The Poisson distribution
assumes independent and constant rate events, which may
not apply to claim frequencies. Instead, more complex
distributions like the negative binomial or mixed Poisson
distributions are commonly used. These distributions
account for overdispersion, where the variance exceeds
the mean, commonly observed in claim frequency data.
Several papers, such as the works of Tremblay (1992),
Lemaire (1995), Walhin and Paris (1999), Bulbul and
Baykal (2016), and Tzougas et al. (2019a), have proposed
the use of mixed Poisson distributions with different prior
distributions to model claim frequency. These studies
have also presented models for calculating bonus-malus
premiums that focus solely on the claim frequency aspect.
They have contributed to the advancement of methods
considering various prior distributions and mixed Poisson
models in the computation of bonus-malus premiums
based on claim frequency data. Furthermore, Willmot
(1986) as well as Karlis and Xekalaki (2005) provided
a comprehensive overview of the existing research and
literature related to Poisson mixtures. This included
a discussion of various methodologies, techniques, and
applications involving mixed Poisson distributions.

Upon analyzing the research conducted by
Moumeesri et al. (2020), it was discovered that previous
assessments failed to differentiate between the payment of
premiums for minor and major losses when policyholders
file claims. In response to this gap, several researchers,
such as Frangos and Vrontos (2001), Mert and Saykan
(2005), Ni et al. (2014), Emad and Ali (2016), Tzougas

et al. (2019b), Moumeesri et al. (2020), Pongsart et al.
(2021), and Moumeesri and Pongsart (2022), have
proposed the premium model based on the BMS. These
researchers have explored diverse distributions for the
frequency and severity components in order to develop an
optimal Bayesian BMS framework.

Numerous studies have explored contemporary
advancements in insurance mathematics, with a
specific focus on diverse modeling techniques,
including non-homogeneous Poisson processes,
fuzzy methodologies, and heavy-tailed claim value
distributions. These approaches play a pivotal
role in risk assessment and management within the
insurance industry. Tank and Tuncel (2015) explored
survival probabilities based on non-homogeneous
claim occurrences and discussed surplus distribution
characteristics in a compound binomial model. Matsui
and Rolski (2016) introduced a mixed Poisson cluster
model that improves prediction accuracy by accounting
for clustering behavior through non-homogeneous
Poisson processes. Romaniuk (2017) adopted a fuzzy
approach to analyze catastrophe bonds, demonstrating
how uncertainties in the insurer’s shares can impact
risk estimation. Furthermore, there have been
several studies on fuzzy approaches, including
those conducted by Nowak and Romaniuk (2013),
Grzegorzewski et al. (2020) as well as Grzegorzewski
and Romaniuk (2022). Cojocaru (2017) contributed to
ruin probability analysis by proposing a multivariate
model using non-homogeneous periodic Poisson
processes, with consideration for dependent heavy-tailed
claims. These studies collectively emphasized the
significance of innovative modeling techniques to
capture the complexities of insurance risks and enhanced
decision-making processes within the industry. Further
integration of these methods promises to advance
insurance mathematics and risk management strategies.

When considering the similarities and differences
between the BMS and modeling approaches, it becomes
evident that both modeling approaches and the BMS share
the common goal of risk assessment and management.
They employ predictive modeling and address uncertainty,
with modeling approaches catering to diverse insurance
domains through intricate mathematical analyses. In
contrast, the BMS is specialized for promoting safe
driving behaviors in motor insurance, relying on
predefined rules and adhering to regulatory and market
constraints. While modeling approaches offer broader
applications, the BMS provides a targeted approach
within the motor insurance sector, demonstrating a
balance between complexity and practicality.

In a study conducted by Nedjar and Zeghdoudi
(2016), a novel probability distribution called the Gamma
Lindley distribution (GaL) was introduced. This
distribution aims to offer enhanced flexibility when
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analyzing lifetime data. It is commonly assumed that
mixing the Poisson distribution with the GaL distribution
yields improved accuracy when modeling claim frequency
data. Conversely, when it comes to modeling claim
severity data, mixing the exponential distribution with the
GaL distribution is deemed more appropriate.

In this study, we present the models for claim
frequency and severity, along with a new model that
utilizes Bayesian BMS to determine the suitable premium.
To assess the claim frequency distribution, we mix
the Poisson distribution with the GaL distribution.
This mixing offers a better fit for the claim data set
compared with using traditional distributions (such as
the exponential and Lindley distributions) due to its
thicker tail. Regarding the claim severity distribution,
previous studies have shown that the exponential-Lindley
distribution does not adequately fit the claim data.
Therefore, we propose using the exponential-GaL
distribution instead.

To derive the posterior structure functions for the
claim frequency and claim severity distributions, we
employ the Bayesian method. The mean values of
these functions are then utilized to determine appropriate
premiums for policyholders. Insurance companies can
employ our proposed model to establish premiums that
align with the actual driving behavior of policyholders.
Additionally, this model has the potential to be extended
to other types of insurance, such as agricultural crop
insurance, to improve the performance of the insurance
sector, generate economic benefits, increase government
income, and promote national development.

