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NUMERICAL ANALYSIS AND SYSTEMS THEORY†

Stephen L. CAMPBELL∗

The area of numerical analysis interacts with the area of control and systems
theory in a number of ways, some of which are widely recognized and some of
which are not fully appreciated or understood. This paper will briefly discuss
some of these areas of interaction and place the papers in this volume in context.
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1. Introduction

The area of numerical analysis interacts with the area of control and systems theory in
a number of ways, some of which are widely recognized and some of which are not fully
appreciated or understood. Many of these topics were part of the presentations at the
2000 Mathematical Theory of Networks and Systems Conference held in Perpignan,
France. Several of these contributions are included in the papers in this volume.

In this introductory paper we shall briefly discuss some of the many ways in
which control, systems theory, and numerical analysis interact. Some of these inter-
actions are well-known but others are not as well appreciated. The discussion will
serve not only to give an overview of some of these relationships but also to put the
contributions of the rest of the papers in this volume into perspective as part of the
growing interaction between these diverse areas. Numerical methods, of course, are
involved in almost every real application. While it is vital, we are not interested here
in the straightforward use of existing numerical software to solve standard problems
in systems and control. Rather, we wish to focus on those situations where issues of a
numerical nature need to be investigated and to point out how the papers at MTNS
2000 related to these investigations. Page limitations restrict the number of papers
that can be included.

The development of numerical methods for systems modeled by partial differen-
tial equations is an important topic which was much evident at MTNS 2000. However,
papers on distributed parameter systems presented at the conference will be included
in the volume dedicated to Distributed Parameter Systems and Operator Theory in a
different issue of this journal. In this volume we will focus on problems related to finite
dimensional systems. It is interesting to note that while there have been numerous
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books on topics in numerical optimization and some in numerical optimal control, for
example, (Alexandrov and Hussaini, 1997; Betts, 2001; Borggaard et al., 1998; Pytlak,
1999), there are relatively few books on numerical analysis and systems and control
theory. Exceptions are (Datta, 1999; van Overschee and de Moor, 1996; Pichler et
al., 2000). Software environments include MATLAB (Mokhtari and Marie, 2000) and
SciLAB (Gomez et al., 1999), to name just two.

2. Carrying Out the Theory

Sometimes the numerical procedures directly carry out the theoretical development
of a control problem. In other cases, the numerical algorithms require a theory of
their own which is different. An example from linear algebra is the computation of
eigenvalues. The theory a software package such as MATLAB actually uses to compute
eigenvalues is totally different than the way they are presented and developed in a
mathematics or engineering class.

When carrying out an algorithm a number of issues become important, includ-
ing efficiency, convergence, robustness, accuracy, and scalability. Algorithms that are
suitable for one size of a problem may be completely inappropriate for larger prob-
lems. Scalability refers to the method being as appropriate for larger more complex
problems. Ideally, the computational effort for a scalable algorithm might increase
only linearly in the problem size. Robustness refers to the fact that mathematically
equivalent algorithms may behave quite differently when implemented due, e.g., to
floating point errors. Related to this is how the conditioning of the problem affects
algorithmic behavior. There are a number of ways to measure sensitivity or condition-
ing. One of the most familiar of them is used when solving a linear system Ax = b.
The condition number is usually taken as the ratio of the largest and smallest singular
values of A, σM (A)/σm(A).

2.1. Sensitivity and Robustness

One of the most fundamental ideas in systems and control is that of using feedback
for pole placement. Suppose that one has the system

x′ = Ax +Bu, (1a)

y = Cx, (1b)

and suppose that output feedback u = Ky + v is used to give a system

x′ = (A+BKC)x+Bv.

The pole assignment problem is to find an output feedback gain matrix K so that
A + BKC has assigned eigenvalues (poles). If C = I , the problem is referred to as
the full state feedback pole assignment problem.

The paper by Chu (2001) surveys several of the existing numerical methods for
the pole assignment problem and then derives new convergence results for some of the
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optimization-based methods. Chu considers a number of different condition numbers
and how minimizing with respect to them affects the algorithms. In particular, he
considers the condition number ‖X‖2F − ln(| det(X)|) where ‖ · ‖F , is the Frobenius
matrix norm and X is the matrix of normalized eigenvectors that go with the desired
eigenvalues. If X has entries xij , then ‖X‖

2
F =
∑n

i=1

∑m

j=1 |xij |
2.

