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QUASISTATIC PROBLEMS IN CONTACT MECHANICS

Meir SHILLOR∗

We describe some of our recent results concerning the modeling and analysis of
quasistatic contact problems between a deformable body and a foundation. We
concentrate mainly on frictional contact, and in some of the problems thermal
effects and the wear of the contacting surfaces are also taken into account.
We describe the physical processes involved, the mathematical models, their
variational formulation and then present statements of our results. We conclude
with a description of some unresolved problems.
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1. Introduction

Contact phenomena are abundant in everyday life and play a very important role
in engineering structures and systems. They include friction, wear , adhesion and
lubrication, among other things; are inherently complex and time dependent; take
place on the outer surfaces of parts and components, and involve thermal, physical
and chemical processes. The need for a comprehensive well posed mathematical theory,
based on fundamental physical principles, that can predict reliably the evolution of the
contact process in different situations and under various conditions, was recognized
long ago, but the tools needed for realizing this goal have been developed only in
recent years.

Such a mathematical theory is emerging currently. It deals with the rigorous
modeling of these processes using new and advanced concepts and results from such
topics as variational inequalities, convex and non-convex analysis, and set-valued op-
erators. It is concerned with the construction of models based on first principles, as
much as possible, as well as advanced mathematical concepts, well-posedness of the
models, their analysis, and the numerical analysis of their approximations. A consid-
erable progress has been achieved recently in the modeling, variational analysis and
numerical approximations of contact problems involving viscoelastic and viscoplastic
materials. Some of it is described in the sequel.

A variety of unilateral or bilateral contact conditions have been used. Unilateral
contact has been modeled by the Signorini, normal compliance or damped response
conditions. Friction has been described by versions of the Coulomb law. Very recently,
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the coefficient of friction has been assumed to depend on the slip velocity, the temper-
ature and even allowed to have a jump from a static to a dynamic value at the onset
of slip motion. The wear has been modeled by the Archard law, in which the surface
wear rate is proportional to the normal stress and to the slip speed. New models
of surface adhesion were proposed, which use the notion of an additional dependent
variable, the bonding function.

There exists a considerable body of engineering literature on contact with or
without friction. On the other hand, mathematical publications are quite recent. Static
problems were considered in many publications. However, contact and friction are
evolutionary processes, that is, they are time dependent.

In the last three years a number of publications have appeared dealing with
various models for the different aspects of quasistatic frictional contact. These are
processes where the applied forces vary slowly, and therefore, the system response is
relatively slow, so that the inertial terms in the equations of motion can be neglected.
This means that the propagation of waves is neglected, i.e., the system is observed on
a time scale much longer than that necessary for any waves to travel through it and
to decay.

Only recently the various aspects of the dynamics of frictional contact have been
addressed in comprehensive mathematical models. We survey some models and re-
cent mathematical results dealing with these problems. We concentrate on quasistatic
problems which can be formulated as elliptic variational inequalities. We also describe
a number of important open problems.

The mathematical, mechanical and numerical state of the art for contact prob-
lems can be found in the proceedings (Raous et al., 1995), in the special issue
(Shillor, 1998), in the survey (Fernández-Garćıa et al., 2000a) and in the short survey
(Fernández-Garćıa et al., 2000b) in this issue, among other places.

This paper is based on our plenary talk at the MTNS 2000 meeting, and our pur-
pose is to present the physical and engineering settings for the mathematical studies of
contact processes, and to indicate their current trends. This survey is not exhaustive
or comprehensive, since the discipline of mathematical contact mechanics is already
too large for a summary in a short paper. However, this discipline does not yet have
a coherent and mature structure, and as we indicate in the last section, there is much
to be done.

2. Motivation and Physics

An estimated 0.5% of the US GNP is lost (see, e.g., (Rabinowicz, 1995)) because of
insufficient control of contact processes in machines, cars and mechanical equipment.
This loss is mainly due to frictional wear, frictional heat generation which causes the
softening of the contacting surfaces, frictional heat losses and the possible damage of
the contacting surfaces.

