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ANALYSIS OF AN ISOPE-TYPE DUAL ALGORITHM

FOR OPTIMIZING CONTROL AND NONLINEAR

OPTIMIZATION

Wojciech TADEJ∗, Piotr TATJEWSKI∗

First results concerning important theoretical properties of the dual ISOPE (In-
tegrated System Optimization and Parameter Estimation) algorithm are pre-
sented. The algorithm applies to on-line set-point optimization in control struc-
tures with uncertainty in process models and disturbance estimates, as well
as to difficult nonlinear constrained optimization problems. Properties of the
conditioned (dualized) set of problem constraints are investigated, showing its
structure and feasibility properties important for applications. Convergence con-
ditions for a simplified version of the algorithm are derived, indicating a practi-
cally important threshold value of the right-hand side of the conditioning con-
straint. Results of simulations are given confirming the theoretical results and
illustrating properties of the algorithms.

Keywords: nonlinear optimization, optimizing control, duality, condition num-
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1. Introduction

The aim of this paper is to analyze the convergence of a dual algorithm of the ISOPE
method. The Integrated System Optimization and Parameter Estimation (ISOPE)
method was originally introduced by Roberts (1979) and then extensively investigat-
ed, see, e.g. (Brdyś et al., 1987) for a first basic theoretical analysis with applicability
conditions, as well as (Brdyś and Tatjewski, 1994; Tatjewski, 1999) for latest devel-
opments. The method was originally designed as an on-line steady-state optimizing
control algorithm for industrial processes within a multilayer structure. It also ap-
plies to nonlinear optimization problems with difficult, strongly nonlinear equality
constraints (e.g. process models).

The multilayer approach is commonly used in industrial applications. It was
also intensively investigated in the recent decades, see, e.g. (Findeisen et al., 1980).
The main idea is to decompose the original control task, which is the generation
of optimized trajectories of the manipulated variables, into a sequence of different
and hierarchically structured sub-tasks handled by dedicated control layers. Direct
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follow-up control, optimizing control and supervisory control are the classical, well-
established layers. The task of the direct control layer is to keep the process at a
desired state in spite of fast disturbances acting upon it, where the process state is
defined by a collection of set-points for direct controllers, usually standard industrial
controllers. The task of the steady-state optimizing control is an on-line adjustment
of the set-points to run the process as profitable as possible in a varying, uncertain
environment. This is typically modelled as slow-varying (or abrupt but rare) changes
in certain measurable and unmeasurable uncontrollable process inputs (disturbances),
and uncertainty in process models.

It is assumed in the ISOPE method that the available process model is only
approximate due to modelling errors and disturbances. The method copes with this
uncertainty using an on-line steady-state feedback measurement information. The
method is iterative with feedback from the process consisting of output measure-
ments in subsequent steady-states. It is the only optimizing control method where
iterations converge to the real process optimum in spite of uncertainty. However, to
perform the next iteration, derivatives of the process outputs in the current steady-
state, with respect to the set-points, are also required (set-points are decision variables
at the optimization layer). This creates the main difficulty in practical implementa-
tions of the method. Originally (cf. Brdyś et al., 1987; Roberts, 1979), an application
of additional (possibly small) changes of the process set-points around any current
value was proposed, to obtain approximations of the derivatives by a finite-difference
technique. However, it is time- and cost-consuming because each additional change of
the set-points means an additional dynamical transient process in the plant. There-
fore, many attempts have been made to overcome this difficulty, mainly by trying to
formulate stochastic or composite dynamic and steady-state versions of the algorithm
(Zhang and Roberts, 1990). However, the approaches based on attempts to extract
precise statics of the plant from measurements of its transient processes turned out
to be difficult and of limited reliability. The reason is that more reliable algorithms
for set-point optimizing control should rely on steady-state measurements; since then
the measurement noise can be sufficiently well filtered. A breakthrough along these
guidelines was the development of a dual-type ISOPE algorithm (Brdyś and Tatjews-
ki, 1994). It was the first ISOPE algorithm which used the steady-state measurements
only and did not require additional set-point changes for derivative approximation.
Consecutive set-points for the direct controllers are generated in such a way that they
constitute a sequence which not only converges to the optimal set-point, but also
forms a basis for estimation of the derivatives. This is due to the fact that at every
algorithm iteration the set-point is calculated in a way taking into account both the
process optimality and the need for estimation of the process output derivatives in
the next iteration (future identification). In this sense the algorithm is dual.

An important application area of the ISOPE method is the (off-line) optimization
of problems with difficult, strongly nonlinear equality constraints on the input-output
structure (e.g. complex, phenomenological models of input-output relations of dif-
ferent processes). The ISOPE algorithms are the same as in the previous case, only
simplified (e.g. linear) constraints are used as ‘models’ of the original difficult con-
straints, which in turn serve as ‘process output mappings’. Certainly, in this situation
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calculation of derivatives is easy when using well-known numerical approaches and
may be very accurate. However, the dual ISOPE algorithms are usually advantageous
also here, as the ones resulting in a smaller number of calculations of difficult non-
linear constraints. Another area of application of the ISOPE method in optimization
is the case when the performance function itself is difficult to be evaluated (in the
sense of the time needed for its calculation). In this case the ISOPE algorithm with
linearization of the performance function at each iteration point (algorithm ISOPEDL
analyzed in Section 4) can be advantageously applied.

Theoretical results concerning the optimality and convergence of the basic ver-
sion of the ISOPE method were proved formally and under reasonable assumptions
in (Brdyś et al., 1987). However, despite several attempts, the approach used there
could not be applied to the dual method, which significantly differs from the basic one.
Moreover, the theoretical analysis occurred to be extremely difficult due to a strong-
ly nonlinear nature of an additional constraint (called the conditioning constraint)
introduced to force duality. Therefore, in this paper theoretical results obtained us-
ing another, geometrical approach are presented, and they regard a two-dimensional
case. To the best of our knowledge, these are first theoretical results concerning the
feasibility and convergence of a dual-type ISOPE method.

First, properties of the feasibility set composed of original and conditioning con-
straints are investigated. The structure of the feasibility set is derived, and it is proved
that adding the conditioning constraint does not cause the overall feasible set to be-
come empty during iterations, which is an important result from the point of view of
application. Second, convergence conditions for a simplified, unconstrained (except for
the conditioning constraint) version of the algorithm are derived. A threshold value
of the parameter on the right-hand side of the conditioning constraint is found which
guarantees, under several reasonable conditions, that the gradient of the process per-
formance function converges to zero. The results are practically important not only
because convergence conditions are given, but also because the threshold value lies
well outside a numerically recommended range of values. The results of numerical
simulations are finally presented to confirm the obtained theoretical results and to
investigate the behaviour of both the versions of the algorithm.

