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ANALYTIC INTERPOLATION AND

THE DEGREE CONSTRAINT†

Tryphon T. GEORGIOU∗

Analytic interpolation problems arise quite naturally in a variety of engineering
applications. This is due to the fact that analyticity of a (transfer) function
relates to the stability of a corresponding dynamical system, while positive re-
alness and contractiveness relate to passivity. On the other hand, the degree of
an interpolant relates to the dimension of the pertinent system, and this moti-
vates our interest in constraining the degree of interpolants. The purpose of the
present paper is to make an overview of recent developments on the subject as
well as to highlight an application of the theory.

Keywords: analytic interpolation, uniformly optimal control, spectral analysis

of time-series

1. Introduction

The present paper concerns a basic problem in analytic function theory with a his-
tory going back to the beginning of the 20th century. This problem is to interpolate
prescribed values and successive derivatives on a given set of points in the unit disc
by means of an analytic function with magnitude bounded by one, or alternatively,
by means of an analytic function having positive real part. Variants of the problem
were studied by Carathéodory, Féjer, Pick, and Nevanlinna more than 80 years ago,
and connections can be traced to earlier mathematics on the moment problem by
Chebyshev and Markov (Akhiezer, 1965; Grenander and Szegö, 1958; Walsh, 1956).
The history of the problem is long, and in the second half of the 20th century the
subject evolved into a beautiful chapter of modern operator theory in the works of
Sz-Nagy, Koráni, Foias, Sarason, Ball, Helton, and many others, see, e.g., (Ball and
Helton, 1983; Sarason, 1967).

Our purpose is not to review the many elegant theories which emerged from
this journey, but rather to focus on a twist to this basic problem motivated by an
engineering study over 30 years ago. Youla and Saito (1967) studied the problem of
lossless coupling between a given generator and load. The problem of designing such
a lossless coupling turns out to be equivalent to an analytic interpolation problem. It
was in this context that the question of determining the minimal degree interpolant

† This research was supported in part by the NSF and AFOSR.
∗ Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street

S.E., Minneapolis, MN 55455, USA, e-mail: georgiou@ece.umn.edu



272 T.T. Georgiou

was first raised. The same question was raised again a few years later by Kalman in the
context of times-series modeling (Kalman, 1982) where the degree of the interpolant
relates to the dimension of a modeling filter. At the present time the question of
minimal degree has not received a definitive solution yet. However, there is a body of
research spawned by the degree question which has led to an elegant characterization
of interpolants, with degree bounded by the number of interpolating constraints. This
research, which utilized non-traditional tools in the study of the analytic interpolation
problem, is the subject of this paper.

2. The Analytic Interpolation Problem

For simplicity, we begin by discussing the case where the interpolation points are
distinct. In this case the problem is named after Nevanlinna and Pick (see Walsh,
1956).

Given a set of n distinct points {z1, z2, . . . zn} in the unit disc D and another
set of values {w1, w2, . . . , wn} also in D, Pick answered the question of whether
a function f exists which interpolates the given values wk at the points zk, and is
analytic in the unit disc with modulus bounded by one, i.e., f belongs to the unit ball
in H∞ herein denoted by S. The necessary and sufficient condition for the existence
of such a function is that the so-called Pick matrix

P =

[

1− wkw̄`
1− zkz̄`

]n

k,`=1

is positive semi-definite. On the other hand, Nevanlinna successively reduced the
number of constraints and simplified the problem so as to characterize all solutions.
The tool used was the Schur algorithm which relies on the fact that f(z1) = w1 and
has the required properties if and only if it is of the form

f(z) =
w1 − z−z1

1−z̄1z
f1(z)

1− w̄1 z−z11−z̄1z
f1(z)