Therefore, the accurate prediction of the evolution of frictional contact processes
and their control is of major economic importance. However, the contact between
deformable bodies is very complicated and it is not yet well understood. This is
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mainly due to the fact that it is very difficult to measure directly the evolution of
surface quantities during contact processes.

Any coherent theory of contact has to deal with surfaces that may be:

(i) clean, or contaminated with oil or water or gas;

(ii) contain a layer of adsorbed gas, or an oxide layer;

(iii) are very smooth, smooth, rough, or very rough.

Moreover, the layers of material adjacent to the contacting surface have a major
influence on the process, and themselves often have a different structure than the
parent material (see a very detailed exposition in (Rabinowicz, 1995)).

During the contact of parts and components, a number of processes take place
on the contacting surfaces. Some of these are related to the interior of the contact-
ing bodies, such as elastic or plastic deformations and the strains and stresses that
accompany them. Other processes take place only on the contacting surfaces, such
as deformation (elastic or plastic) of asperities, squeezing of oil or other fluid layers,
breaking of tips of the asperities, motion of debris between the surfaces, welding and
formation of junctions, creeping, etc.

It is clear that the processes are diverse and to describe them we need a consid-
erable insight, and quite sophisticated mathematics. To gain some insight, we next
consider the usual high school explanation of friction. We consider the setting de-
picted in Fig. 1, where a rigid body is placed on a rigid foundation. To describe the
contact of a body with a foundation, we need to consider the normal approach and
the tangential process.
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Fig. 1. Contact forces.

We consider a body acted upon by a tangential force F and a normal force FN ,
which includes gravity. As a result, a frictional resistance force is set, denoted by FT .
As F is increased, the frictional resistance force increases, until it reaches a critical
value F ∗T which is the maximal resistance the surfaces can produce, beyond which
the body starts a slip motion.
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It is customary to define the friction coefficient µ as the ratio

µ =
|F ∗T |

|FN |
.

However, there is no fundamental reason for µ to be a property of the system. And,
indeed, there are cases where it does not make sense. Surprisingly, in many applica-
tions it does behave as a system parameter, and can be assigned a numerical value.
Since it is not a fundamental quantity, its value must be found experimentally for
each system.

We expect µ to depend on the bulk material properties of the contacting bodies
and on the surface properties. It is customary to define two friction coefficients, the
static coefficient µs and the dynamic coefficient µd, where

µs =
|F ∗T |

|FN |
.

The body remains motionless as long as |F | ≤ µs|FN |, which constitutes the basis
for its experimental determination, and µd is obtained from sliding experiments.

It is often found that µd is substantially lower than µs. In part, the difference is
caused by the chemical bonding that takes place while the surfaces are in relative rest,
in the so-called stick state. This is often called adhesion in the engineering literature,
although we reserve the term adhesion for the process where a separate agent, such
as glue, is spread on the surfaces. The chemical bonding takes place in the junctions,
as depicted in Fig. 2.
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Fig. 2. Contacting surfaces; junctions.

It turns out, as is to be expected, that µ depends on the lubrication of the
surfaces, on their roughness, on the slip velocity, and on the temperature. The last
one is very complicated to measure, since frictional sliding causes considerable heat
generation which, in turn, causes uneven temperature rises. Moreover, it is observed
that as the melting temperature of one of the surfaces is approached, the friction
coefficient raises rapidly, and then decreases sharply, once melting commences (see,
e.g., (Rabinowicz, 1995) for full details).

Friction is accompanied by: heat generation, wear, damage, and adhesion.

The dependence of friction on temperature may be considerable. While braking a
fast moving car, over 100 HP of heat may be generated at the brakes. This causes the
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raise of the temperature at the contact area, and may cause local melting of the surface
material, which may lead, in turn, to the loss of braking power. Experimentally, the
coefficient of friction does depend on the temperature.

Wear is a major issue in technological applications. The contacting surfaces un-
dergo structural changes which may be detrimental to the systems performance. Even
if the changes are small, they may influence the efficiency and durability of the system.

Damage of the surfaces is a severe case of wear, as well as structural damage
in the form of cracks on the surface. This may lead to a catastrophic failure of the
system.