2. Dual-Type ISOPE Algorithm

The steady-state optimizing control problem (OCP) can be formulated as follows
(Brdyś et al., 1987; Brdyś and Tatjewski, 1994):

minimize Q(c, y)

subject to y = F∗(c),

c ∈ C,
(1)

where c ∈ � n are set-points of direct process controllers to be optimized at the
optimizing control layer, and y denote process outputs. F∗ : � n 7→ � m represents
a real, generally nonlinear input-output mapping (static characteristics) of the plant,
and Q(·, ·) is the plant performance index describing formally the process productivity
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(economic production goals) dependent on c and y. The set C represents inequality
constraints on the set-points. Certainly, it cannot be assumed that F∗(·) is known
exactly and consequently, only an approximate model of F∗ is available,

y = F (c, α),

with model (adjustable) parameters α. Therefore, the following steady-state model
optimization problem (MOP) corresponds to the OCP:

minimize Q(c, y)

subject to y = F (c, α),

c ∈ C.
(2)

By eliminating the output variable y, the problems (1) and (2) can be simplified to
the form

minimize Q(c, F∗(c))

subject to c ∈ C,
(3)

and

minimize Q
(
c, F (c, α)

)

subject to c ∈ C,
(4)

respectively.

Unfortunately, due to modelling inaccuracies, a solution ĉm to (4) can differ
significantly from a solution ĉ∗ to (3), leading to suboptimal control with production
losses when pure model-based set-points ĉm are applied in the plant. A remedy is
an iterative improvement of the set-points (starting from ĉm). The ISOPE method
makes it possible to iterate set-points towards ĉ∗. The idea of the approach is to use
iteratively the following modification of (3) called the modified model optimization
problem (MMOP):

minimizec
{
Q
(
c, F (c, αi)

)
− λ(ci, αi)T c+ ρ‖c− ci‖2

}

subject to c ∈ C, (5)

where

λ(ci, αi)
T = Q

′

y

(
ci, F (ci, αi)

)[
F
′

c(ci, αi)− F
′

∗(ci)
]
, (6)

and ρ > 0 is a penalty coefficient of the quadratic regularizing term. The subscript
‘i’ is an iteration index, the point ci constitutes a set-point which is to be improved
after the current iteration of the algorithm. Q

′

y(ci, yi) denotes the partial derivative
of Q with respect to y, taken at (ci, yi), etc.

It follows directly from the construction that the performance function of the
problem MMOP (5) has the derivative at the point ci equal to the derivative of the
performance function of the original optimizing control problem (3), provided the
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model and process outputs are equal after an appropriate model parameter estimation
(yielding the parameter values αi) at the point ci,

F (ci, αi) = F∗(ci). (7)

Further, consider a situation when the modified model optimization problem
MMOP is used instead of the basic model optimization problem MOP in the so-called
‘iterative two-step approach’, i.e. when iterations of the set-points are performed in
such a way that a solution ĉ(ci) to the MMOP problem becomes the next process
set-point ci+1, ci+1 = ĉ(ci), etc. If the sequence {ci} is then convergent to a point,
say c̃, then this point satisfies c̃ = ĉ(c̃) and thus also satisfies necessary optimality
conditions for the optimizing control problem (3). Moreover, the reasoning is also true
if instead of (MMOP) the following simplified modified model optimization problem
(MMOPL) is used:

minimizec
{
Q(ci, yi) +Q

′

c(ci, yi)(c− ci) +Q
′

y(ci, yi)F
′

c(ci, αi)(c− ci)

−λ(ci, αi)T c+ ρ‖c− ci‖2
}

subject to c ∈ C, (8)

where we write yi = F (ci, αi) to shorten the notation, yi = F (ci, αi) = F∗(ci) due
to (7). The problem (MMOPL) is a simplified version of (MMOP) using instead of
Q(c, F (c, αi)) its linearization at the point ci only.

The basic dual-type ISOPE algorithm will now be formulated:

Algorithm 1. The ISOPED (dual ISOPE) algorithm:

1. Set i := 0, take (or evaluate) process outputs F∗(ci) at points c−n, . . . , c0 ∈
C ⊂ � n such that the matrix A0(c0) (see (11) for the definition) is sufficiently
well conditioned (see further remarks in the text).

2. Change set-points of the process direct controllers to the values ci. Wait for the
steady-state and measure the outputs yi = F∗(ci). Estimate the model param-
eters αi under the condition (7). Calculate an approximation of the derivative
F
′

∗(ci) using output measurements at points ci−n, ci−n+1, . . . , ci (applying the
formula (12)).

3. Solve the conditioned modified model optimization problem (CMMOP)

minimizec
{
qρi(c) = Q

(
c, F (c, αi)

)
− λ(ci, αi)T c+ ρ‖c− ci‖2}

subject to C ∩ D, (9)

where

D =
{
c ∈ � n :

σmax
(
Ai+1(c)

)

σmin
(
Ai+1(c)

) ≤ a
}
, (10)
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σmax(Ai+1(c)), σmin(Ai+1(c)) are respectively the maximal and minimal singu-
lar values, of the n× n matrix

Ai+1(c) =
[
c− ci c− ci−1 · · · c− ci−n+1

]
, (11)

and a > 1 is a parameter of the algorithm. Set ci+1 := argminC∩D qρi(c).

4. If ‖ci+1 − ci‖ < ε then STOP, otherwise set i := i+ 1 and go to Step 2.

In Step 3 of Algorithm 1 the optimization problem CMMOP is solved, which is
an extension of the MMOP problem (5) of the original ISOPE method. The constraint
set in CMMOP is the product C ∩ D, not the set C only. The constraint ci+1 ∈ D
is necessary to assure that estimation of the derivative F

′

∗(ci+1) in the next iteration
(based on points ci−n+1, ci−n+2, . . . , ci+1) will be well-conditioned. The derivative
F
′

∗(ci) = [F
′

∗1(ci)
T · · · F ′∗m(ci)T ]T at each iteration is calculated using the formula

Ai(ci)
TF

′

∗j(ci)
T ∼=




F∗j(ci)− F∗j(ci−1)
...

F∗j(ci)− F∗j(ci−n)



, j = 1, · · · ,m = dimF∗, (12)

see (Brdyś and Tatjewski, 1994) for a detailed derivation. Because the right-hand sides
of the systems of linear equations (12) are vectors consisting of measurement values,
the results of calculations can be strongly affected by measurement errors. Therefore,
the matrix Ai(ci) must be well-conditioned, i.e. its condition number cond (Ai(ci)) =
σmax(Ai(ci))/σmin(Ai(ci)) must not be too large. Recall that cond (Ai(ci)) measures
the influence of errors in the right-hand side vector on the errors in the solution
of (12), see, e.g. (Kiełbasiński, 1992). Thus, in Step 3 of the algorithm, ci+1 is forced
to have values assuring that the matrix Ai+1(ci+1) has the condition number not
greater than a. The set D will further be called the conditioning set. Observe that
the nature of the algorithm is dual—when solving the CMMOP both the optimality
at the current iteration and estimation requirements for the next iteration are taken
into account.

