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SEPARATION PRINCIPLE FOR NONLINEAR SYSTEMS:

A BILINEAR APPROACH

Mohamed Ali HAMMAMI
∗, Hamadi JERBI∗

In this paper we investigate the local stabilizability of single-input nonlinear
affine systems by means of an estimated state feedback law given by a bilinear
observer. The associated bilinear approximating system is assumed to be ob-
servable for any input and stabilizable by a homogeneous feedback law of degree
zero. Furthermore, we discuss the case of planar systems which admit bad inputs
(i.e. the ones that make bilinear systems unobservable). A separation principle
for such systems is given.
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1. Introduction

In this paper we study the local stabilization problem of single-input nonlinear systems
of the form

{

ẋ = f(x) + ug(x),

y = h(x),
(1)

where x ∈ U is a neighborhood of the origin in
� n , u stands for a scalar input,

y ∈
� p is the output, f and g denote smooth vector fields, and h is a real analytic

function on
� n , such that f(0) = 0 and h(0) = 0.

Several authors (Boothby and Marino, 1989; Dayawansa et al., 1990) investigate
the stabilizability problem when g(0) 6= 0. The common approach is to consider
the corresponding linearized system. It is well-known that for nonlinear systems, in
particular systems of the form (1), there exists a local exponential observer (i.e. a
dynamic system of the form ˙̂x = φ(x̂, y, u)) if and only if the linear approximation
of the system at the origin is detectable. If, moreover, it is stabilizable by a state
feedback, the problem of output feedback stabilization with state observer is solvable
with a linear observer and a linear control law. This observer can be taken as ˙̂x =
Ax̂ + Bu− L(Cx̂ − y), where the pair (A,C) is detectable and L signifies the gain
matrix such that (A−LC) is a Hurwitz matrix. Another approach to establish a local
separation principle is to consider the system (1) in closed-loop with an observer-based
output feedback control law ˙̂x = φ(x̂, y, u), u = u(x̂). If the state feedback law u(x)
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stabilizes the system (1) locally and asymptotically at the origin, and if the system
˙̂x = φ(x̂, y, u) is a local observer, then the closed-loop system ẋ = f(x)+u(x̂)g(x) is
locally asymptotically stable. Suppose that there exists a local observer for system (1).
It follows that this observer takes the form:

˙̂x = φ(x̂, y, u) = f(x̂) + ug(x̂) + k(x̂, y, u),

where k(·, ·, ·) is a nonlinear smooth function that satisfies, on the whole, state space,
and for all input signals u the equality k(x, h(x), u) = 0. This means that the observer
and the plant have the same dynamics under the condition that the output function
ŷ = h(x̂) reproduces the output function h(x). However, few results are known in
the case where g(0) = 0 (Baccioti and Boieri, 1991; Chabour et al., 1996; Chabour
and Vivalda, 1991; Hammami and Jerbi, 1994). The principal difficulties arise from
the fact that the linearized system is independent of the control and the vector field
g is not locally rectifiable. To investigate the stabilization problem for such systems
by means of a state-estimated feedback law given by an observer design, we consider
a bilinear approximation system

{

ẋ = Ax+ uBx,

ỹ = Cx,
(2)

where

A =
∂f

∂x
(0), B =

∂g

∂x
(0) and C =

∂h

∂x
(0).

The aim of this paper is to study the stabilizability of the original system when the
states of its bilinear approximating system are not available. The usual technique for
asymptotically stabilizing this nonlinear system is to build an observer. The stabi-
lization by means of a state-estimated feedback depends on both the existence of an
observer and a stabilizing feedback law. In (Chabour and Hammouri, 1993; Gauthier
and Kupka, 1992; Hammami, 1993) the authors solved the problem of stabilizing in
observer design for some classes of nonlinear systems. Suppose that we have a sta-
bilizable and observable bilinear system with states x. We use a state feedback law
u = u(x) to asymptotically stabilize the system (1).