Often linear systems are initially modeled implicitly so that instead of (1) we
have a system in the form

Ex′ = Ax+Bu, (2a)

y = Cx+Du. (2b)

The transfer function of (2) is then

G(s) = D + C(sE −A)−1B. (3)

G(s) gives the input-output relationship between the Laplace transforms of y and
u ignoring the free response. The matrix E may or may not be singular depending
on the application.

Solving equations involving G(s) leads to expressions involving various gener-
alized inverses of G(s). For small systems, these and other operations with G(s)
can be carried out by symbolic algorithms. But this becomes impossible as the state
dimension increases, and it becomes important to compute these generalized inverses
numerically. Note that one needs a numerical algorithm for computing a function of s.
Varga (2001) discusses how to do this using robust numerical methods for computing
canonical forms of the pencil {E,A}.

2.2. Large Systems

As the system size increases, additional numerical issues arise. A fundamental com-
putational problem that arises in most algorithms is that of solving a linear system
Ax = b, often a great number of times. Calvetti et al. (2001) discuss the solution to
this problem in the case when A is large and ill conditioned, i.e., the rank of A is not
known a priori. Rather than trying to compute an accurate solution of Ax = b, one
computes approximate solutions from a better conditioned problem. One application
of this is in image processing, and examples from the enhancement of stellar images
are given in (Calvetti et al., 2001). In this application the goal is to solve a lower rank
problem because it is, in some sense, more accurate. One algorithm is rarely best in
all circumstances. Deciding which type of algorithm is best in different circumstances
is important. Several of the papers in this volume, including (Calvetti et al., 2001),
examine the relative advantages and disadvantages of different algorithms.

Systems and control also raise other important problems where the goal is some-
what different. Often one has a high-dimensional model but it is desired to compute
a lower dimensional approximation problem. There are several reasons for doing this.
One is because it is much easier to design and implement controllers for low dimen-
sional systems. Also, in real time and model-based control it is often desirable to have
low dimensional models that can be easily evaluated and which capture key attributes



1028 S.L. Campbell

of larger, more complex problems. The type of approximation depends on what con-
trol and systems issues are of importance. This problem of approximation of complex
systems by lower dimensional ones was a major numerical topic at MTNS 2000.

Antoulas and Sorensen (2001) give an overview of model reduction algorithms for
very large systems. The problem is to approximate the system with state dimension n,

x′ = Ax +Bu, (4a)

y = Cx +Du, (4b)

by the system with state dimension r,

x′r = Arxr +Bru, (5a)

yr = Crxr +Dru, (5b)

using algorithms for which

1. approximation error is small and there is a global error bound,

2. system properties of stability and passivity are preserved,

3. the procedure is computationally efficient, and

4. the procedure is automatic and based on error tolerance.

The last item is important. It means that the user needs only to set the tolerance and
then the algorithm finds the approximation. In particular, the user does not have to
know in advance what the dimension of xr is. Of course, the goal is to have xr such
that r � n whenever possible.

Let G(s) = D+C(sI−A)−1B and Gr(s) = Dr+Cr(sI−Ar)
−1Br be the transfer

functions of the original and the reduced models (4) and (5), respectively. Balanced
stochastic truncation is an approach to model reduction that tries to minimize ‖G−
Gr‖ for a given value of r. Benner et al. (2001) examine efficient numerical algorithms
for balanced stochastic truncation.

Li and White (2001) also consider approximation for systems in the form of (1).
However, they examine approximations which maintain controllability and observ-
ability with well conditioned Grammians. They are especially interested in models
from circuits where E and A take the special form of

E =

[

Q 0

0 L

]

, A =

[

−G −M

MT 0

]

.
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2.3. Filtering and Related Problems

Another part of control and systems theory where numerical methods are fundamental
is filtering and estimation (Golub and Dooren, 1991). Filtering problems have been
a major source of problems in numerical linear algebra. The paper by Calvetti et
al. (2001) applies a numerical procedure to image processing. There are two other
applications in this volume.