(1)

with f1(z) also in S. In order for f to satisfy the remaining interpolation constraints,
f1 must satisfy n−1 constraints inherited through (1). Assuming for simplicity that
P is positive definite, after n steps, the general solution can be expressed in the form
of a linear fractional transformation

f(z) =
a(z) + b(z)fn(z)

c(z) + d(z)fn(z)
(2)

on a free parameter fn(z) ∈ S. The coefficient matrix M =
[

a b
c d

]

is J-unitary,

i.e., it satisfies M∗JM = J with J :=
[

1 0
0 −1

]

. This fact can be easily checked and
guarantees that 1−|f |2 and 1−|fn|2 have the same sign on the unit circle. Alternative
methods exist where M is constructed directly by J-inner/outer factorization of a
suitably constructed matrix whose range contains the graphs of possible solutions
(Ball and Helton, 1983; Francis, 1987).
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Analogous results hold for the case where interpolation requires the use of func-
tions having positive real part in D—this is the so-called Carathéodory class of func-
tions and will be denoted by C. The Pick matrix which corresponds to this problem
is

P =

[

wk − w̄`
1− zkz̄`

]n

k,`=1

,

and the positive semi-definiteness of P is again necessary and sufficient for the ex-
istence of positive-real interpolants which can again be parametrized similarly via a
linear fractional transformation.

3. The Set of Interpolants with Degree ≤≤≤ nnn−1
The entries of M are obviously rational functions and the ‘central’ solution, which
corresponds to fn = 0, is of degree n − 1. In general, however, the parametrization
given by (2) gives no insight into the class of interpolants of small degree. In par-
ticular, it may happen that even when P > 0 and the interpolation problems has
many solutions, no solution of degree strictly less than n − 1 exists. To determine
whether this is the case one needs to test the solvability of complicated semi-algebraic
conditions. Determining the minimal degree solution can again be approached via
semi-algebraic conditions. However, in general, such an approach is intractable for all
but the simplest cases where n = 2, 3 or 4 (cf. the Appendix of (Georgiou, 1983) for
an analogous discussion on the Carathéodory interpolation problem). This road-block
motivated interest in studying solutions of degree n− 1. The set of such interpolants
with degree ≤ n − 1 turns out to have an interesting characterization which is ex-
plained below. The statement of the theorem was originally derived in the context
of the equivalent problem of interpolation by functions having positive real part in-
stead of being contractive (Georgiou, 1983; 1987a; 1987b; Byrnes et al., 1995; 1997;
Georgiou, 1999).

Theorem 1. Consider interpolation data (zk, wk) for k = 1, . . . , n, as above and
assume that P > 0. If σ(z) is any polynomial of degree ≤ n − 1, having all roots
in |z| ≥ 1, then there exists a unique pair of polynomials (α(z), β(z)) (modulo a
common constant factor of magnitude 1), each of degree ≤ n− 1 with all their roots
in |z| ≥ 1 such that
(i) f = β/α is in S,

(ii) f(zk) = wk for k = 1, . . . , n, and

(iii) α(z)α(z)− β(z)β(z) = σ(z)σ(z)
for |z| = 1.

Remark 1. The result holds true for the more general Carathéodory-Féjer interpo-
lation where f is specified along with a number of its derivatives at various points in
the disk (Georgiou, 1999), i.e., when

f (`k)(zk) = wk,`k for k = 1, . . . , n0, and `k = 0, . . . , nk. (3)
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The Pick matrix corresponding to such a situation is a bit more complicated (cf. the
last section and (Georgiou, 1999)).

The above theorem gives a complete parametrization of candidate graph symbols
(α, β) for interpolants of degree bounded by n. It should be noted that (α, β) may
have common factors which will then be shared with σ. In fact, common factors do
appear when an f exists with degree strictly < n− 1. In this case the map σ → f
is not injective whereas the map σ → (α, β) is.

Remark 2. In the case where the interpolants are required to belong to C, the
analogous result holds with condition (iii) replaced by

(iii′) α(z)β(z)− β(z)α(z) = σ(z)σ(z) for |z| = 1.
Other than that, the result holds verbatim (Georgiou, 1999).