Two points concerning the formulated ISOPED algorithm should be explained
here. First, the next point is generated using the simple formula ci+1 := ĉ(ci), where
ĉ(ci) = argminC∩D qρi(c). In most ISOPE formulations a more general relaxation
formula ci+1 := ci + kc(ĉ(ci) − ci) was used, where kc is a gain factor affecting the
convergence and the convergence rate of the algorithm. The usually case-dependable
adjustment of this parameter was necessary in the original algorithm formulations
where the convexifying term ρ‖c− ci‖2 was not applied. However, this term not only
convexifies the problem, but it also affects the algorithm behaviour similarly as the
relaxation formula influencing the distance between the current point ci and the next
one ci+1. This was clearly shown in many simulation examples, where decreasing kc
or increasing ρ had a similar influence on the distances between consecutive points
and the convergence rate. Therefore, using in this paper the simple case kc = 1 does
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not constrain significantly the generality of the analysis, on the other hand making
this analysis easier.

Second, the formulated ISOPED algorithm can be successfully applied for opti-
mization of problems with known but difficult nonlinear equality constraints of input-
output type. The OCP problem (1) serve then as an original optimization problem
with difficult constraints y = F∗(c), and the problem (2) is its simplification easily
solvable by standard solvers. Obviously, the conditioning set can be less restrictive in
pure optimization applications (i.e. greater values of a possible), since the errors are
now numerical errors in calculation of F∗(ci) only.

It should be mentioned that the nature of the conditioning set D is complex,
which makes a theoretical analysis of the algorithm very difficult (the standard ISOPE
method being itself difficult to analyze). Although the ISOPED algorithm was origi-
nally formulated in (Brdyś and Tatjewski, 1994), it is in the present paper that first
theoretical results are published for the two-dimensional case, dim c = 2.

In the next section properties of the conditioning set D will be investigated, and
in the following section a convergence analysis of the dual algorithm with a simplified
modified model optimization problem (CMMOPL) will be presented.

3. Geometric Properties of Conditioning Sets

In the two-dimensional case the conditioning set D = Da(ci−1, ci) is described by

Da(ci−1, ci) =
{
c ∈ � 2 :

σmax
(
A(c)
)

σmin
(
A(c)
) ≤ a

}

=
⋃

ã∈〈1,a〉

{
c ∈ � 2 : σmax(A(c))

σmin(A(c))
= ã

}
=
⋃

ã∈〈1,a〉

D̃
ã
(ci−1, ci),

where

A(c) =
[
c− ci c− ci−1

]
.

Proposition 1. D̃
ã
(ci−1, ci) is composed of two circles with the same radius equal to

r̃(|cici−1|/2), with centres located on the bisector of the segment cici−1 symmetrically
at its both sides and at the distance h̃(|cici−1|/2) from the midpoint of the segment,
where

r̃ =
ã2 − 1
2ã
, h̃ =

ã2 + 1

2ã
, l̃

def
=
√
r̃2 + 2 =

√
h̃2 + 1. (13)

Proof. There exists a map S : � 2 → � 2 of the form S(c) = gHc+ s, where g > 0,
H is an orthogonal matrix 2 × 2 and s ∈ � 2 (the so-called similarity map, i.e. an
affine map preserving angles), such that

S(ci−1) = [−1, 0]T and S(ci) = [1, 0]T .



436 W. Tadej and P. Tatjewski

Note that the following holds:

v ∈ D̃
ã
(ci−1, ci)⇔ v ∈

{
c ∈ � 2 :

σmax
(
A(c)
)

σmin
(
A(c)
) = ã

}

⇒ S(v) ∈
{
c ∈ � 2 :

σmax
(
B(c)
)

σmin
(
B(c)
) = ã

}

⇔ S(v) ∈ D̃
ã

(
[−1, 0]T , [1, 0]T

)
= D̃

ã

(
S(ci−1),S(ci)

)

and also

w ∈ D̃
ã
(S
(
ci−1),S(ci)

)
⇒ S−1(w) ∈ D̃

ã
(ci−1, ci),

where

B(c) =

[
c−
[
1

0

]
c−
[
−1
0

] ]
(14)

because for matrices A(v) = [v − ci v − ci−1] and

B
(
S(v)
)
=

[
S(v) −

[
1

0

]
S(v) −

[
−1
0

] ]

=
[
S(v) − S(ci) S(v) − S(ci−1)

]

= gH
[
v − ci v − ci−1

]
= gHA(v)

the ratios of singular values are equal:

σmax
(
B(S(v))

)

σmin
(
B(S(v))

) = σmax
(
A(v)
)

σmin
(
A(v)
) .

Thus it is enough to find the set D̃
ã
([−1, 0]T , [1, 0]T ). Then

D̃
ã
(ci−1, ci) = S−1

(
D̃
ã

(
[−1, 0]T , [1, 0]T

))
. (15)

For w ∈ D̃
ã
([−1, 0]T , [1, 0]T ) we have

w ∈ D̃
ã

(
[−1, 0]T , [1, 0]T

)
⇔ σmax

(
B(w)

)

σmin
(
B(w)

) = ã

⇔ ∃ k > 0 such that σmin
(
B(w)

)
= k and σmax

(
B(w)

)
= kã

⇔ ∃ k > 0 : k2 and k2ã2 are the eigenvalues of B(w)TB(w).



Analysis of an ISOPE-type dual algorithm for optimizing control . . . 437

This is equivalent to

∃ k > 0 : det
(
B(w)TB(w) − sI

)
=
(
s− k2

)(
s− k2ã2

)

⇔ ∃ k > 0 : det



bT1 b1 − s bT1 b2

bT2 b1 bT2 b2 − s


 =
(
s− k2

)(
s− k2ã2

)
.

For w = [ xy ], from (14) it follows that

B = [b1 b2] =



x− 1 x+ 1

y y


 .

Therefore we require

∃ k > 0 : bT1 b1 + bT2 b2 = 2x2 + 2y2 + 2 = k2
(
1 + ã2

)

and

det



bT1 b1 b

T
1 b2

bT2 b1 b
T
2 b2


 =
(
detB(w)

)2
= 4y2 = k4ã2

⇔ ∃ k :
(
y =
k2ã

2
or y = −k

2ã

2

)
and 2x2 + 2y2 + 2 = k2

(
1 + ã2

)

⇔ 2x2 + 2y2 + 2 = 2y
ã

(
1 + ã2

)
or 2x2 + 2y2 + 2 =

−2y
ã

(
1 + ã2

)

⇔ x2 +
(
y − h̃

)2
= r̃2 or x2 +

(
y + h̃

)2
= r̃2, (16)

where

h̃ =
ã2 + 1

2ã
, r̃ =

ã2 − 1
2ã
.