Adhesion may take place between parts of the contacting surfaces. It may be
intentional, when surfaces are bonded with glue, or unintentional, as a seizure between
very clean surfaces.

Since frictional contact is so important in industry, there is a need to model
and predict it accurately. However, the main industrial need is to effectively control
the process of frictional contact. In applications there are four main areas of friction
control:

1. Low friction—lubrication. Needed in machinery and moving equipment to re-
duce wear, tear and loss of energy.

2. High friction. Needed in braking systems of cars, trains and moving equipment.

3. Friction within specified bounds. Needed in braking systems to avoid jerks and
sudden accelerations/decelerations.

4. Slip dependence. Needed to avoid slip/stick transitions and the associated un-
pleasant noise—squeaks and squeals.

It is clear from the abundance and diversity of the types of behavior of systems
with friction, that it is unlikely that one single model will be capable of describing, in
a predictive way, all these phenomena. One may be tempted to put them all together
in one extremely complicated and abstract model, but the usefulness of such a model
is in doubt. Therefore, we present below a number of models for different aspects of
frictional contact. The unifying element is that we can formulate them as variational
inequalities, and apply the methods of this theory to their investigation.

This motivates the different models we present below.

3. Mathematical Models

We now describe mathematical models for frictional contact between a deformable
body and a rigid foundation. The physical setting is depicted in Fig. 3. A deformable
body occupies an open, bounded and connected set Ω ⊂ � d , d = 1, 2 or 3. The
boundary Γ = ∂Ω is assumed to be Lipschitz continuous and is composed of three
mutually disjoint, relatively open sets ΓD, ΓN and ΓC . The set ΓC represents the
potential contact surface, and we assume that meas (ΓD) > 0, which is essential
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Fig. 3. The setting: ΓC denotes the contact surface, g is the gap.

in quasistatic problems. As the boundary is Lipschitz continuous, the unit outward
normal vector n exists a.e. on Γ.

We are interested in the evolution of the body’s mechanical state over the time
interval [0, T ] (T > 0). The body is clamped on ΓD and so the displacement field
vanishes there. A surface traction of density fS acts on ΓN , and a volume force of
density fB acts in Ω. Each force may vary in time.

The mechanical state of the system is described by the displacement vector

u = u(x, t) =
(

u1(x, t), u2(x, t), u3(x, t)
)

,

the velocity vector v = v(x, t) = u′ = (v1, v2, v3), the strain tensor ε = ε(u), with
components εij = ∂ui/∂xj , and the stress tensor σ = (σij). Here and subsequently,
i, j, k, l = 1, . . . , d, and the summation convention is employed.

The material properties of the body enter via the constitutive law which relates
the stress tensor to the strain tensor. The constitutive relation of a viscoelastic ma-
terial is

σ = A
(

ε(u)
)

+B
(

ε(v)
)

,

where A represents the elastic part and B the viscosity part of the stress. Here and
subsequently, a prime indicates a time derivative. In linearized viscoelasticity

σij = aijkl
∂uk
∂xl
+ bijkl

∂2uk
∂t∂xl

,

where the a’s and b’s are the coefficients which may depend on x but are independent
of the stresses or strains.

The equations of motion of the material are

ρu′′ −Div (σ) = fB ,



Quasistatic problems in contact mechanics 195

where ρ stands for the material density and Div (σ) = ∂σij/∂xj . The boundary
conditions are

u = 0 on ΓD, σ n = fS on ΓN .

The initial conditions take the form

u(0) = u0, v = v0, in Ω.

The quasistatic approximation consists in neglecting the inertial terms in the
equations of motion, and it means that the system is observed over a long-time scale.
It is justified when the external forces vary slowly with time. However, a rigorous
mathematical justification is not available yet. Then the equations of motion are

−Div (σ) = fB .

We use the same boundary conditions, but now we cannot impose the initial condi-
tions. Indeed, the problem is transformed from being hyperbolic to being elliptic. In
particular, it does not allow for elastic waves propagation in the system.