Analogous results hold in the case of interpolation with matrix-valued functions.
In particular, the case of interpolation with positive real matrix-valued functions with
its partial sequence of Laurent coefficients specified (i.e., interpolation with multiplic-
ity at the origin) has been dealt with in (Georgiou, 1983).

The existence statement of Theorem 1 was given in (Georgiou, 1983; 1987a;
1987b) and the proof uses degree theory. It is based on a homotopy of maps σ →
(α, β) which is continuous in the data (w1, . . . , wn). When the interpolating values
are trivial, i.e., w1 = w1 = · · · = 0, then the map sends σ → (σ, 0). An argument
involving invariance of the topological degree is used to establish that, as long as the
Pick matrix remains positive, a solution always exists. The uniqueness statement of
the theorem was conjectured in (Georgiou, 1983; 1987b). It was proven in (Byrnes et
al., 1997; Byrnes et al., 1995) for the case where σ has no root on the boundary of the
circle using two different lines of argument. The proof was completed in (Georgiou,
1999) to encompass the case of σ having roots on the boundary. Since then, an
alternative approach to both existence and uniqueness was introduced in (Byrnes et
al., 1999) for the Carathéodory problem (where all the zk’s coincide) and generalized
in (Byrnes et al., 2000a; 2000b; 2000c) to the Nevanlinna-Pick problem. It is based
on a functional which is suitably selected on the basis of σ, and which has a unique
minimum at the corresponding interpolant f . The theorem applies to choices of σ
devoid of roots on |z| = 1.
For simplicity in the statement of the following result, the σ, α, β can be taken

as elements of the co-invariant subspace

K := H2 	B(z)H2,
where B(z) =

∏n

k=1(z − z1)/(1− z̄1z), since such elements are rational with common
denominator

∏n

k=1(1− z̄1z) and numerator of degree ≤ n− 1. This notation simpli-
fies the formalism and algebra in the general context of Sarason/Carathéodory-Féjer
interpolation (Byrnes et al., 2000c; Georgiou, 1987b).

Theorem 2. Given σ ∈ K having its roots in |z| > 1, define
�
σ(f) =

∫ π

−π

log
(

1−
∣

∣f(eiθ)
∣

∣

2
)

∣

∣σ(eiθ)
∣

∣

2
dθ. (4)
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The value

sup
f∈S

{ �
σ(f) : f(zk) = wk for k = 1, . . . , n

}

(5)

is attained for a unique f in the interior of S. Furthermore, this f is of the form

f = β/α, (6)

α and β being outer functions in K satisfying

α(z)α(z)− β(z)β(z) = σ(z)σ(z) for |z| = 1. (7)

The pair (α, β) is uniquely defined (modulo sign) in terms of f and σ via (6)
and (7). Conversely, if f satisfies (6), (7) and the interpolation conditions, then it
is the unique solution to the optimization problem (5).

Remark 3. For the case of C-interpolation, the analogous result requires �
σ(f) in (4)

to be replaced by

�
σ(f) =

∫ π

−π

log
(

<f(eiθ)
)

|σ(eiθ)|2 dθ. (8)

and (7) by (iii′) as in Remark 2.

The advantage of the Theorem 2 is that it presents f as a solution to an opti-
mization problem. It should be noted that the primal optimization problem stated in
the theorem requires optimization in infinitely many variables, namely the function f
itself, with finitely many constraints. However, the dual problem, which is convex, re-
quires optimization in finitely many variables. This has been explored in (Byrnes et
al., 1999; 2000a; 2000b) and forms the basis of numerical algorithms given in these
references.

4. Relevance in Spectral Analysis

In this section we overview one of the examples which to a large degree motivated
the development of the theory. The context is spectral analysis of time-series using
second-order statistics.