If the states are not available, we must construct a bilinear observer which is
expected to produce an estimate x̂(t) of the state x(t); then we apply the feedback
u = u(x̂). It turns out that for planar systems we can consider bilinear systems with
bad inputs (i.e. the ones for which the system is not observable). There is at most
only one input which is constant that makes the system unobservable. In this case, we
show that the Kalman observer solves the problem. Moreover, for nonlinear systems
of the form (1) we give a separation principle, including the case of bilinear systems.



Separation principle for nonlinear systems: A bilinear approach 483

2. Stabilization Using a State Estimation

Consider a single-input nonlinear system of the form (1). Since f, g and h are C1,
we can write

f(x) = Ax+ f1(x),

g(x) = Bx+ g1(x),

and

h(x) = Cx+ h1(x),

where f1, g1 and h1 satisfy

‖f1(x)‖ ≤M1‖x‖, ‖g1(x)‖ ≤M2‖x‖, ‖h1(x)‖ ≤M3‖x‖, ∀ x ∈ U
′ ⊂ U (3)

M1, M2 and M3 being some positive constants. Throughout this paper we shall
call (2) the approximating system for the system (1). Suppose now that the system (2)
satisfies the following assumptions:

(A1) The approximating system is observable for any input.

(A2) There exists a homogeneous feedback law of degree zero u(x), (u(λx) = u(x)
for λ 6= 0), and of class C1 (on U \ {0}), stabilizing the bilinear system (2).

Note that in (Chabour et al., 1996) the authors gave a complete classification of
planar homogeneous bilinear systems where for stabilizable bilinear systems, a given
feedback u is smooth on

� 2 \ {0} and homogeneous of degree zero.

Now, in order to investigate the stabilizability problem in observer design, we
can consider a Kalman observer for the bilinear system (2) of the form

{

˙̂x = Ax̂+ uBx̂+ S−1tC(ỹ − Cx̂),

Ṡ = −θS − t(A+ uB)S − S(A+ uB) + tCC,
(4)

where θ > 0 and S ∈ S+, the cone of symmetric positive definite matrices on
� n ,

which is invariant by the second equation of (4) (the symbol t(·) denotes transposi-
tion). It is known from (Bornard et al., 1989) that, under the assumption (A1), this
observer converges for any bounded and small input u which is distant from bad in-
puts or just u(t) is a regularly persistent input in the sense of (Hahn, 1967). Indeed,
since the pair (A,C) is observable, u = 0 constitutes a universal input. Thus, for
a small input u there exists ε > 0 such that for |u| < ε, u is universal too (i.e.
if it distinguishes the points, that is, for all initial conditions (x0, x̄0) there exists
T > 0 such that C(xu(T )) 6= C(x̄u(T )), where xu(t) is the solution of (2) such that
xu(0) = x0). Therefore, the Gramm observability matrix satisfies,

Wu(t) =

∫ t

0

e−θ(t−s)
(

Φ̇u(s)(t− s)
)−1

CTCΦ−1u(s)(t− s) ds ≥ αI, α > 0.



484 M.A. Hammami and H. Jerbi

On the one hand, if we consider the error equation

ė = (A+ uB)e− S−1CTCe,

where e = x−x̂, then, by using the same argument as in (Gauthier and Kupka, 1992),
the error satisfies the estimate

‖e(t)‖ ≤ ke−θt/2, k > 0, (5)

where the constant k depends only on the initial state of (2) and u. This implies
that the system (4) is an exponential observer for (1).

On the other hand, let Φu(t)(t) be the matrix solution of Φ̇u(t) = (A +
u(t)B)Φu(t), for |u(t)| ≤ u0, where u0 is a positive constant. Then

S(t) = e−θt(Φ̇u(t))
−1S0Φ

−1
u(t)

+

∫ t

0

e−θ(t−s)
(

Φ̇u(s)(t− s)
)−1

CTCΦ−1u(s)(t− s) ds

with S0 ∈ S
+ being the initial condition for the solution S(t) (i.e. S(0) = S0).

Hence

‖S(t)‖ ≤ e−θt‖(Φ̇u(t))
−1‖ ‖S0‖ ‖Φ

−1
u(t)‖

+

∫ t

0

e−θ(t−s)‖(Φ̇u(s)(t− s))
−1‖ ‖CTC‖ ‖Φ−1u(s)(t− s)‖ ds.