From the above it follows that the set D̃
ã
([−1, 0]T , [1, 0]T ) is composed of two cir-

cles (see Fig. 1(a)) satisfying equations (16). Because S−1 is also a similarity map and
due to (15), the set D̃

ã
(ci−1, ci) has the properties stated in the proposition.

Let us rewrite the left equation of (16) as follows:

x2 +

(
y − ã

2 + 1

2ã

)2
=

(
ã2 − 1
2ã

)2

⇔
(
x2 + (y − 1)2

)
+ 2

(
1− ã

2 + 1

2ã

)
(y) = 0. (17)

We obtain a linear combination of equations x2 + (y − 1)2 = 0 and y = 0. This
defines a pencil of circles, which is well-known in analytical geometry (see, e.g. Stark,
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(a) (b)

Fig. 1. Conditioning set.

1974). For ã ∈ � \{0} (17) defines a circle of the pencil, see Fig. 1(b). Note that a
negative value of ã in (17) produces the same circle as the right equation in (16) for
the corresponding positive value.

Since circles of the pencil (17) fill the plane, we have the following result:

Corollary 1. The set

Da(ci−1, ci) =
⋃

ã∈〈1,a〉

D̃
ã
(ci−1, ci)

is composed of two discs D1, D2 with the same radius equal to r(|cici−1|/2) and with
centres located on the bisector of the segment cici−1 symmetrically at its both sides
and at the distance h(|cici−1|/2) from the midpoint of the segment, where

r =
a2 − 1
2a
, h =

a2 + 1

2a
, l

def
=
√
r2 + 2 =

√
h2 + 1. (18)

Here and subsequently D1 and D2 denote the component discs of the condition-
ing set D.
Now we can consider properties crucial for the applicability and analysis of the

considered algorithm.

Proposition 2. (Non-emptiness of the feasibility set C ∩ (D1∪D2).) Assume that the
algorithm feasibility set CD = C ∩ (D1 ∪ D2) is non-empty for i = 0, where the set
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D1 ∪ D2 is defined by the points c−1 and c0. Then the feasibility set is non-empty
for all i > 0, i.e. at all next algorithm iterations where D1 ∪ D2 is defined by points
ci−1, ci, i = 1, 2, . . ..

Proof. The proof is by induction and is based on Fig. 2.

Fig. 2. Non-emptiness of C ∩ (D1 ∪ D2).

Assume that the proposition is true for ci−1 = Z, ci = W . Then there exists a
point C = ci+1 somewhere within one of the discs D1, D2 defined by Z, W . Let
ci+1 ∈ D1(Z,W ) and D1(Z,W ) be the upper, thick-lined disc in Fig. 2. Let M , N
be the intersection points of D1(Z,W ) with the ray R(WC), the points closer to
and farther from W , appropriately. Let Z ′ ∈ R(WC) and |WZ ′| = |WZ|.
If C were equal to Z ′, then the thin-lined disc D(W,Z ′)—the image of

D1(Z,W ) with respect to the bisector of the angle � ZWZ ′—would be one of Di
discs for W,C, say D1(W,C). The points M , N would then be mapped to M ′, N ′. If
C were shifted to M , then D1(W,C) would be dilated, accordingly, with respect to
W and with factor |WM |/|WZ ′| (M ′, N ′ would be mapped to M ′′, N ′′). A similar
transformation would occur when dilating C to N (factor |WN |/|WZ ′|, M ′, N ′
mapped to M ′′′, N ′′′).

Since R(WC)∩D1(Z,W ) is non-empty (it contains ci+1 = C), then by reflection
R(WZ)∩D1(W,C = Z ′) is non-empty and by dilation so is R(WZ)∩D1(W,C) for
any C ∈MN . Let us calculate the distances between W and the intersection points
M ′′, N ′′, M ′′′, N ′′′.

Assume that |WZ| = 2, x = |WM | = |WM ′|, y = |WN | = |WN ′|. Then it is
easy to show that x · y = 2 because, due to (18), the number 2 is the power of W
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with respect to D1(Z,W ) circle. Then the distances are as follows:

|WM ′′| = |WM ′| |WM |
|WZ ′|

=
x2

2
, |WN ′′| = |WN ′| |WM |

|WZ ′|
=
xy

2
= 1,

|WM ′′′| = |WM ′| |WN |
|WZ ′|

=
xy

2
= 1, |WN ′′′| = |WN ′| |WN |

|WZ ′|
=
y2

2
.

Thus S = M ′′′ = N ′′ is the midpoint of the segment WZ and S belongs to
D1(W,C) for C ∈ MN , i.e. for any ci+1 = C ∈ D1(Z,W ). In other words,
S = (ci + ci−1)/2 ∈ D1(ci, ci+1). The set C is convex, W,Z ∈ C, so S ∈ C and

ci + ci−1
2

∈ C ∩ (D1 ∪ D2), D1,D2 for ci, ci+1.

Therefore, the proposition is true for ci, ci+1. Now, since by assumption c−1, c0
are chosen so that it is possible to determine c1, then by induction ci+1 exists for
any i.

Corollary 2. Let ci and ci+1 be two consecutive solutions from the algorithm. Then
ci−1 belongs to the dilated image, with respect to ci and by factor 2, of one of the
conditioning discs D1,D2 for ci, ci+1.
Proof. We have shown in the proof of Proposition 2 that S = (ci + ci−1)/2 ∈
C ∩ (D1(ci, ci+1) ∪ D2(ci, ci+1)), i.e. S belongs to one of the conditioning discs, say
D1(ci, ci+1). Since ci−1 is the image of S in dilation with respect to ci and by factor
2, ci−1 must belong to the corresponding dilated image of D1(ci, ci+1).

Corollary 3. Let ci and ci+1 be given. Let S = (ci + ci−1)/2 and ci−1 belong to
D1(ci, ci+1) and to the corresponding dilated image D′1(ci, ci+1), respectively. Let E
be that common point of D1(ci, ci+1) and the line going through ci and tangent to
D1(ci, ci+1) circle for which | � Ecici+1| < | � Fcici+1|, where F is the second point
having this property. Then E ∈ C ∩ D1(ci, ci+1).
Proof. The proof is based on Fig. 3:

Let Z,W,C, S,M denote ci−1, ci, ci+1, (ci−1 + ci)/2 and (ci + ci+1)/2, respec-
tively. Let D be the common point of the D1(W,C) circle and the line going through
M tangent to D1(W,C), as shown in Fig. 3. Let P be the intersection point of the
segments MD and WE. Let M ′ = C,E′, P ′, D′,D′1(W,C) denote the images of
the objects M,E, P,D,D1(W,C) in dilation with respect to W and by factor 2.
By assumption, D1(W,C) is the conditioning disc for W,C to the image of which
Z = ci−1 belongs: Z ∈ D′1(W,C), see Corollary 2.
Since Z ∈ D′1(W,C), Z,W,C all belong to C, C is a convex set, and the following

inclusions hold (where � denotes a wedge-shaped set):

� WCP ′ ⊆ � WCZ, � CWP ′ ⊆ � CWZ,

4CWP ′ = � CWP ′ ∩ � WCP ′, 4CWZ = � CWZ ∩ � WCZ,
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Fig. 3. Feasibility of E : E ∈ C ∩ D1(W,C).

we conclude that

4CWP ′ ⊆ 4CWZ ⊆ C.
Assume that |WC | = 2. Then from (18) we have |WE| =

√
2, |MD| = 1. Let

x = |WP |. Then |PE| = |PD| =
√
2 − x, so |PM | = |MD| − |PD| = 1 −

√
2 + x.