Assume that {u` : ` = . . . ,−1, 0, 1, . . .} is a zero-mean, stationary stochas-
tic process, with unknown spectral power distribution. The problem at hand is to
characterize all admissible power spectra which are consistent with a collection of
second-order statistics (estimated, e.g., from an observation record for the process
uk). Recall that the power distribution of uk is in general a nonnegative measure
dσ(θ) with θ ∈ [−π, π], and it is completely specified by the infinite sequence of its
Fourier coefficients

Rm =
1

2π

∫ π

−π

ejmθ dσ(θ),
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where j =
√
−1 and m = 0,±1, . . . . (Note that R−m = R̄m.) In this case, the

function

f(z) =
1

2
R0 +R1z +R2z

2 + · · · (9)

is in C and dσ(θ) is obtained via the radial limits of the real part of f(z). It turns
out that second-order statistics impose analytic interpolation constraints on f .

The standard example is when these second-order statistics consist of finitely
many samples of the autocorrelation function, i.e., {R0, R1, . . . , Rn−1}. A significant
part of the literature on modern nonlinear spectral analysis techniques (Stoica and
Moses, 1997) is based on this paradigm. In this case the Pick matrix corresponding to
the relevant interpolation problem is simply a Toeplitz matrix formed out of the partial
autocorrelation sequence. The theory which allows parametrization of all admissible
C-functions and, as a consequence, all admissible power spectra is classical and has
connections to the theory of the Szegö orthogonal polynomials (Geronimus, 1961). We
will discuss a framework which reveals the connection with the general Nevanlinna-
Pick problem.

Consider a number of points {zk : k = 1, . . . , n} in D, and the family of first-
order filters

x
(k)
` = zkx

(k)
`−1 + u` for . . . ,−1, 0, 1, . . . (10)

It is easy to show that the output covariances

pk := E
{

|x(k)` |2
}

of these filters impose the following interpolation constraints on the function f in (9)
(see Byrnes et al., 2000b):

f(zk) =
1− |zk|2
2
pk.

A more general formulation involves a stable dynamical system

x` = Ax` +Bu` (11)

with A ∈ � n×n and B ∈ � n×1 driven by u`. The state covariance P = E{x`x∗`}
is shown in (Georgiou, 2001) to decompose into a sum WE +EW ∗ where E is the
solution of the Lyapunov equation E = BB∗+AEA∗ while W is a matrix which com-
mutes with A. The interpolation conditions imposed by the state-covariance statistics
on f are now of the form

f(A) =W. (12)

This condition includes the case where there are repeated poles and hence interpo-
lation constraints on the derivatives of f as well. More specifically, because A is
a cyclic matrix and W commutes with A, W needs to be a polynomial function
of A (see Gantmacher, 1959, p.222). So let v(z) = v0 + v1z + · · · + vn−1zn−1 be
such a polynomial and v(A) = W . Then (12) is equivalent to (3), where the values
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w`kk represent the values of v(z) on the spectrum of A. In this case, the Pick matrix
of the relevant interpolation problem is precisely the state-covariance P (Georgiou,
2001).

The filter (11) may represent the dynamics of a measuring aparatus with different
sensors (such as an antenna array (Georgiou, 2000b)), or the dynamics and filtering
of suitable post-processing of recorded time-series data for uk. The choice of such a
‘processing’ state-filter (11) (or in the special case of a bank of filters (10) the values
for zk’s) affects the dependence of the covariance statistics on the power spectrum
of uk. In particular, spectra which are consistent with the state statistics deviate less
from the actual spectrum within the passband. Thus, such filters can be tuned prior
to computing covariance statistics. This allows improved resolution of any subsequent
models derived from such statistics, within the bandwidth of (11) or of (10). Benefits
acquired thereof as compared to other methods have been documented in (Byrnes et
al., 2000a; 2000b; Georgiou, 2000a; 2001).