The paper’s structure is outlined as follows.
Section 2 provides a detailed description of the
methodology, which is divided into two subsections:
the claim frequency distribution and the claim severity
distribution. This section covers mixing distributions, the
Bayesian method, and premium prediction. In Section 3, a
practical application of the proposed bonus-malus model
is demonstrated using real insurance claim data. This
section is further divided into two parts. The first part
discusses the bonus-malus premiums obtained from the
claim frequency data, while the second part focuses
on the combined data of claim frequency and claim
severity components. Additionally, this section discusses
parameter estimation and the goodness of fit test. Finally,
Section 4 provides a summary of the findings.

2. Methodology

We make the assumption that the claim frequency
and claim severity for each policyholder are treated as
independent variables. In order to analyze these aspects
individually, we segregate the claim frequency and claim
severity distributions into distinct subsections.

2.1. Poisson-GaL model for frequency distribution.
In automobile insurance, policyholders face varying levels
of risk related to accident occurrence. This risk is
quantified by a risk parameter, which plays a crucial role
in determining insurance premiums and coverage. The
risk parameter is treated as a random variable, influenced
by individual characteristics and circumstances. By
analyzing this parameter, insurance companies can assess
the probability and potential severity of future claims,
enabling them to offer appropriate coverage and fair
premiums. To model claim frequency data accurately,
we propose mixing the Poisson distribution with the
GaL distribution (Nedjar and Zeghdoudi, 2016), which
provides a better fit and thicker tails compared with the
Poisson distribution alone.

2.1.1. Mixing distribution. Consider the scenario
where the number of claims of each policyholder,
represented as k, is assumed to follow a Poisson
distribution with a parameter ϑ. The probability mass
function (pmf) for this distribution can be expressed as

f(k|ϑ) = e−ϑϑk

k!
, k = 0, 1, 2, . . . , ϑ > 0.

The expected value, denoted as E[K|ϑ], of a Poisson
random variable K is E[K|ϑ] = ϑ.

Each policyholder is assigned a constant that
represents the expected inherent risk of their insurance
coverage. This constant corresponds to the mean number
of claims for each insured and is denoted as ϑ. We
assume that the parameter ϑ follows a GaL distribution,
characterized by the parameters θ and β. Consequently,
the probability density function (pdf) of ϑ can be
expressed in the following form:

π(ϑ) =
θ2
[
(β + βθ − θ)ϑ+ 1

]
e−θϑ

β(1 + θ)
, ϑ, θ, β > 0.

The expected value of the random variable GaL is
E[ϑ] = 2β(1+θ)−θ

θβ(1+θ) . The mixed Poisson distribution
with a GaL distribution or unconditional distribution for
Poisson-GaL is derived in the following manner:

f(k) =

∫ ∞

0

f(k|ϑ)π(ϑ) dϑ

=

∫ ∞

0

e−ϑϑk

k!
· θ

2
[
(β + βθ − θ)ϑ + 1

]
e−θϑ

β(1 + θ)
dϑ

=
θ2
[
(β + βθ − θ)(k + 1) + θ + 1

]

β(θ + 1)k+3
, (1)

where θ > 0, β > 0 and k = 0, 1, 2, . . ..

The pmf plots of the Poisson-GaL distribution, which
illustrate the unconditional distribution of claim frequency
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Fig. 1. Plots pmf of the Poisson-GaL distribution with various
values of θ and β.

for all policyholders in the portfolio, are depicted in Fig. 1.

The mixed Poisson with GaL distribution, denoted
as the Poisson-GaL distribution, can effectively handle
zero-inflated data. The distribution’s flexibility allows
it to model situations where there is an excess of zeros
compared with what would be expected in a standard
Poisson distribution. This is particularly useful for
scenarios where certain events are more likely to result
in zero occurrences.

The Poisson-GaL distribution can accommodate
zero-inflated effects by incorporating both a Poisson
component (to model non-zero occurrences) and a GaL
component (to account for the excess zeros). This
combination allows for a more accurate representation of
the data, making it a suitable choice for data sets with
zero-inflated characteristics.

2.1.2. Bayesian methodology. The calculation of
bonus-malus premiums has been extensively researched,
leading to the adoption of various methods. Among
these approaches, the Bayesian methodology emerges as
one of the most commonly employed techniques. The
primary goal of utilizing the Bayesian methodology in
bonus-malus premium calculations is to establish the
posterior distribution function. This approach proves
effective when policyholder-specific data are available,
such as historical claim records or policyholder profiles.
By incorporating Bayesian techniques, insurers can gain
a more comprehensive understanding of individual risk
profiles and make more accurate assessments when
determining appropriate bonus-malus premiums. This
methodology holds particular value in insurance settings
where personalized data plays a critical role in evaluating

and classifying policyholders.
Consider a sample denoted as k = (k1, k2, . . . , kt),

where t represents the specified time. Let N be the
total number of claims made by a policyholder during the
t-year period, given byN =

∑t
i=1 ki, where ki represents

the number of claims made by the policyholder in year i
(i = 1, 2, . . . , t). The likelihood function is defined as
follows:

L(ϑ; k1, k2, . . . , kt) =

t∏

i=1

e−ϑϑki

ki!
∝ e−ϑtϑN .