For the triangle 4WMP we have: |WP | + |PM | > |WM | ⇐⇒ 2x + 1 −
√
2 >

1 ⇐⇒ x >
√
2/2. Thus |WP ′| = 2|WP | >

√
2. The last inequality implies that

E ∈WP ′ ⊂ 4CWP ′ ⊆ C. This completes the proof.
From Proposition 2 and Corollary 3 we have that S = (ci−1 + ci)/2 and

E(ci, ci+1) both belong to the product C ∩ D1(ci, ci+1), where D1 is one of the
discs of the conditioning set defined by ci and ci+1. This means that they are good
candidates for a starting point of an optimization procedure necessary to perform
Step 3 of the algorithm. On the other hand, nothing is known about the product
C ∩ D2(ci, ci+1) and it can be empty.

4. Convergence Analysis

Writing

qm(c, α) = Q(c, F (c, α)), (19)

q(c) = Q(c, F∗(c)), (20)

and using (6), (7) the problem MMOPL (8) can be easily reformulated to the following
equivalent but simpler form (MMOPL1):

minimize
{
q(ci) +∇qT (ci)(c− ci) + ρ‖c− ci‖2

}

subject to c ∈ C, (21)
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where

∇q(ci)T = ∇cQ(ci, yi)T +∇yQ(ci, yi)TF
′

∗(ci),

F
′

∗(ci) =
[
∇F∗1(ci) · · ·∇F∗m(ci)

]T
,

m denoting the number of outputs, y ∈ � m , ∇xf denoting the gradient of a function
f with respect to the variables x.

The simplified ISOPED algorithm for dim c = 2, with the conditioned problem
CMMOPL instead of the CMMOP, takes now the following form:

Algorithm 2. The ISOPEDL algorithm (ISOPED with Linearization of the perfor-
mance function used):

1. Choose c−2, c−1, c0 ∈ C ⊂ � 2 such that the condition number of the matrix
A(c0) = [ c0 − c−1 c0 − c−2 ] is not greater than a, set i := 0,

2. Measure F∗(ci), evaluate q(ci) = Q(ci, F∗(ci)) and estimate ∇q(ci).

3. Solve the following CMMOPL problem:

minimize
{
f(v) = q(ci) +∇q(ci)T (v − ci) + ρ‖v − ci‖2

}

subject to v ∈ C ∩ (D1 ∪ D2), (22)

where

D1 ∪ D2 =
{
v ∈ � 2 : σmax(A(v))

σmin(A(v))
≤ a
}
, (23)

and σmax(A(v)), σmin(A(v)) are the maximal and minimal singular value,

respectively, of the matrix A(v) = [ v − ci v − ci−1 ]. Then set ci+1 :=
argminC∩(D1∪D2) f(v).

4. If ‖ci+1 − ci‖ < ε then STOP, otherwise set i := i+ 1 and go to Step 2.

Our intention is to estimate the gradient ∇q(ci+1) in the next iteration solving
the set of linear equations with respect to ∇q(v), for v = ci+1:

A(v)T∇q(v) =



q(v)− q(ci)

q(v)− q(ci−1)


⇔ A(v)T∇q(v) = b(v). (24)

The convergence analysis presented in this section is limited to the unconstrained
case, C = � 2 . We will also assume that the gradient estimation is precise, i.e. the
gradient ∇q(ci) at each ci will be assumed as known (the same was also assumed
in the convergence analysis of the basic ISOPE algorithm in (Brdyś et al., 1987).
The novelty are first results of a convergence analysis of the dual ISOPE algorithm,
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i.e. with the conditioning set D1 ∪ D2. The results show the impact of this set on
the convergence and in particular, the influence of the parameter a (see (23)) on the
algorithm behaviour – a result important from the point of view of application.

Before stating the theorem a parameter βmax will be defined, using the drawing
shown in Figure 4.

Fig. 4. Definition of βmax.

D1(W,C) is one of the discs of the conditioning set for W = ci−1, C = ci
(two consecutive solutions from the algorithm), and let L(C, T ) be the line going
through C and tangent to D1(W,C), where T is the common point of D1(W,C)
and L(C, T ). O is the centre of D1(W,C), and D is the intersection point of the
line L(WC) and the ray R(OT ). Since there are two possible choices for L(C, T ),
we choose T to be such that D /∈ WC . Now βmax = |OD|/|OT |, 1 < βmax <∞ (if
it exists). Naturally, βmax depends on a.

Theorem 1. Let q : � 2 → � be a differentiable function satisfying the following
conditions:

(A1) there exists q ∈ � such that q(c) ≥ q for all c ∈ � 2 ,

(A2) ‖∇q(x) − ∇q(y)‖ ≤ L‖x − y‖ for a certain constant L and for all x, y ∈ � 2
(Lipschitz continuity of ∇q(c)),

and let the parameters of the algorithm a, ρ and a constant B satisfy the inequalities:

(A3) βmax(a) < 5, i.e. a > â = ĥ + r̂ =
√
r̂2 + 1 + r̂ where r̂ =

√
1 +
√
14/4

(â ' 3.11),
(A4) ρ > L/(5− βmax) (it implies ρ(βmax − 1)/2 < (4ρ− L)/2 and 4ρ > L because

βmax > 1),

(A5) ρ(βmax − 1)/2 < B < (4ρ− L)/2.
Then, defining the energy function E(ci, ci−1) = q(ci) + B‖ci − ci−1‖2, we have at
consecutive iterations of the algorithm:

1. E(ci+1, ci) < E(ci, ci−1)
2. limi→∞ ‖ci+1 − ci‖ = 0 and

∑∞
i=0 ‖ci+1 − ci‖2 <∞.