Compelling arguments for parsimonious representations and for low dimension
models have been advanced over the years by Kalman, Rissanen, Akaike and others.
In the context of time series analysis, typically, an auto-regressive/moving average
(ARMA) modeling filter for uk is sought in the form

ûk + α1ûk−1 + αmûk−m = σ0νk + · · ·+ σmνk−m,

where νk represents zero-mean and unit-variance white noise. Then, it is the dimen-
sion m of the filter which provides a measure of ‘complexity’. Theorem 1 allows a
complete parametrization of all modeling filters of dimension ≤ n − 1. This is sum-
marized in our final proposition. The proof is a direct consequence of Theorem 1 (cf.
Remarks 1 and 2, (Georgiou, 1987a; 1999)).

Proposition 1. Let uk, A, B and P be as above. Given any polynomial σ(z) =
σ0 + · · ·+ σn−1zn−1 with degree ≤ n− 1 and roots outside D, there exists a unique
polynomial α(z) = 1 + α1z + · · ·+ αn−1zn−1 so that

T (z) =
σ0 + · · ·+ σmzm

1 + α1z + · · ·+ αmzm

is a transfer function of an ARMA model for uk which is consistent with the state-
covariance statistics P .

Thus, the proposition states that all ARMA models of dimension ≤ n− 1 which
are consistent with the given second-order statistics P are parametrized by a choice
of a stable numerator for T (z), i.e., by an arbitrary selection of the coefficients of the
moving-average part (subject to the stability requirement).

5. Concluding Remark

Analytic interpolation is encountered in a variety of engineering applications (Delsarte
et al., 1981; Helton, 1982; Kalman, 1982; Tannenbaum, 1982; Youla and Saito, 1967;
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Zames, 1981). Invariably, the interpolating function relates to a dynamical system,
while the degree of the function relates to the dimension of the system (e.g., see
(Byrnes et al., 2000a; 2000b) for application in uniformly optimal control and in the
modeling of time series). Thus, the set of solutions with degree bounded by n −
1 represents a set of parsimonious solutions. Further, this set has a rather elegant
parametrization which has been exploited in (Byrnes et al., 2000a; 2000b; Georgiou,
2000a; 2001) for high resolution spectral analysis of time series.
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Byrnes C.I., Lindquist A., Gusev S.V. and Matveev A.S. (1995): A complete parametrization
of all positive rational extensions of a covariance sequence. — IEEE Trans. Automat.
Contr., Vol.AC–40, No.11, pp.1841–1857.

Delsarte Ph., Genin Y. and Kamp Y. (1981): On the role of the Nevanlinna-Pick problem in
circuits and system theory. — Circuit Theory Applics., Vol.9, No.1, pp.177–187.

Francis B.A. (1987): A Course in H∞ Control Theory. — New York: Springer-Verlag.

Gantmacher F.R. (1959): The Theory of Matrices. — New York: Chelsea Publishing Com-
pany.

Georgiou T.T. (1983): Partial Realization of Covariance Sequences. — Ph.D. Thesis, CMST,
University of Florida, Gainesville.

Georgiou T.T. (1987a): Realization of power spectra from partial covariance sequences. —
IEEE Trans. Acoust. Speech Signal Process., Vol.ASSP–35, No.4, pp.438–449.

Georgiou T.T. (1987b): A topological approach to Nevanlinna-Pick interpolation. — SIAM
J. Math. Anal., Vol.18, No.5, pp.1248–1260.



Analytic interpolation and the degree constraint 279

Georgiou T.T. (1999): The interpolation problem with a degree constraint. — IEEE Trans.
Automat. Contr., Vol.44, No.3, pp.631–635.

Georgiou T.T. (2000a): Signal estimation via selective harmonic amplification: MUSIC, Re-
dux. — IEEE Trans. Signal Process., Vol.48, No.3, pp.780–790.

Georgiou T.T. (2000b): Subspace analysis of state covariances. — Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Processing, Istanbul, June 2000 (CD-ROM).

Georgiou T.T. (2001): Spectral estimation via selective harmonic amplification. — IEEE
Trans. Automat. Contr., Vol.46, No.1, pp.29–42.

Geronimus Ya.L. (1961): Orthogonal Polynomials. — English translation from Russian, New
York: Consultants Bureau Inc.
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