The prior distribution is represented as

π(ϑ) ∝
[
(β + βθ − θ)ϑ+ 1

]
e−θϑ.

Applying Bayes’ theorem, the posterior distribution
function can be derived for an individual policyholder
or a group of policyholders with claim history denoted
as k1, k2, . . . , kt. The posterior distribution function
is directly proportional to the product of the prior
distribution and the likelihood function. Therefore,

π∗(ϑ|k1, k2, . . . , kt)
∝ e−(t+θ)ϑ

[
(β + βθ − θ)ϑ+ 1

]
ϑN .

Given
∫ ∞

0

π∗(ϑ|k1, k2, . . . , kt) dϑ

∝
∫ ∞

0

e−(t+θ)ϑ
[
(β + βθ − θ)ϑ+ 1

]
ϑN dϑ,

we can deduce that
∫ ∞

0

π∗(ϑ|k1, k2, . . . , kt) dϑ

∝
∫ ∞

0

Ae−(t+θ)ϑ
[
(β + βθ − θ)ϑ+ 1

]
ϑN dϑ = 1

where A is a constant. Consequently,

A =
(t+ θ)N+2

Γ(N + 1)
[
(β + βθ − θ)(N + 1) + t+ θ

] .

Hence, the posterior distribution function for the
frequency component can be represented as follows:

π∗(ϑ|k1, k2, . . . , kt)

=
(t+ θ)N+2e−(t+θ)ϑ

[
(β + βθ − θ)ϑ + 1

]
ϑN

Γ(N + 1)
[
(β + βθ − θ)(N + 1) + t+ θ

] . (2)

2.1.3. Premium prediction. The net premium
principle is indeed an important concept in the insurance
industry. It involves determining the premium amount for
an insurance policy based on the expected value of losses.
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The net premium represents the expected number or mean
of the number of claims that policyholders are likely to
make. This article focuses on applying the net premium
principle, which serves as a fundamental concept stating
that premiums should align with the expected value of
losses. In this context, the net premium represents the
anticipated average or mean number of claims arising
from each policyholder.

The expected number of claims for a policyholder
with a claim history k1, k2, . . . , kt, or the mean of the
posterior distribution function from Eqn. (2) for the
Poisson-GaL distribution, can be calculated as follows:

ϑ̂t+1 = E[ϑ|k1, k2, . . . , kt]

=
(N + 1)

[
(β + βθ − θ)(N + 2) + t+ θ

]

(t+ θ)
[
(β + βθ − θ)(N + 1) + t+ θ

] . (3)

Suppose that the initial premium or base premium at time
t = 0 is set at 100. In that case, at time t+1, the premium
rate can be calculated based on the number of claims and
can be represented in the following manner:

Premiumt+1 =
θβ(1 + θ)(N + 1)

(t+ θ)(2β + 2βθ − θ)

·
[
(β + βθ − θ)(N + 2) + t+ θ

]
[
(β + βθ − θ)(N + 1) + t+ θ

]100,

(4)

where θ > 0, β > 0 and N =
∑t

i=1 ki. The premium
rate is influenced by the parameters of the Poisson-GaL
distribution (θ and β), the observation period covering t
years for the policyholder, and the total count of claims
(N ).

2.2. Exponential-GaL model for severity distribu-
tion. In insurance portfolios, it is common to utilize
heavy-tailed distributions for modeling claim severity.
By combining these claim severity distributions with
the prior distribution, the resulting mixed claim severity
distribution exhibits thicker tails, thereby offering an
improved fit to the actual claim severity data.

2.2.1. Mixing distribution. Within the existing body
of literature, the mixed exponential distribution has gained
significant usage for modeling severity distributions,
as evidenced by Frangos and Vrontos (2001), Mert
and Saykan (2005), and Tzougas et al. (2019b). In
this particular article, we introduce a novel approach
that involves utilizing a mixed exponential distribution
alongside a GaL prior distribution for modeling severity
distribution, as outlined below:

Consider a random variable X representing the claim
size for each insured individual. Suppose that the claim
size, denoted by x, follows an exponential distribution.

The pdf for the exponential distribution with parameter λ
is defined as

f(x|λ) = λe−λx, x > 0, λ > 0.

The expected value of the random variable X is
E[X |λ] = 1/λ.

When examining insurance policyholders, it is
important to acknowledge that the rate parameter λ, which
characterizes certain distributions, can differ among
policyholders. To establish a prior distribution for λ, one
proposed method is to employ the GaL distribution with
parameters α and δ. The pdf of the GaL distribution is
defined as

π(λ) =
α2

[
(δ + δα− α)λ + 1

]
e−αλ

δ(1 + α)
,

λ, α, δ > 0.