Frictional contact, when slip takes place, is accompanied by frictional heat gen-
eration. To take thermal effects into account, we need to study thermoviscoelastic
contact. To this end, we introduce the temperature θ.

The constitutive law is now

σ = A
(

ε(u)
)

+B
(

ε(v)
)

+D(θ),

where D is the tensor of thermal expansion. In linearized thermoviscoelasticity we
have

σij = aijkl
∂uk
∂xl
+ bijkl

∂2uk
∂t∂xl

− dijθ.

The equations of motion need to be supplemented with the energy equation.
Thus,

ρu′′ −Div (σ) = fB ,

ρcθ′ −Div (k∇θ) = Q+Q∗
(

ε(v)
)

,

where Q is a given volume heat source and Q∗ is the term representing the heat
generated by the work of internal forces. Also, initial and boundary conditions for the
temperature are needed.

To describe the contact conditions we need additional notation. The setting is
depicted in Fig. 4. We use the notation n = (n1, n2, n3) for the outer normal on
ΓC . The normal component of the displacements is un = u n, and the tangential
component is uT = u − (u n)n, the normal stress (pressure) is σn = σijninj , and
the tangential stress vector is σTi = σijnj − (σijninj)ni.
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Fig. 4. Normal and tangential components.

We begin with the description of the normal approach. Recently, four different
conditions have been used. The first one is the bilateral contact, when there is no
separation during the process. Then

un = 0, (g = 0). (1)

Next, in most papers on contact problems, especially in engineering literature, the Sig-
norini (non-penetration) condition is used. It assumes that the foundation is perfectly
rigid. We have

un ≤ g, σn ≤ 0, σn(g − un) = 0. (2)

The normal compliance condition has been used in a number of mathematical
publications. It allows for the interpenetration of surface asperities, but penalizes it.
Its form is

σn = −p(un − g), (3)

and it has frequently been used in the form p(r) = κ(r)m+ , where 0 < κ is an
experimental constant and m the exponent. The function p has to vanish for negative
values of the argument, since then there is no contact, and the contact pressure
vanishes.

A new condition, the so-called damped response, has been employed recently in
the form

σn = −φ(vn) + φ0. (4)

Here, the surface resistance is proportional to the normal velocity vn, and the functions
φ and φ0 are assumed to be known. This may describe the sinking of an object in the
sand.

Remark 1. It is customary to consider the normal compliance as an approximation
of the Signorini condition, and indeed, as κ→∞, the first converges to the second (at
least formally). But, especially when dealing with dynamic situations, the concept of
a rigid foundation is only a high idealization. It seems that the normal compliance is
the more physically correct condition, and Signorini’s is the approximation. Moreover,
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Signorini’s condition is not very useful in view of the unsurmountable mathematical
difficulties it introduces.

We now turn to describe the tangential process. Here we have three conditions.
When the surfaces are fully lubricated, it is customary to use

σT = 0. (5)

However, this is only an approximation, valid when the relative slip is small. Other-
wise, a shear stress is set in the lubricating layer which contributes to the tangential
stress.

The usual description of friction is by using the Coulomb law of dry friction

|σT | ≤ µ|σn|, (6)

and, if vT 6= 0, then

|σT | = µ|σn| and
σT
|σT |
= −
vT

|vT |
. (7)

A serious mathematical difficulty arises with the term |σn| which is either a distri-
bution, defined via an extension of the Green formula, or does not make much sense
as a trace on the boundary of a function in L2(Ω).

When the normal compliance is used in the normal direction, the friction condi-
tion is modified as

|σT | ≤ µp(un − g), (8)

and, if vT 6= 0, then

|σT | = µp(un − g) and
σT
|σT |
= −
vT

|vT |
. (9)

Here, p is the contact pressure, cf. (3).

Recently, the wear of contacting surfaces has been taken into account, in view of
its industrial and engineering importance. It is usually represented as an additional
displacement w of the contacting surfaces, and un is replaced with un − w. Thus,
w measures the volume, per unit area, of the material removed by the wear process.
The rate of wear of the surfaces is assumed to be proportional to the contact pressure
and to the relative slip speed, which is the so-called Archard law :

∂w

∂t
= kw|σn||vT − v

∗|. (10)

Here kw is the wear rate coefficient, v
∗ denotes the velocity of the foundation, and

then |vT − v
∗| is the relative slip speed.