Proof. See the Appendix.
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Note that we are interested in convergence results for a broad range of values for
the parameter a, including all values practically important from the point of view of
application. Certainly, the larger a, the better the chance to prove the convergence,
because a larger a means a smaller influence of the conditioning constraint on the
modified model optimization problems—and the algorithm without this constraint
has been proved to be convergent. Luckily, to prove the main result concerning the
algorithm optimality, i.e. the convergence of the gradient to zero, only a slightly larger
value of the threshold for a than that in Assumption (A3) must be assumed.

Theorem 2. If Assumptions (A1)–(A5) of Theorem 1 are satisfied, and additionally

a > ã = h̃+ r̃ =
√
r̃2 + 1 + r̃ where r̃ =

1 +
√
5

2
, i .e. ã ' 3.52,

then
lim
i→∞
‖∇q(ci)‖ = 0.

Proof. The proof is omitted since it is lengthy and uses a reasoning similar to that in
the proof of Theorem 1.

Theorem 2 implies that if limi→∞ ci = c, then, due to the assumed Lipschitz
continuity of the gradient, c is a stationary point, i.e. ∇q(c) = 0. The result concern-
ing the threshold value of a = ã ' 3.52 is very important from the practical point
of view, because ã is quite small, allowing a very good conditioning of the matrix A
(recall the smallest possible value yielding an ideal conditioning is a = 1). Certainly,
for a ≤ ã (and also a ≤ â) the norm ‖ci−ci−1‖ may also happen to converge to zero.
Moreover, for a small enough i.e. for a < (1+

√
5)/2 (which is equivalent to r < 1/2)

the sequence {ci} is convergent because max(‖ci+1−ci‖/‖ci−ci−1‖) = (l+r)/2 < 1.
However, we cannot then assure the optimality properties of the algorithm, because
the smaller a the larger the influence of the conditioning constraint on the next point,
and this influence finally destroys the optimality of the algorithm—for the smallest
possible value of a = 1 (and the best possible conditioning of the matrix A) the
feasible set is reduced to two points only, because the conditioning discs reduce then
to single points (centres).

Certainly, the theorem assumptions are sufficient conditions—it has not been
proved that for certain values of a smaller than ã the convergence and optimality
cannot happen. Moreover, it has happened in certain example simulations with a
slightly smaller than ã.

5. Simulation Results

A nonlinear process described by the following input-output mapping, which is as-
sumed to be unknown, is considered (cf. Brdyś and Tatjewski, 1994):

y = F∗(c) = F∗
(
[c(1), c(2)]

T
)
= 2c0.5(1) + c

0.4
(2) + 0.2c(1)c(2).

The performance function to be minimized is described by

Q(c, y) = −y + (c(1) − 0.5)2 + (c(2) − 0.5)2.
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The following process model is assumed to be available:

y = F (c, α) = F
(
[c(1), c(2)]

T , α
)
= 0.6c(1) + 0.4c(2) + α.

The real optimal point is ĉ = [ĉ(1), ĉ(2)]
T = [1.067, 0.830]T with Q(ĉ, F∗(ĉ)) =

−2.7408. It is located within the interior of the feasibility set

C =
{
c = [c(1), c(2)]

T ∈ � 2 : 0 ≤ c(1) ≤ 2, 0 ≤ c(2) ≤ 2
}
.

To implement the ISOPED or ISOPEDL algorithms efficiently, a choice of ini-
tial points c−2, c−1, c0 ∈ C ⊂ � 2 (see Algorithm 2) satisfying the requirement
cond (A(c0)) ≤ a must be appropriately designed. Only one current set-point cor-
responding to actual uncertainty conditions is usually available when starting the
algorithm. It is then the task of the algorithm itself to gather the data necessary
to start regular iterations. Gathering these data is called the initial phase of the
algorithm. The initial phase should be thoroughly designed because it must apply
set-point changes, and each set-point change means a transient process in the plant
and is connected with plant productivity. Therefore, an optimized initial phase was
proposed in (Tatjewski, 1998), for a general case with c ∈ � n . It is given below for the
case c ∈ � 2 to be consistent with the theoretical convergence analysis of the paper.

The optimized initial phase of the ISOPED algorithm (Step 1):

1.1. Choose appropriately positive parameters γ, a. Set c−2 := c0, the actual point.

1.2. Solve the following augmented model optimization problem (MOPA):

minimizec
{
Q(c, F (c, α−2)) + ρ0‖c− c−2‖2

}

subject to c ∈ C, ‖c− c−2‖ ≥ γ, (25)

denoting the solution point by c−1. Apply the set-point c−1 to the controlled
plant and measure the corresponding outputs. Add the measurement to the data
record and adapt the steady-state model (i.e. the parameters α).

1.3. Solve the following conditioned augmented model optimization problem
(CMOPA):

minimizec
{
Q(c, F (c, α−1)) + ρ0‖c− c−1‖2

}

subject to c ∈ C, ‖c− c−1‖ ≥ γ,

cond (A(c)) ≤ a,

(26)

denoting by c0 the solution point. Go to Step 2 of the ISOPED algorithm.
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The initial phase for the ISOPEDL version is analogous and only linearization
of the function Q(c, F (c, αj)) at every point cj (j = −2,−1) must be used. The
ISOPED and ISOPEDL algorithms with optimized initial phase were used in all
simulation experiments. Note that generally, a different, larger value of the penalty
coefficient ρ should be used during the optimized initial phase, especially when the
model uncertainty is significant. The reason is that the MOPA and CMOPA problems
are model-based only (without the modifier λ carrying a feedback information from
the process), therefore larger set-point changes should be avoided. The penalty coeffi-
cient for the initial phase is denoted by ρ0, and ρ0 = 2ρ was taken in the simulation
experiments.

First, the influence of the parameter a on the convergence properties of the
ISOPEDL algorithm was tested. Sample results for a = 4, a = 3 and a = 2 (all with
ρ = 1) are shown in Figs. 5 and 6, in the form of the process performance function
values (‘qre’) and set-point trajectories, respectively. For a = 4 (> ã ' 3.52) the
convergence is to the optimal point and it is very good; convergence to the optimum
also occurs for a = 3 , but for a = 2 the algorithm loses the optimality property,
converging more slowly and to a point far away from the optimal one. The results
confirm the statements of the Theorem 2 and show the guaranteed convergence for
a > ã ' 3.52. Observe an increasing zig-zag nature of the set-point trajectory with
the decrease in a.

It is an interesting and important question how close the behaviour and con-
vergence properties of the ISOPED and ISOPEDL algorithms are. Intuitively, they
should differ when the process model enters the performance function and is signifi-
cantly non-linear, especially in regions of larger changes in the set-points—but should
be analogous for small set-point steps. To test this hypothesis, both the algorithms
were simulated for different values of ρ and a; sample results for ρ = 1 are given
in Figs. 7 and 8, and for ρ = 0.5 in Figs. 9 and 10. In both the cases a = 10 was
used, a value usually sufficient under a reasonable error level in the feedback infor-
mation. These results show that the ISOPEDL algorithm works properly for values
of ρ slightly larger than the ISOPED algorithm (ρ = 0.5 is clearly too small for
ISOPEDL), and that the convergence properties of both the algorithms seem to be
analogous. The behaviour of the ISOPED algorithm for different values of a = 4,
a = 3 and a = 2 (all with ρ = .2) shown in Figs. 11 and 12 further confirms this
statement, cf. Figs. 5 and 6.