The expected value of the random variable Λ can be
calculated as E[Λ] = 2δ(1+α)−α

αδ(1+α) . The subsequent steps
can be followed to derive the unconditional distribution or
mixed exponential distribution with GaL distribution of
the claim size x:

f(x) =

∫ ∞

0

f(x|λ)π(λ) dλ

=

∫ ∞

0

λe−λx · α
2
[
(δ + δα− α)λ + 1

]
e−αλ

δ(1 + α)
dλ

=
α2(2δ + 2δα− α+ x)

δ(1 + α)(x + α)3
, (5)

where x > 0, α > 0 and δ > 0. The cumulative
distribution function (cdf) of the exponential-GaL
distribution can be represented by

F (x) =
α2

δ(α+ 1)
·
(
δα+ δ

α2
− x+ δα+ δ

x2 + 2αx+ α2

)
.

The pdf plots of the exponential-GaL distribution,
representing the unconditional distribution of claim size x,
are depicted in Fig. 2. These parameter values determine
the characteristics of the distribution and can be estimated
based on the specific application or data being analyzed.

2.2.2. Bayesian methodology. The total number of
claims made by a policyholder during the t-year period
can be represented as N =

∑t
i=1 ki. Let xk denote the

size of claim k, where k takes values from 1 to N . Thus,
the claim size history of the policyholder during the t-year
period can be depicted as a vector x = (x1, x2, . . . , xN ).
The total claim size incurred during the t-year period is
denoted as S =

∑N
k=1 xk . The likelihood function, which

represents the probability distribution of the observed
claim sizes, is given by

L(λ;x1, x2, . . . , xN ) =

N∏

k=1

λe−λxk = λNe−λS .
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Fig. 2. Exponential-GaL distribution density plots with various
values of α and δ.

The prior distribution is

π(λ) ∝ [(δ + δα− α)λ + 1]e−αλ.

Applying Bayes’ theorem, the posterior distribution
function is proportional to the product of the likelihood
function and the prior distribution, given by:

π∗(λ|x1, x2, . . . , xN )

∝ e−(S+α)λ
[
(δ + δα− α)λ + 1

]
λN .

Considering the integral
∫ ∞

0

π∗(λ|x1, x2, . . . , xN ) dλ

∝
∫ ∞

0

e−(S+α)λ
[
(δ + δα− α)λ + 1

]
λN dλ,

then we have
∫ ∞

0

π∗(λ|x1, x2, . . . , xN ) dλ

=

∫ ∞

0

Be−(S+α)λ
[
(δ + δα− α)λ+ 1

]
λN dλ = 1,

where B is a constant. Solving for B, we find

B =
(S + α)N+2

Γ(N + 1)
[
(δ + δα− α)(N + 1) + S + α

] .

Hence, the posterior distribution function for the severity
distribution can be expressed as

π∗(λ|x1, x2, . . . , xN )

=
(S + α)N+2e−(S+α)λ

[
(δ + δα− α)λ + 1

]
λN

Γ(N + 1)
[
(δ + δα− α)(N + 1) + S + α

] . (6)

2.2.3. Premium prediction. To calculate premiums
for the claim severity distribution, we employ the net
premium principle, which mirrors the methodology used
for the claim frequency distribution. The expected
value in Eqn. (6) of the exponential-GaL distribution is
determined through the following computation:

λ̂t+1 = E[λ|x1, x2, . . . , xN ]

=
(N + 1)

[
(δ + δα− α)(N + 2) + S + α

]

(S + α)
[
(δ + δα− α)(N + 1) + S + α

] .

The posterior distribution represents the estimated
distribution of the risk parameter based on observed
data. Technically, it serves as a conditional probability
distribution of the risk parameter λ given the observed
data x. Our primary objective is to calculate the expected
value of the observed data (loss) given the risk parameter.
In other words, it is the expected value of a future event
(loss) given the preceding event (risk parameter), but we
lack precise knowledge of the preceding event or risk
parameter. To address this uncertainty, we employ a
Bayesian method to identify the risk parameter, which
corresponds to the mean of the posterior distribution
function.

Recall that the expected value of the exponential
random variable is 1/λ, denoted as E[X |λ] = 1/λ.
Since we lack the exact value of λ, we employ the
Bayesian method, which is based on observed data, to
determine the risk parameter (λ). The mean of the
posterior distribution function from Eqn. (6) for the
exponential-GaL distribution can be derived as λ̂ =
E[λ|x1, x2, . . . , xN ]. From E[X |λ] = 1/λ, the
expression for E[xk|λ] = 1/λ̂ can be derived as

E[xk|λ] =
(S + α)

[
(δ + δα− α)(N + 1) + S + α

]

(N + 1)
[
(δ + δα− α)(N + 2) + S + α

] .

(7)

To maintain equity among policyholders in the
portfolio, it is crucial for the premium paid by each
policyholder to reflect the combined influence of the
number and size of their claims. As the specific losses
(xk) arising from individual claims vary, policyholders
with an equal number of claims will be subject to
varying premiums. The Bayesian bonus-malus premium
is designed to address this disparity and is determined
by multiplying the Bayesian premium, which considers
the frequency component in Eqn. (3), with the severity
component outlined in Eqn. (7). This premium can be
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mathematically expressed as follows:

Premiumt+1

=
(N + 1)

[
(β + βθ − θ)(N + 2) + t+ θ

]

(t+ θ)
[
(β + βθ − θ)(N + 1) + t+ θ

]

· (S + α)
[
(δ + δα− α)(N + 1) + S + α

]

(N + 1)
[
(δ + δα− α)(N + 2) + S + α

] , (8)

where θ > 0, β > 0, α > 0, δ > 0, N =
∑t

i=1 ki, and
S =

∑N
k=1 xk. By utilizing this formula, policyholders

are charged premiums that are in proportion to the number
and size of their claims, while additionally considering the
overall risk level of the portfolio.