We have all the ingredients to discuss the mathematical models for the various
processes of interest.
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4. Mathematical Formulations and Results

First mathematical results on quasistatic frictional contact were obtained by L.-E.
Andersson (Andersson, 1991; Andersson and Klarbring, 1997) and Klarbring, Mikelic
and Shillor (Klarbring et al., 1991), using normal compliance, as well as by Cocu
(1984) using regularization.

In (Shillor and Sofonea, 2001) the following bilateral viscoelastic frictional prob-
lem with regularized contact stress was studied. Find a displacement field u :
Ω× [0, T ]→ � 3 and a stress field σ : Ω× [0, T ]→ S3 such that

σ = A(ε(u)) +B(ε(v)),

−Div (σ) = fB ,

u = 0, on ΓD, σ n = fS , on ΓN ,

un = 0, on ΓC ,

|σT | ≤ µ|Rσn|, on ΓC ,

if vT 6= 0, then |σT | = µ|Rσn| and
σT
|σT |
= −
vT

|vT |
,

u(0) = u0, w(0) = 0.

Here, R is a boundary regularization operator.

Generally, such problems do not have solutions smooth enough to be classical,
that is, having all the necessary continuous derivatives. Thus, the derivatives are
understood in the sense of distributions, and weak solutions are sought.

To present the weak or variational formulation, we define the friction functional

j(σ,w) =

∫

ΓC

µ|Rσn||wT | dS.

The following is the weak formulation. We denote by V the subspace of (H1(Ω))3

V =
{

w ∈
(

H1(Ω)
)3
: w = 0 on ΓD

}

.

Problem 1. Find a displacement field u : [0, T ] → V , v = u′ and a stress field
σ : [0, T ]→ L2(0, T ;L2(Ω)), such that u(0) = u0, and for all t ∈ [0, T ],

σ(t) = A
(

ε(u(t))
)

+B
(

ε(v(t))
)

,

〈

σ(t), ε(w)−ε(v(t))
〉

+j
(

σ(t),w
)

−j
(

σ(t),v(t)
)

≥
〈

F (t),w−v(t)
〉

V
, w ∈ V.

Theorem 1. (Shillor and Sofonea, 2001) There exists µ0 > 0, which depends only on
Ω, Γ and B, such that if |µ|L∞(ΓC) ≤ µ0, then there exists a unique solution {u, σ}
to Problem 1. Moreover, the solution satisfies

u ∈ C1(0, T ;V ), σ ∈ C
(

0, T ;L2(Ω)
)

.
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The problem with sliding contact and wear was considered there too, and a similar
existence and uniqueness theorem was established.

A related problem was investigated in (Rochdi et al., 1998b), where the contact
was described by normal compliance, the foundation was assumed to move at speed
v∗, and the wear due to friction has been included. The problem is:

Find a displacement field u : Ω× [0, T ]→ � 3 , a stress field σ : Ω× [0, T ]→ S3
and the wear function w : [0, T ]→ � such that

σ = A
(

ε(u)
)

+ B
(

ε(v)
)

,

−Div(σ) = fB ,

u = 0, on ΓD, σ n = fS , on ΓN ,

−σn = pn(un − w − g),

|σT | ≤ µpT (un − w − g),

if vT 6= 0, then |σT | = µpT (un − w − g) and
σT
|σT |
= −
vT

|vT |
,

w′ = kwv
∗pn(un − w − g),

u(0) = u0, w(0) = 0.

To obtain the weak formulation, we introduce the friction functional

h(u, z, w) =

∫

ΓC

(pn(un − w − g)zn + pT (un − w − g)|zT |) dS.