6. Conclusions

Basic theoretical properties of the dual-type ISOPE (called ISOPED) algorithm have
been considered. The problem is very difficult due to the complicated nature of the
algorithm, and therefore, it has not been possible until now to obtain results for the
two-dimensional case, dim c = 2.

First, properties of the feasibility set composed of original and conditioning con-
straints were investigated. The structure of the conditioning set was derived (Corol-
lary 1). Then it was proved that adding the conditioning constraints—which vary
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Fig. 5. Performance function trajectories for different values of a.
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Fig. 6. Set-point trajectories for different values of a.
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Fig. 7. Performance function trajectories of ISOPED and ISOPEDL algorithms for ρ = 1.
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Fig. 8. Set-point trajectories of ISOPED and ISOPEDL algorithms for ρ = 1.
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Fig. 9. Performance function trajectories of ISOPED and ISOPEDL
algorithms for ρ = 0.5.
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Fig. 10. Set-point trajectories of ISOPED and ISOPEDL algorithms
for ρ = 0.5.
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Fig. 11. Performance function trajectories for different values of a (ISOPED).
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Fig. 12. Set-point trajectories for different values of a (ISOPED).
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with iterations—cannot make the overall feasible set empty (Proposition 2), which
constitutes a very important result from the point of view of application. Second,
we managed to obtain results concerning convergence properties of the ISOPEDL
algorithm, a version of the ISOPED algorithm with the performance function of the
modified model optimization problems linearized at each iteration point. For the first
time, a threshold value of the parameter of the right-hand side of the condition-
ing constraint was found (a ' 3.52) such that it guarantees, under other reasonable
conditions, that the gradient of the process performance function converges to zero
(Theorems 1 and 2, the unconstrained case). The result is of practical importance
because the threshold value lies well outside a numerically recommended range of val-
ues for a (about 10, down to about 5 for high feedback error levels). The results of
numerical simulations with ISOPEDL and ISOPED algorithms were also presented,
fully confirming the obtained theoretical results. Moreover, these results showed sim-
ilar behaviour and practically identical convergence properties of both the algorithms
in the considered example.

Certainly, there is still much more to be done. We did not manage to perform
a convergence analysis in the constrained case, i.e. when the optimal point lies on
the boundary of the original feasibility set C, although simulation results with simple
lower-upper bound constraints indicate that these properties are similar. Second, cases
with dim c ≥ 3 should be analyzed. The approach should then be perhaps somehow
different, relying less on geometrical analysis. Finally, the convergence of the ISOPED
algorithm itself should be theoretically investigated. Or perhaps it could be shown that
convergence properties of ISOPEDL and ISOPED algorithms are closely connected,
as simulation results indicate.
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Appendix

Proof of Theorem 1. Note that solving the CMMOPL optimization problem in Step 3
of the algorithm can be considered as a projection of the result p = c − ∇q(c)/2ρ
(where c = c + i) of the unconstrained optimization onto the conditioning set D
(i.e. onto the nearest from the two discs), because the level sets of f(v) are circles
around p.

Let w, c and v denote ci−1, ci and ci+1, respectively. We will estimate the
expression

E(v, c)− E(c, w) (27)

for two cases concerning the location of v.

Case 1. v belongs to the D1(w, c) circle (the boundary of the D1(w, c) disc, see
Fig. 13).

Denote by v and v′ the results of projection of the unconstrained optimization
result p at Step 3 of the algorithm: p (−→cp = p− c = −∇q(c)/2ρ) is projected onto the
discs D1(w, c) and D2(w, c). We assume that v ∈ D1 is the solution, i.e. ‖v − p‖ <
‖v′ − p‖. This means that p and v belong to the same half-plane with respect to
the line L(wc). If p lies on this line, either of the points v and v′ can be chosen as
the result of Step 3 of the algorithm. From now on we will regard p as the result of
dilating v with respect to o1 (the centre point of D1): p = o1 + β(v − o1), β ≥ 1,
since o1, v, p are colinear.

We introduce new orthogonal axes in such a way that o1 is the origin, the x-
axis is parallel to the vector −→wc (directed to the right), and the y-axis is parallel
to the vector −−→mo1 (directed upward). The scale preserves all the distances, i.e. the
transition between the original and new coordinates is isometric. In the new axes
oxy: o1 = (0, 0); m = (‖w − c‖/2)(0,−h); c = (‖w − c‖/2)(1,−h); v = (‖w −
c‖/2)(r cos(φ), r sin(φ)); p = (‖w − c‖/2)(βr cos(φ), βr sin(φ)) where β ≥ 1 , and
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Fig. 13. Projection of p onto D1 and D2.

finally ∇q(c) = 2ρ(c − p) = (‖w − c‖/2)2ρ(1 − βr cos(φ),−h − βr sin(φ)) where r
and h satisfy (18). Further, based on (18), we have

‖v − c‖2 = ‖v − c‖2 =
∥∥∥∥
‖w − c‖
2

(
r cos(φ) − 1, r sin(φ) + h

)∥∥∥∥
2

=
‖w − c‖2
4

(
2(r2 − r cos(φ) + rh sin(φ)) + 2

)

=
‖w − c‖2
4

(
2F(φ) + 2

)
, (28)

∇q(c)T (v − c) = ∇q(c)T (v − c)

= 2ρ
‖w − c‖2
4

[
(1− βr cos(φ))(r cos(φ) − 1)

+ (−h− βr sin(φ))(r sin(φ) + h)
]

=
‖w − c‖2
4

[
− 4ρ− 2ρ(1 + β)(r2 − r cos(φ) + rh sin(φ))

]

=
‖w − c‖2
4

[
− 4ρ− 2ρ(1 + β)F(φ)

]
. (29)

Now, based on the estimation of the descent of a function with Lipschitz con-
tinuous gradient (see, e.g. Bertsekas, 1995), we estimate the expression (27) for an
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arbitrary positive B. For notational convenience, we write E(v) and E(c) instead of
E(v, c) and E(c, w), and generally, E(ci) instead of E(ci, ci−1).
We thus get

E(v)− E(c) = q(v)− q(c) +B(‖v − c‖2 − ‖c− w‖2)

≤ ∇q(c)T (v − c) + L
2
‖v − c‖2 +B(‖v − c‖2 − ‖c− w‖2)

≤ ‖w − c‖
2

4
(−4ρ− 2ρ(1 + β)F(φ)) −B‖w − c‖2

+

(
B +
L

2

) ‖w − c‖2
4

(2F(φ) + 2)