Equation (8) reveals that the premium depends on
various factors, which encompass the parameters of the
Poisson-GaL distribution (θ and β), the parameters of the
exponential-GaL distribution (α and δ), the observation
period spanning t years for the policyholder, along with
the total number of claims (N ) and the total amount (S)
of the filed claims.

In order to determine the bonus-malus premiums
for a policyholder using the proposed model, certain
information is required, including the policyholder’s
claim count, policy age, and total claim amounts. These
data points are typically available within the portfolio.

The initial premium, known as the Bayesian
bonus-malus premium at time t = 0, represents the base
premium that is initially charged to new policyholders
upon their enrollment in the insurance policy. The
formulation for the base premium is as follows:

Premium1 =
2β(1 + θ)− θ

θβ(1 + θ)
· αδ(1 + α)

2δ(1 + α)− α
. (9)

3. Numerical application
3.1. Claim data. In this paper, the calculation of model
premiums involved the utilization of a specific data set.
The data set used was comprised of one-year automobile
insurance policies that were taken out either in 2004 or
2005. For access to the data set used in this study,
interested individuals can visit the website of the Faculty
of Business and Economics at Macquarie University in
Sydney, Australia (De Jong and Heller, 2008).

The data set employed in this analysis encompassed a
total of 67,856 policies within the portfolio. Among these
policies, 4,624 policyholders had made at least one claim.
Table 1 presents a breakdown of the claim frequency,
showing that there were 4,333 policyholders with one
claim, 271 with two claims, 18 with three claims, and 2
with four claims.

To provide insights into the claim severity within
the data set, Fig. 3 presents a histogram representation.
The severity data are displayed on a logarithmic scale for
better visualization.
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Fig. 3. Histogram displaying the claim severity data on a loga-
rithmic scale.

3.2. Parameter estimation and model fitting. For
the purpose of parameter estimation and goodness of fit
testing, we analyze the claim frequency distribution and
claim severity distribution separately.

3.2.1. Claim frequency distribution. The method of
maximum likelihood estimation (MLE) is a commonly
employed statistical technique for estimating model
parameters. Its fundamental concept revolves around
identifying parameter values that optimize the likelihood
function, which represents the probability density of the
observed data. The underlying principle of maximum
likelihood is to estimate parameter values that maximize
the likelihood of the observed data. The MLE
methodology for the Poisson-GaL distribution is outlined
as follows:

Consider a random sample of size n, denoted as
k1, k2, . . . , kn, drawn from a Poisson-GaL distribution
with the pmf given by Eqn. (1). To determine the most
likely values of the parameters θ and β, we need to
maximize the likelihood function L, defined as

L(θ, β; ki) =
n∏

i=1

θ2
[
(β + βθ − θ)(ki + 1) + θ + 1

]

β(θ + 1)ki+3
.

Next, we derive the log-likelihood function as follows:

lnL(θ, β; ki)

= 2n ln θ − n lnβ − ln (θ + 1)

n∑

i=1

(ki + 3)

+

n∑

i=1

ln
[
(β + βθ − θ)(ki + 1) + θ + 1].
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To obtain the estimators θ̂ and β̂ for the parameters θ
and β, we need to solve the following equations:

∂

∂θ
lnL(θ, β; ki) = 0 and

∂

∂β
lnL(θ, β; ki) = 0.

Due to the absence of a closed-form solution for
estimating the parameters θ and β, the Newton–Raphson
method is employed as a numerical iteration technique
to solve for the solution. This method facilitates the
estimation process by iteratively refining the parameter
estimates until convergence is achieved.

In order to evaluate the suitability of the Poisson-GaL
distribution for the frequency component, we conducted
a Chi-Square goodness of fit test. This statistical
test is utilized to assess whether the observed sample
distribution significantly deviates from the expected
probability distribution. To perform the test, the sample
data are divided into intervals, and the number of data
points falling within each interval is compared with
the expected number of points in each interval. The
Chi-Square goodness of fit test calculates the level of
agreement between the observed and expected frequencies
using the formula

χ2 =
n∑

i=1

(Oi − Ei)
2

Ei
.

Here, the value of the Chi-Square goodness of fit test,
denoted as χ2, is obtained by comparing the observed
frequency count, Oi, with the expected frequency count,
Ei, for each category or level of the variable i.

Moreover, we use the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC)
as statistical criteria for model selection, which are
widely employed in statistics and data analysis to
assist researchers and practitioners in choosing the most
appropriate model from a set of candidate models. This
selection is based on the models’ fit to the data and the
number of parameters utilized.