Problem 2. Find a displacement field u : [0, T ] → V , v = u′, a stress field
σ : [0, T ]→ L2(0, T ;L2(Ω)) and w : [0, T ]→ L2(ΓC), such that

σ(t) = A
(

ε(u(t))
)

+B
(

ε(v(t))
)

, u(0) = u0, w
′ = −kwv

∗σn, w(0) = 0,

〈

σ(t), ε(z) − ε
(

v(t)
)〉

+ h
(

u, z, w
)

− h
(

u,v(t), w
)

≥
〈

F (t), z− v(t)
〉

V
, z ∈ V.

Theorem 2. (Rochdi et al., 1998b) There exists a unique solution {u, σ, w} to Prob-
lem 2. Moreover, the solution satisfies

u ∈ C1(0, T ;V ), σ ∈ C
(

0, T ;L2(Ω)
)

, w ∈ C1
(

0, T ;L2(ΓC)
)

.

The proof is based on results from the theory of elliptic variational inequalities and
fixed point arguments. We note that there is no restriction on the size of µ and the
solution is unique.

The dual formulation of the quasistatic viscoelastic bilateral contact problem
with Tresca’s friction law was investigated in (Awbi et al., 2001). In Tresca’s law the
friction bound µ|σn| is replaced with G which is assumed to be known.
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A problem of bilateral contact for a viscoelastic material with slip-dependent
friction coefficient can be found in (Amassad et al., 1999b; 2001b). In the context of
quasistatic problems this is the first result in which µ is not a constant. The friction
coefficient µ was assumed to depend either on the current slip rate

µ = µ
(

|vT − v
∗|
)

,

or on the total slip history

µ = µ

(
∫ t

0

|vT (s)− v
∗(s)| ds

)

.

Theorem 3. (Amassad et al., 1999b) There exists µ0 > 0 which depends only on
the problem data, such that if µ(·) ≤ µ0, then there exists a unique solution {u, σ}
to the problem. Moreover, the solution satisfies

u ∈ C1(0, T ;V ), σ ∈ C
(

0, T ;L2(Ω)
)

.

A quasistatic contact problem with directional friction and damped response was
investigated in (Rochdi et al., 1998a). Variational analysis of quasistatic viscoplastic
contact problems with friction can be found in (Sofonea and Shillor, 2001), where a
general existence and uniqueness theorem and a number of examples with different
friction conditions, as well as the addition of the damage of the material, are presented.
A contact problem for the Bingham fluid with friction was considered in (Awbi et al.,
1999). In (Amassad et al., 1999a), we investigated a quasistatic contact problem for
an elastic perfectly plastic body with Tresca’s friction. A nonlinear evolution inclusion
in perfect plasticity with friction can be found in (Amassad et al., 2001a). A number
of quasistatic problems were investigated recently in the Ph.D. thesis of Chau (2000).
A review of related quasistatic problems can be found in (Garcia et al., 2000) and in
the review article by (Shillor et al., 2001).

We turn to a quasistatic frictional bilateral contact problem in thermoviscoelas-
ticity, investigated in (Rochdi and Shillor, 2001).

σij = aijkluk,l + bijklvk,l − cijθ in Ω× (0, T ),

σij,j + fB = 0 in Ω× (0, T ),

θ′ − (kijθ,j),i = −ciju
′

i,j + q in Ω× (0, T ),

u = 0 on ΓD × (0, T ),

σn = fS on ΓN × (0, T ),

θ = θb on (ΓD ∪ ΓN )× (0, T ),

un = 0 on ΓC × (0, T ),
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|σT | ≤ µ|Rσn|
(

1− δ|Rσn|
)

+
on ΓC × (0, T ),

if vT 6= v
∗ ⇒ |σT | = µ|Rσn| (1− δ|Rσn|)+ and

σT
|σT |
= −
vT − v

∗

|vT − v∗|
,

kijθ,inj = µ|Rσn| (1− δ|Rσn|)+ sc(· , |vT − v
∗|)− ke(θ − θR) on ΓC × (0, T ),

u(·, 0) = u0, θ(·, 0) = θ0 in Ω.

Here we used the linearized thermoviscoelastic constitutive law.