Let

λ = sup
|u(t)|≤u0

‖A+ uB‖.

Then ‖Φ−1u (t)‖ and ‖(Φ̇u(t))
−1‖ are bounded by eλt, λ > 0. Indeed, we have

Φ̇−1u = −Φ
−1
u (A+ uB) and Φ̇

−1
u = I −

∫ t

0

Φ−1u (s)(A+ sB) ds.

Then

‖Φ̇−1u (t)‖ ≤ 1 + λ

∫ t

0

‖Φ−1u (s)‖ ds.

Using Gronwall’s inequality, we obtain

‖Φ−1u (t)‖ ≤ e
λt.

Therefore

‖S(t)‖ ≤ e−θt‖S(0)‖e2λt +

∫ t

0

e−θ(t−s)‖CTC‖e2λ(t−s) ds.

Hence

‖S(t)‖ ≤ ‖S(0)‖+
‖CTC‖

θ − 2λ
for θ > 2λ. (6)



Separation principle for nonlinear systems: A bilinear approach 485

This implies that for a bounded control u(t) the matrix S(t) is bounded. Since
u = u(x) is bounded, where the feedback u(x) is given in (A2), from (6) we see that
S(t) is bounded with respect to u = u(x) ≤ u0. Therefore, since the bilinear system
is observable for any input and the matrix S(t) is bounded, by using some techniques
regarding the Ricatti equations (Gauthier and Kupka, 1992) we can show that the
matrix S−1(t) is also bounded. So, there exists a positive constant η such that for
all t ≥ 0,

‖S−1(t)‖ ≤ η. (7)

Now, let us consider the equation

˙̂x = Ax̂ + uBx̂− S−1(t)tC(Cx̂ − y), (8)

where we take y = h(x) as the output of the original system (1). Letting ε = x− x̂,
where x is the state of (1) and x̂ satisfies (8). The derivative of the error ε is given
by

ε̇ = f(x) + ug(x)−Ax̂− uBx̂+ S−1tC(Cx̂ − y)

= Ax + f1(x) + uBx+ ug1(x)−Ax̂ − uBx̂+ S
−1tC

(

Cx̂− Cx− h1(x)
)

= (A+ uB)ε+ f1(x) + ug1(x) − S
−1(t)tCCε− S−1tCh1(x)

= (A+ uB − S−1tCC)ε+ f1(x) + ug1(x) − S
−1(t)tCh1(x).

Then the last expression taken in conjunction with the system (1) in the closed loop
with the estimated feedback law

u = u(x− ε) (9)

yields

(

ẋ

ε̇

)

=

(

(A+ u(x− ε)B)x

(A+ u(x − ε)B − S−1 (t)tCC )ε

)

+

(

f1(x) + u(x− ε)g1(x)

f1 (x ) + u(x − ε)g1 (x )− S
−1 (t)tCh1 (x )

)

. (10)

Set

φ(x, ε) =

(

(A+ u(x− ε)B)x

(A+ u(x− ε)B − S−1tCC)ε

)

and

ψ(x, ε) =

(

f1(x) + u(x− ε)g1(x)

f1(x) + u(x− ε)g1(x)− S
−1tCh1(x)

)

.
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Since u is of class C1 on U ′ \ {0} ⊂ U , it can be seen that φ and ψ are locally
Lipschitz. Moreover, since u is homogeneous of degree zero, we have

u(z) = u

(

z

‖z‖

)

for every z 6= 0.

Hence there exists M0 such that

|u(z)| ≤M0 for every z 6= 0.

M0 can be taken as the maximum of u(z) on the unit sphere

S1 =
{

x ∈
� n | ‖x‖ = 1

}

which is a compact set. On the one hand, it can be seen that φ is homogeneous of
degree one. By using (3) and (7), one can verify that ψ satisfies

‖ψ(x, ε)‖ ≤M‖(x, ε)‖, ∀(x, ε) ∈ U ′ × U ′,

where M is a positive constant depending on M0, M1, M2, M3, η and ‖C‖.