The AIC served as the criterion for selecting the
appropriate model. The model with the lowest AIC value
is deemed the best fit among all other models. The AIC
estimation equation is expressed as follows:

AIC = −2 lnL+ 2m,

where L denotes the likelihood function value of the
model, and m represents the number of estimated
parameters in the model (Akaike, 1974). The BIC (Stone,
1979) is a device for selecting a model based on its
balance between how well it fits the data and how complex
it is. A model with a lower BIC value is considered to have
a better fit. This is the equation utilized to approximate the
BIC of a model:

BIC = −2 lnL+ 2m lnN,

where N is the number of data.
In this paper, we utilize the Poisson-GaL distribution

to analyze the distribution of claim frequencies. The
maximum likelihood estimator is employed to estimate
the parameters of the Poisson-GaL distribution, resulting
in estimated values of θ̂ =18.5607 and β̂ =1.4608. To
assess the goodness of fit, we employ the Chi-Square
test, which yields a test statistic value of χ2 = 1.2140.
Furthermore, we compare the observed claim frequency
values with several other distributions, including the
traditional Poisson distribution (PD), Poisson-exponential
distribution (PED), Poisson–Lindley distribution (PLD)
(Sankaran, 1970), and Poisson–Lindley (2P) distribution
(PLD(2P)) (Shanker and Mishra, 2014). The findings
indicate that the Poisson-GaL distribution (PGD) provides
a superior fit to the claim frequency data compared with
the other distributions. When we take into account the
AIC and BIC values, which account for both goodness of
fit and model complexity, it becomes evident that the PGD
does not perform as well as anticipated. Additionally,
we compare the expected claim frequencies, which are
presented in Table 1.

3.2.2. Claim severity distribution. The following
methodology outlines the process for the MLE of the
exponential-GaL distribution.

Consider a vector X = (x1, x2, . . . , xn)
T ,

representing a set of identically and independently
distributed observations from the exponential-GaL
distribution with the pdf described in Eqn. (5). To
determine the parameter values α and δ that yield the best
fit to the observed data in X , we aim to maximize the
likelihood function L, defined as

L(α, δ;xi) =
n∏

i=1

α2(2δ + 2δα− α+ xi)

δ(1 + α)(xi + α)3
.

Subsequently, the log-likelihood function can be
expressed as

lnL(α, δ;xi) = 2n lnα− n ln δ − n ln (1 + α)

+

n∑

i=1

ln (2δ + 2δα− α+ xi)

− 3

n∑

i=1

ln (xi + α).

The estimators α̂ and δ̂ for the parameters α and
δ, respectively, are obtained by equating the partial
derivatives of the log-likelihood function with respect to
α and δ to zero:

∂

∂α
lnL(α, δ;xi) = 0 and

∂

∂δ
lnL(α, δ;xi) = 0.
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Table 1. Observed frequency and expected frequency for estimated parameter values.
Number
of claim

Observed
frequency

Expected frequency
PD PED PLD PLD (2P) PGD

0 63,232 63,094.32 63,253.84 63,252.68 63,233.26 63,233.47
1 4333 4590.55 4290.03 4292.03 4327.62 4327.24
2 271 167.00 290.96 290.30 277.04 277.18
3 18 4.05 19.73 19.58 17.01 17.03
4 2 0.07 1.34 1.32 1.01 1.02

5+ 0 0.00 0.09 0.09 0.06 0.06
Total 67,856 67,856 67,856 67,856 67,856 67,856

Estimated parameters θ̂ =0.0728 θ̂ =13.7444 θ̂ =14.6238 α̂ =0.0987 θ̂ =18.5607
β̂ =18.5921 β̂ =1.4608

χ2 204.0396 2.3840 2.2571 1.2171 1.2140
AIC 36,205.00 36,102.89 36,102.75 36,103.49 36,103.49
BIC 36,225.25 36,123.14 36,123.01 36,143.99 36,143.99

Table 2. Claim severity distributions: pdf and cdf.
Claim severity
distributions pdf cdf

ED f(x;λ) = λe−λx, x > 0, λ > 0 F (x;λ) = 1− e−λx

ELD f(x; δ) = δ2

δ+1 · x+δ+2
(x+δ)3 , x > 0, δ > 0 F (x; δ) = (δ+1)x2+(δ+2)δx

(δ+1)(x+δ)2

ELD(2P) f(x;α, δ) = δ2

αδ+1 · αx+αδ+2
(x+δ)3 , x > 0, α > 0, δ > 0 F (x;α, δ) = (αδ+1)x2+(αδ+2)δx

(αδ+1)(x+δ)2

EGD f(x;α, δ) = α2(2δ+2δα−α+x)
δ(1+α)(x+α)3 , x > 0, α > 0, δ > 0 F (x;α, δ) = α2

δ(α+1) ·
(

δα+δ
α2 − x+δα+δ

x2+2αx+α2

)

Since the estimation of parameters α and δ does not have
closed-form solutions, a numerical iteration technique is
utilized to determine the estimates.

In this study, we utilize the Kolmogorov–Smirnov
test (K-S test), the AIC and BIC to evaluate the
performance and suitability of statistical models for claim
severity distributions.