The problem can be set in an abstract way (see (Rochdi and Shillor, 2001) for
details) as follows:

Problem 3. Find {u, σ, θ}, such that

θ′ +K1θ +K2θ + C1v + S(σ,v) = Q in V ′,

Bv′ +Au+ C2θ + ∂2j(σ,v) 3 F in E ′.

Here F ∈ E ′ and Q ∈ V ′ are given by

〈F,w〉 =

∫ T

0

∫

Ω

fB w dx dt+

∫ T

0

∫

Ω

cijΘwi,j dx dt+

∫ T

0

∫

ΓN

fS w dS dt

and

〈Q, η〉 =

∫ T

0

〈q, η〉 dt−

∫ T

0

∫

Ω

Θ′η dx dt−

∫ T

0

∫

ΓC

ke(Θ− θR)η dS dt

+

∫ T

0

∫

Ω

kijΘ,iη,j dx dt,

respectively, and ∂2j(σ, z) denotes the partial subdifferential of

j(σ, z) =

∫ T

0

∫

ΓC

µ|Rσn| (1− δ|Rσn|)+ |zT − v
∗| dS dt

with respect to z. We have established the following result:

Theorem 4. (Rochdi and Shillor, 2001) Problem 3 has a unique solution when
|µ|L∞(ΓC) is sufficiently small.

General results on contact problems can be found in the monograph by Raous
et al. (1995) and in the special issue of the journal of Mathematical and Computer
Modelling, (Shillor, 1998), as well as in the references below.
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5. Conclusions

Considerable progress has been made in the modelling, variational analysis and nu-
merical analysis of quasistatic contact of viscoelastic bodies. Our understanding of
the behavior of the models for these processes has deepened. However, many open
problems remain. There is an urgent need for regularity theory for contact problems.
There is intrinsic mathematical interest in the optimal regularity of the solutions.
From the numerical analysis point of view, smoother solutions allow for better error
estimates. Moreover, we would like to remove the regularization operator R.

Our analytical tools, at this stage, are insufficient to provide any detailed infor-
mation on the structure of the solutions. Indeed, the most important applied aspects
of the problems are the structures of the contact zones and the distribution of the
contact stress in them. New mathematical tools need to be developed for this task.
Since theoretical investigations are beyond our current capabilities, we must resort to
numerical approximations and simulations of the models. Recent progress, indicated
in the literature below, in the numerical analysis and the establishing of rigorous error
estimates allows for confidence in the results of the computer simulations.

In the following list we mention briefly major directions in which mathematical
contact mechanics will move in the near future, now that the existence theory is
achieving a mature status:

� Optimal control of frictional problems. Indeed, in applications, the control of
the frictional stresses, heat generation and wear are the main issues. Related is
the optimal shape design of frictional settings. The goal is to design the parts
and components in an optimal way with respect to wear, durability, etc.

� Numerical analysis and error estimates. These put the numerical simulations on
solid footing. Moreover, efficient and convergent numerical methods for contact
problems are needed.

� It is of interest to investigate settings with large friction coefficient . Mathe-
matically these are likely to turn out to be very hard problems. There is the
possibility of the nonexistence or nonuniqueness of solutions.

� A related issue is the need to incorporate the various types of behavior of µ;
its dependence on temperature, slip speed, roughness of the surface, and its
evolutions as a result of the wear of the surface.

� There is a need to investigate thermal effects in more detail since it is well-known
that these problems lead to thermal instabilities.

� Dynamic noise generation, the squeaks and squeals of brakes and other fric-
tion devices need a deep mathematical investigation. It entails the study of
wave propagation in the contacting bodies and surfaces, which result from the
slip/stick on the surfaces.

� Detailed investigations of more restricted problems are likely to give a better
insight into the more general problems. Indeed, considerable progress has been
made in the study of one-dimensional contact problems.
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� As our recent research experience shows, including additional phenomena into
contact models leads to new and interesting types of variational inequalities,
creating thus impetus to develop and expand our current mathematical tools.

We conclude that considerable progress has been achieved, but also that much
remains to be done to construct a comprehensive mathematical theory of quasistatic
frictional contact problems.
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