On the other hand, the system

t(ẋ, ε̇) = φ(x, ε)

is globally asymptotically stable (the proof is given as a special case for bilinear
systems from Theorem 2, see Remark 2). From a theorem of (Massera, 1956), it
follows that the solution (x, ε) = (0, 0) of the differential equation

t(ẋ, ε̇) = φ(x, ε) + ψ(x, ε)

is asymptotically stable.

Therefore, using this fact, we can formulate the following result.

Theorem 1. If the approximating system (2) is observable for any input and sta-
bilizable by means of a homogeneous feedback u(x) of degree zero and of class C1

on U \ {0} , then it is stabilizable by means of a state estimate feedback given by the
bilinear observer (4), and the feedback law u = u(x−ε) given in (9) makes the origin
of the original system (1) a locally asymptotically stable equilibrium point.

Example 1. Consider the following planar system:

{

ẋ1 = 3 sinx1 + 3x2 + u sinx1,

ẋ2 = −2x1 + 3 sinx2 − u sinx2.
(11)

Then the approximating system for (11) is given by

{

ẋ1 = 3x1 + 3x2 + ux1,

x2 = −2x1 + 3x2 − ux2.
(12)
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Let y = x1 be the output of (11). Then the system (12) is observable for any
input. Besides, it is shown in (Chabour and Vivalda, 1991) that the homogeneous
zeroth-degree feedback law u(x) given by

u(x1, x2) =
−14x21 + 14x1x2 + 21x

2
2

2x21 + 3x
2
2

if (x1, x2) 6= (0, 0)

and u(x) = 0 if x = 0, stabilizes the bilinear subsystem (12). Indeed, let V (x) be
the Lyapunov function given by

V (x) = 4x21x
2
2 + 2x1x2(−2x

2
1 + 6x1x2 + 3x

2
2) + (−2x

2
1 + 6x1x2 + 3x

2
2)
2,

where x = (x1, x2). A simple computation shows that the derivative of V (x) with
respect to the resulting closed loop bilinear system is V̇ (x) = −2V (x) and so x = 0
is a globally asymptotically stable equilibrium point of the system (12) in closed-
loop. Since V is a homogeneous Lyapunov function, it follows that there exists a
positive constant α such that ‖∇V (x)‖ ≤ α(1 + V (x)). Then one can deduce that
the system (12) is stabilizable by the feedback u(x−e) given by the observer (4) and,
by applying Theorem 1, one can stabilize the system (11) by the estimated feedback
law u(x− ε), where ε = x− x̂ and x̂ satisfies(8). �

Remark 1. If the states of the bilinear system are available, we can formulate the
stabilization problem of the system (1) as follows: Consider the system (1) defined in a
neighbourhood of the origin of

� n , where we suppose that f(0) = g(0) = 0. A function
ϕ is said to be positively homogeneous of degree m ≥ 0, if for any vector x and any
real positive λ, we have ϕ(λx) = λmϕ(x). Therefore, if the bilinear approximation
system (2) is stabilizable by means of a positively homogeneous feedback of degree
zero and of class C1 on

� n \ {0}, then the system (1) is locally stabilizable.

Now, consider the following class of bilinear systems:
{

ẋ = Ax+ uBx, u ∈
�
, x ∈

� n ,

y = Cx,
(13)

A, B being (n×n) constant matrices, where the drift of the system (13) is dissipative
(i.e. xTAx ≤ 0, ∀ x ∈

� n , including the case where A is skew symmetric).

Consider

V (x) = ‖x‖2 = 〈x | x〉

as a Lyapunov function candidate and assume that (13) satisfies the ad-condition, i.e.
{

x ∈
� n | Ak+1V (x) = AkBV (x) = 0, ∀k ∈ �

}

= {0}.