The K-S test is utilized as a goodness of fit test
for claim severity distribution to assess whether a given
distribution is suitable for a particular data set. The K-S
test statistic is defined as

D = max |Fn(x)− F (x)|,
where F (x) represents the theoretical cumulative
distribution of claim severity distributions and Fn(x) is
defined as

Fn(x) =
1

n

[
number of observations ≤ x

]
,

with n being the sample size.
To compare the fit of different models, we have

derived the formulas for the mixed distribution that results
from mixing the exponential distribution with various
prior distributions, including the Lindley (Lindley, 1958),
Lindley (2P) (Shanker and Mishra, 2013), and GaL
distributions (Nedjar and Zeghdoudi, 2016). The pdf and
cdf of the resulting mixed exponential distribution are
presented in Table 2.

Table 3 presents a comparative analysis of
the estimated parameters, K-S statistic, AIC, and
BIC for different claim severity distributions,
including exponential (ED), exponential-Lindley
(ELD), exponential-Lindley (2P) (ELD(2P)), and
exponential-GaL (EGD). The K-S statistic, AIC, and BIC
values of the EGD indicate the lowest among the other
models. This implies that the proposed EGD model is the
most suitable fit for the claim severity data compared to
the other models.

The probability-probability (P-P) plots of the ED,
ELD, ELD(2P), and EGD distributions are illustrated in
Fig. 4. The results suggest that the exponential-GaL
distribution provides the best fit for the claim severity
data.

3.3. Insurance premium pricing. In this section, we
calculate the bonus-malus premiums using two different
approaches. Firstly, we focus solely on the claim
frequency component. Secondly, we take into account
both the claim frequency component and the claim
severity component.

3.3.1. Claim frequency component. The Bayesian
bonus-malus premiums, which solely rely on the
frequency component, are determined, and calculated
using Eqn. (4). The results of these calculations are
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Table 3. Comparison of different claim severity distributions, namely, ED, ELD, ELD (2P), and EGD, considering the estimated
parameters, K-S statistic, AIC, and BIC.

Claim severity distributions
ED ELD ELD (2P) EGD

Estimated parameters λ̂ =0.000533 δ̂ =977.053376 α̂ =16.875 α̂ =2404.941
δ̂ =976.250 δ̂ =11079.447

K-S statistic 0.103389 0.087968 0.087986 0.043401
AIC 78,956.80 79,416.58 79,418.58 78,830.29
BIC 78,971.68 79,431.46 79,448.33 78,860.04

Table 4. Bonus-malus premiums based on the PGD for the fre-
quency component.

t
Number of claims

0 1 2 3 4
0 100.00
1 94.06 176.07 253.35 328.27 401.85
2 88.74 166.68 240.23 311.56 381.62
3 83.96 158.19 228.35 296.43 363.29
4 79.65 150.49 217.55 282.65 346.60
5 75.73 143.47 207.70 270.07 331.34
6 72.17 137.06 198.67 258.53 317.34
7 68.91 131.16 190.36 247.91 304.45

presented in Table 4.
Based on the findings presented in Table 4,

policyholders who do not file any claims in the first
year are rewarded with a bonus equal to 5.94% of the
base premium. Conversely, individuals who experience
a single claim in the first year have to pay a malus
corresponding to 76.07% of the base premium. Premium
amounts vary based on the occurrence or absence of
claims, with reductions observed after claim-free years
and increases following claim occurrences.

In order to facilitate a comparative analysis, we also
calculate the Bayesian bonus-malus premiums using the
traditional Poisson-exponential model. The outcomes of
this computation are provided in Table 5.

Based on the findings provided in Table 5,
policyholders who do not file any claims in the first year
receive a bonus equivalent to 6.78% of the base premium.
Conversely, policyholders who have one claim during the
first year are required to pay a malus corresponding to
86.44% of the base premium.

Based on our observations, it is evident that the
Bayesian bonus-malus premiums calculated using the
traditional PED model are stricter for policyholders
categorized as bad drivers, in comparison with the
proposed PGD model. Conversely, premiums derived
from the PED model are more forgiving for policyholders
classified as good drivers, in contrast to the proposed PGD
model.

The proposed PGD model exhibits a reduced degree

Table 5. Bonus-malus premiums based on the PED for the fre-
quency component.

t
Number of claims

0 1 2 3 4
0 100.00
1 93.22 186.44 279.65 372.87 466.09
2 87.30 174.59 261.89 349.19 436.49
3 82.08 164.17 246.25 328.33 410.42
4 77.46 154.92 232.37 309.83 387.29
5 73.33 146.65 219.98 293.30 366.63
6 69.61 139.22 208.83 278.45 348.06
7 66.26 132.51 198.77 265.02 331.28

of penalization when compared with the traditional PED
model. Therefore, it underscores the model’s capacity to
address the problem of overcharges.

3.3.2. Claim frequency and severity components.
The proposed model is employed to illustrate the
premiums, as depicted in Eqn. (8). Tables 6–8 presents
various scenarios where the claim amount of the insured
party varies. Specifically, we examine situations where
the policyholder’s total claim amount is S = 1500, 4500,
and 10000, along with the corresponding results presented
in Tables 6–8, respectively.