=
‖w − c‖2
4

(
F(φ)(L+ 2B − 2ρ(1 + β)) + L− 2B − 4ρ

)
. (30)

Let us investigate F(φ) = r2 − r cos(φ) + rh sin(φ). From (28) we have F(φ) =
2(‖v − c‖2/‖w − c‖2)− 1 and it is a periodic function of φ as v rotates around the
centre of D1. Note that (see Fig. 14) due to the geometric properties of D1 with
respect to w and c:

F(φ) is maximal ⇐⇒ φ = φmax ⇐⇒ v = vmax,

F(φ) is minimal ⇐⇒ φ = φmin ⇐⇒ v = vmin,

F(φ) = 0⇔ φ = φ1 or φ = φ2 ⇐⇒ v = t1 or v = t2. (31)

Fig. 14. F(φ) depends on the position of v.
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Therefore F(φ) < 0 or F(φ) > 0 when v belongs to the shorter arc t1t2 or the
longer arc t1t2, respectively. Also note that if v is, in oxy, not lower on the D1 circle
than v0(φ = 0), the factor β designating the position of p can be made arbitrarily
large. Otherwise β is bounded by β′ (Fig. 15) so that p stays above the line L(wc),
in oxy. Here β′ is given by

β′ = − h

r sin(φ)

for v positioned at an angle φ on the D1 circle: v = (‖w− c‖/2)(r cos(φ), r sin(φ)),
φ ∈ (−π, 0).

Fig. 15. Definition of β′.

Now, the second component of (30) satisfies the inequality (‖w−c‖2/4)(L−2B−
4ρ) < 0, because from the assumptions of Theorem 1 we have B > 0 and 4ρ−L > 0.
We have to analyze two situations for the first component:

1. F(φ) ≥ 0 (see (31)). In order to have for the first component of (30) the relation
(‖w − c‖2/4)(L+ 2B − 2ρ(1 + β))F(φ) < 0, there must be (since β ≥ 1)

B <
4ρ− L
2

(32)

and it is so as assumed in (A5). Thus both the components of (30) are negative.

2. F(φ) < 0, i.e. v belongs to the shorter arc t1t2 (Fig. 14).
We require that the parameter a of the algorithm influencing the size and
position of D1 over the segment wc be such that t1 is under v0, in oxy. This
is equivalent to the fact that both t1 and t2 are under the x-axis of oxy. If
this requirement were not fulfilled, β (designating p) could be arbitrarily large
for some v. As a result, the first component of (30) could be an arbitrarily
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large positive number for F(φ) < 0. The requirement on a is expressed by (see
Fig. 14, m is the midpoint of the segment wc):

|o1t1| > |mc| ⇐⇒ r = r(a) =
a2 − 1
2a

> 1⇐⇒ a > 1 +
√
2.

Then for each v belonging to the shorter arc t1t2 there exists β
′ being the

upper bound for β. It is obvious that β′ reaches its maximum for v = t1, so
if F(φ) < 0, then β(v) ≤ β′(v) ≤ β′(t1) = βmax as defined before Theorem 1.
Since we assumed in (A3) that a > â ⇔ βmax < 5 (βmax exists) and βmax(a)
is a decreasing function of a, the requirement on a stated above is met.

To estimate the expression (30), we also have to consider the inequality
(see Figs. 14 and 1, as well as (18)):

0 < −F(φ) = −2 ‖v − c‖
2

‖w − c‖2 + 1 < −2
‖vmin − c‖2
‖w − c‖2 + 1 = 1− 2

(l− r)2
22

< 1.

Now the expression (30) is estimated, taking (32) into account, for v such that
F(φ) < 0:

‖w − c‖2
4

(
F(φ)(L+ 2B − 2ρ(1 + β)) + L− 2B − 4ρ

)

=
‖w − c‖2
4

(
−F(φ)(2ρ(1 + β)− 2B − L) + L− 2B − 4ρ

)

≤ ‖w − c‖
2

4

(
1(2ρ(1 + βmax)− 2B − L) + L− 2B − 4ρ)

=
‖w − c‖2
4

(
2(βmax − 1)ρ− 4B

)
. (33)

In order to have (33) negative, we must get

B >
ρ(βmax − 1)

2
(34)

and this is true due to assumption (A5). Note that the set of B satisfying (A5)
is non-empty due to (A3) and (A4).

We have shown so far that if Assumptions (A2)–(A5) are satisfied, then in Case 1:

if F(φ) ≥ 0 then (30) ≤ ‖w − c‖
2

4
(L− 2B − 4ρ) < 0,

if F(φ) < 0 then (30 ≤ ‖w − c‖
2

4

(
2(βmax − 1)ρ− 4B

)
< 0.
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Thus

E(v) − E(c) ≤ ‖w − c‖
2

4
max(L− 2B − 4ρ, 2(βmax − 1)ρ− 4B)

= W‖w − c‖2 < 0.

Case 2. v belongs to the interior of D1(w, c).
Then, in Step 3 of the algorithm we have

v = p = c− ∇q(c)
2ρ

and we estimate

E(v) − E(c) = q(v) − q(c) +B
(
‖v − c‖2 − ‖c− w‖2

)

≤ ∇q(c)T (v − c) + L
2
‖v − c‖2 +B

(
‖v − c‖2 − ‖c− w‖2

)

= −‖∇q(c)‖
2

2ρ
+

(
L

2
+B

) ‖∇q(c)‖2
4ρ2

−B‖c− w‖2

= ‖∇q(c)‖2L+ 2B − 4ρ
8ρ2

−B‖c− w‖2 < 0

because of the condition (A5) forcing L+ 2B − 4ρ < 0.
Thus in both Cases 1 and 2 there is a negative change in the energy function,

and

E(v) − E(c) ≤ ‖w − c‖2max
(
W ,−B

)
= V‖w − c‖2 < 0,

that is

E(ci+1)− E(ci) ≤ −|V| ‖ci − ci−1‖2 < 0.
Therefore, E(ci) is a strictly decreasing sequence, for ci 6= ci+1, E(ci) = q(ci) +
B‖ci − ci−1‖2 is bounded by q (Assumption (A1)), thus E(ci) converges to E and
we have

lim
i→∞
‖ci − ci−1‖2 ≤ lim

i→∞

E(ci+1)− E(ci)
−|V|

= 0 =⇒ lim
i→∞
‖ci − ci−1‖ = 0,

∀ N
N∑

i=0

‖ci − ci−1‖2 ≤
N∑

i=0

E(ci+1)− E(ci)
−|V|

=
1

−|V|
(E(cN+1)− E(c0)) <

E − E(c0)
−|V|

,

so
∑∞
i=0 ‖ci − ci−1‖2 <∞. The proof is thus completed.
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