Using the same techniques as in (Gauthier and Kupka, 1992), we can prove that there
exists a small feedback which makes the origin of (13) a globally asymptotically stable
equilibrium point. This feedback can be taken as

u(x) = −
〈Bx | x〉

M‖x‖2
, M > 0 if x 6= 0 and u(0) = 0,

which is bounded and of class C∞ in
� n \ {0}, and can be chosen small enough.
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Furthermore, if the pair (A,C) is observable, then the input u = 0̃ is universal.
In this case the bilinear system becomes a linear one. Besides, under this assumption,
there exists η > 0 such that each input u which verifies ‖u‖ < η, distinguishes the
points of the bilinear system (13). Therefore the observer design problem is solved
by the classical Kalman observer as the dynamical system given in (4). Hence, for
M > 0 large enough, from Theorem 1 it follows that the feedback

u(x̂) = −
〈Bx̂ | x̂〉

M‖x̂‖2
, u(0) = 0,

makes the origin of the original system (1) a locally asymptotically stable equilibrium
point, provided that (13) is considered as the approximating system for (1).

In the two-dimensional case, there is at most one input ub which is constant and
makes the bilinear system unobservable. It is given by the linear equation

det

(

C

C(A+ uB)

)

= 0.

From (Jerbi, 1994), for any bounded and analytic (on
� 2 \ {0}) stabilizing feedback

law u(x), there exists δ > 0 such that

u(x) > ub − δ and u(x) < ub + δ, ∀x ∈
� 2 ,

where ub is a bad input. Consider now the system (2) with x ∈
� 2 and assume that

there exists a bounded and analytic (on
� 2 \{0}) stabilizing feedback law u(x) such

that for any bad input ub, there exists ε > 0 for which

u(x) 6∈ (ub − ε, ub + ε), ∀x ∈
� 2

and u(x) is homogeneous of degree zero. Then the system (7) is globally asymptot-
ically stable. Indeed, since the feedback law u(x1, x2) is bounded and analytic (on

� 2 \ {0}), there exists δ > 0 such that

−δ < u(x1, x2) < ub − ε, ∀(x1, x2) ∈
� 2 ,

or

ub + ε < u(x1, x2) < δ, ∀(x1, x2) ∈
� 2 ,

where x = (x1, x2). Suppose that

ub + ε < u(x1, x2) < δ, ∀(x1, x2) ∈
� 2 ,

(for the other case, the proof is the same). Then, under a change in the input space
of the form u→ u+ δ, the system (2) becomes

{

ẋ = Ãx+ uBx,

ỹ = Cx,

where Ã = A+ δB.
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Denoting by ũb the only bad input of the above system and by ũ(x1, x2) the stabi-
lizing feedback law, we get

ũb = ub − δ and ũ(x1, x2) = u(x1, x2)− δ.

However, ũ(x1, x2) is a homogeneous feedback of degree zero, which satisfies

|ũ(x1, x2)| < |ũb| − ε < |ũb|.

Besides, the origin of the error equation associated with the observer given in (4) is
achieved with an exponential rate of convergence, and we have an estimate as the
one given in (5). Hence, by using Theorem 1, we can stabilize the system (1) by the
estimated feedback law.

Example 2. (Jerbi, 1994) We consider the following planar bilinear system:

{

ẋ = Ax+ uBx,

y = Cx,

x = (x1, x2), A =

(

−1 6

2 3

)

, B =

(

0 1

0 0

)

, C = (1, 3).

This system is not stabilizable by any feedback law continuous at the origin. Moreover,
since (A,C) is not observable, the null input is a bad one. Thus the feedback

u(x̂1, x̂2) =
−3
(

14x̂21 + 50x̂1x̂2 + 207x̂
2
2

)

2x̂21 − 2x̂1x̂2 + 15x̂
2
2

and u(0, 0) = 0

stabilizes the system with the estimate x̂ given by the observer (4). �

3. Separation Principle: Application to Bilinear Systems

In this section we examine the class of nonlinear systems that can be modelled by the
equation

{

ẋ = f(x) + ug(x),

y = Cx,
(14)

where the output is linear. We suppose that the system (14) is observable for any
inputs and the following assumptions required for stabilization by an estimated feed-
back:

(A3) There exists an exponential observer for the system (14) of the form

˙̂x = f(x̂) + ug(x̂)− L(Cx̂− y),

where L is the gain matrix.
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(A4) There exists a feedback law making the equilibrium point of the system (14)
globally asymptotically stable and such that f(x) + u(x)g(x) is homogeneous.

We consider the system (14) controlled by the feedback u(x) given in (A4) and
estimated with the observer (A3).