Tables 6–8 illustrate the premiums required over a
span of seven years for different claim numbers. The
premiums presented in these tables are calculated using
Eqn. (8). These premiums are computed using the PGD
model for the frequency component and the EGD model
for the severity component. The initial base premium is
set at 87.49 (calculated using (9)) and gradually decreases
with each consecutive claim-free year.

For instance, if a policyholder submits a claim
of 1500 in the first year, the corresponding premium
indicated in Table 6 is 166.76. If an additional claim of
3000 is filed in the second year, resulting in a total claim
amount of 4500 over the two-year period, the premium
increases to 301.72, as shown in Table 7. However,
if no claims are made in the third year, the premium
decreases to 286.81, as displayed in Table 7, considering
the cumulative claim amount of 4500 over three years.
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Fig. 4. P-P plots of ED (a), ELD (b), ELD(2P) (c), and EGD (d).

In the case of a 5500 claim in the fourth year,
an additional surcharge is applied, raising the premium
to 510.24. This premium accounts for three accidents
and a total claim amount of 10,000 over four years, as
demonstrated in Table 8. It is worth noting that as
the number of claims increases, the premium escalates
proportionately for the same cumulative claim amount.

Under the same situation, if a policyholder submits
two claims with a total claim amount of 1500 in the first
year, the corresponding premium indicated in Table 6 is
179.95. However, if no claims are made in the second
year, the premium decreases to 170.63, as displayed in
Table 6, considering the cumulative claim amount of 1500
over two years.

In the case of a 3000 claim in the third year, an
additional surcharge is applied, raising the premium to
297.85. This premium accounts for three accidents
and a total claim amount of 4,500 over three years, as

demonstrated in Table 7.
In the case of a 5500 claim in the fourth year,

an additional surcharge is applied, raising the premium
to 521.39. This premium accounts for four accidents
and a total claim amount of 10,000 over four years, as
demonstrated in Table 8.

For better comprehension, Tables 9 and 10 provide a
summary of the bonus-malus premiums for the situations
in the first and second cases, respectively, considering
varying total claim amounts derived from the premiums
in Tables 6–8.

Table 11 showcases the premiums (malus) that
policyholders are required to pay in the first year when
a claim occurs, utilizing the PGD for claim frequency
and the EGD for claim severity. The table includes data
encompassing accidents with frequencies ranging from 1
to 4 and corresponding total claim amounts varying from
AUD 300 to AUD 50,000. The graphical representation
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Table 6. Bonus-malus premiums using the PGD for frequency
and EGD for severity, with a total claim amount of
S =1500.

t
Number of claims (N )

0 1 2 3 4
0 87.49
1 82.29 166.76 179.95 186.53 466.09
2 77.64 157.86 170.63 177.04 436.49
3 73.46 149.82 162.20 168.44 410.42
4 69.69 142.53 154.53 160.61 387.29
5 66.26 135.88 147.53 153.46 366.63
6 63.14 129.80 141.11 146.91 348.06
7 60.29 124.22 135.22 140.87 331.28

Table 7. Bonus-malus premiums using the PGD for frequency
and EGD for severity, with a total claim amount of
S =4500.

t
Number of claims (N )

0 1 2 3 4
0 87.49
1 82.29 294.87 318.21 329.84 336.48
2 77.64 279.14 301.72 313.05 319.54
3 73.46 264.92 286.81 297.85 304.19
4 69.69 252.03 273.25 284.01 290.22
5 66.26 240.28 260.87 271.37 277.44
6 63.14 229.53 249.53 259.77 265.72
7 60.29 219.66 239.10 249.10 254.92
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Fig. 5. Premiums based on PGD and EGD with a various num-
ber of claims and different claim sizes in the first year.

of these results can be observed in Fig. 5.
As the number of claims increases, there is a

corresponding upward trend in the premiums. Similarly,
an increase in the claim amount also leads to higher
premiums. The variation in premiums can be observed by

considering both the total claim amount and the number
of claims filed.

4. Conclusions
A new and innovative model is introduced to determine
bonus-malus premiums, which takes into consideration
both claim frequency and claim severity aspects. The
model utilizes two mixing distributions: the GaL
distribution combined with the Poisson distribution for
claim frequency, and the GaL distribution combined with
the mixed exponential distribution for claim severity.
The Bayesian methodology is employed to calculate the
premiums.

In order to demonstrate the effectiveness of the
model, actual automobile insurance data are used as an
illustrative example. The results obtained from fitting
the claim frequency and severity surpass those achieved
by traditional models. Additionally, traditional models
often imposed severe penalties on bad drivers when
claims occurred, potentially causing issues for insurers if
policyholders switched companies the following year due
to high premiums. The findings indicate that the proposed
model effectively addresses the problem of overcharging.

The proposed model offers substantial benefits to
insurance practitioners, impacting insurers, policyholders,
and the industry overall. It enhances risk assessment
and pricing accuracy, supports profitability and financial
stability, fosters customer loyalty, and positively
influences driving behavior. Additionally, it provides
a competitive edge and generates data-driven insights,
aligns with regulatory standards, and showcases a
commitment to road safety.
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