Theorem 2. Under assumptions (A3) and (A4), the system
{

˙̂x = f(x̂) + u(x̂)g(x̂)− LCe,

ė = f(x̂)− f(x̂− e) + u(x̂)(g(x̂)− g(x̂− e))− LCe,
(15)

where e = x̂− x, is globally asymptotically stable.

Proof. By (A3), there exist λ1 > 0 and λ2 > 0 such that

‖e(t)‖ ≤ λ1‖e(0)‖e
−λ2t, (16)

which implies the global exponential stability of the error equation. Moreover, the
system

ẋ = F̃ (x) = f(x) + u(x)g(x)

is globally asymptotically stable. Consequently, the system (15) is locally asymptoti-
cally stable (Vidyasagar, 1980). In order to show the global asymptotic stability, by
using the argument of Seibert and Suarez (1990), it suffices to prove the boundedness
of any trajectories (e(t), x̂(t)), t ≥ 0 of the system (15). Since e(t) given in (16)
is bounded, it suffices to show the boundedness of the component x̂(t). From (A4)
and the fact that F̃ is a homogeneous vector field, there exists a C1-homogeneous
Lyapunov function V such that V (x) > 0, ∀ x 6= 0, V (0) = 0,

V̇ (x) = ∇V (x)
(

F̃ (x)
)

< 0, ∀ x 6= 0,

for which ‖∇V (x)‖ ≤ α(1 + V (x)), α > 0, ∀ x ∈
� n . These properties can be

found in (Hahn, 1967). Therefore, the derivative of V along the trajectories of the
time-varying differential equation

˙̂x = F̃ (x̂)− LCe(t)

satisfies

V̇ (x̂) = ∇V (x̂)
(

F̃ (x̂)
)

−∇V
(

x̂)(LCe(t)
)

.

Since ∇V (x̂)(F̃ (x̂)) < 0, we have

V̇ (x̂) ≤ −∇V (x̂)
(

LCe(t)
)

≤
∥

∥∇V (x̂)
(

LCe(t)
)∥

∥ .

Thus

V̇ (x̂) ≤ ‖∇V (x̂)‖ ‖LC‖ ‖e(t)‖.

Therefore, from (16) and the fact that ‖∇V (x̂)‖ is bounded by α(1 + V (x)) as
pointed out above, we obtain V̇ (x̂) ≤ µe−λ2t(1+V (x̂)), where µ = αλ1‖LC‖ ‖e(0)‖.
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Therefore Log(1+V (x̂)) is bounded by a positive constant and hence x̂(t) is bounded.
It follows that (14) is globally asymptotically stabilizable by u(x̂).

Remark 2.Note that this class of systems includes the bilinear case. Since the bilinear
system is observable for any input, the assumption (A1) implies (A3) (see Bornard
et al., 1989) and one can consider the Kalman observer as the dynamical system
given in (4) with an exponential rate of convergence (5). Also, it is clear that (A2)
implies (A4) . By assumption (A2), since the feedback u(x) is homogeneous of degree
zero, the closed-loop system ẋ = Ax + u(x)Bx is a continuous homogeneous vector
field of degree one. Therefore, according to (Hahn, 1967), there exists a homogeneous
Lyapunov function V for the above differential equation. Since its partial derivatives
are also homogeneous, it follows that there exists a positive constant α such that
‖∇V (x)‖ ≤ α(1 + V (x)). Thus, under assumptions (A1) and (A2), the system

{

ẋ = Ax+ u(x− e)Bx,

ė = (A+ u(x− e)B − S−1tCC)e

is globally asymptotically stable.

4. Conclusion

In this paper we have studied the problem of stabilizing a class of control affine sys-
tems by an estimated state feedback law. We considered nonlinear systems whose
linear approximation is not stabilizable. In this case we introduced a bilinear approxi-
mation system. We showed that the system can be locally asymptotically stabilizable
by a state estimate feedback law given by considering a Kalman observer associated
with the bilinear system. As an illustration, we gave an example in two dimensions.
Furthermore, we considered the case of bilinear systems with inputs making the sys-
tem unobservable. Moreover, a separation principle with an application to bilinear
systems was given.
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