Solutions to the rational covariance extension problem are parametrized by the
spectral zeros. The rational filter with a specified numerator solving the rational co-
variance extension problem can be determined from a known convex optimization
problem. However, the optimization problem may become ill-conditioned for some
parameter values. Enqvist (2001) develops a modification of the optimization prob-
lem to avoid the ill-conditioning, and the modified problem is solved efficiently by a
continuation method.

Many applications involve adaptive filters. The Fast Transversal Filters algorithm
is attractive for many adaptive filtering applications except for the fact that it has a
tendency to diverge when operating in finite precision arithmetic. Bunch et al. (2001)
develop and analyze a modification to the Fast Transversal Filters algorithm to give
it more robustness.

3. Systems Theory and Its Impact on Numerical Analysis

Up to now we have discussed ways in which numerical analysis can be applied to con-
trol problems and some of the challenges this poses for numerical analysis. However,
there is another direction of interaction, which is less developed, and that constitutes
the application of control ideas to problems in numerical analysis. We shall give two
examples where this interaction has gone the other way and stimulated research and
applications in numerical analysis.

3.1. Stepsize Control

One of the important problems in numerical analysis is the design and analysis of
methods for the numerical integration of differential equations. Suppose that we have
a differential equation

x′ = f(x, t), x(0) = x0, (6)

defined on the interval [0, T ]. In a typical numerical algorithm for (6) such as a
Runge-Kutta method, there are time points 0 = t0 < t1 < · · · < tK = T , and
stepsizes hk = tt+1− tk. Let the estimate for x(tk) be denoted by xk. The algorithm
then proceeds iteratively. Given values {x0, . . . , xk}, time tk and hk, the algorithm
computes a new estimate xk+1 at time tk+1.

The algorithm defines a new dynamical system whose states are xk ’s or, more
accurately, xk’s and hk’s. All modern industrial grade codes vary the stepsize hk to
achieve various goals including the stability of the discrete process and bounding the
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tracking error ek = xk − x(tk), which is called the global error in numerical analysis.
Traditionally in the development of numerical codes the stepsize is controlled by a
number of ad hoc rules, “fudge factors”, and heuristics based on estimates of the local
error, the stability of the method, and the convergence properties of any iterative
solvers used in the implementation of the algorithm. The logic in this stepsize control
may become quite complex and is usually based on the experience of the developer.

Notice that there are at least three distinct dynamical systems. One is the original
dynamical system (6). The second is the algorithm which defines a discrete dynamical
system whose states are (xk , hk). The third dynamical system has states which are
the error terms ek. These three systems are interrelated. Reliable calculation of a
stable system (6) requires that the error equation be controlled. Desired performance
criteria, such as error tolerances, are usually placed on the error terms.

The usual way to try and control the error equation is through varying the
stepsize. Variation of the stepsize is a type of feedback control on a dynamical system.
It can also be considered as the feedback in a discrete observer of a continuous problem
in the presence of noise arising from numerical and function errors.

Generally, numerical analysts are not familiar with control theory. It is natural
to ask whether one can use control theory to design better stepsize strategies. One
can ask for even more. Can one design control strategies that can be applied across a
family of numerical methods? Both of these questions are being investigated.

The application of control theory to stepsize control was investigated in (Gustafs-
son, 1993; 1994; Gustafsson et al., 1988; Gustafsson and Söderlind, 1997; Hall and
Usman, 2001; Söderlind, 1998; Usman and Hall, 1998). When applied to a specific ex-
isting method, the resulting codes are generally not noticeably faster. They do seem
to be stabler and more robust.

This theory has then been carried forward and developed in the Godess (Generic
ODE solving system) project. The use of control theory meant that the stepsize strat-
egy could be separated from the particular discretization or approximation process.
In the Godess system the method development, control structure development, code
design and implementation are carried out in parallel and the individual parts can be
tested and worked on separately. This makes the rapid implementation and testing of
ideas for new numerical methods much easier and more reliable.

3.2. Optimal Control Codes

Often when applying the numerical theory to a control problem, the numerical theory
guides the implementation of the software. However, sometimes the numerical theory
fails to describe correctly what is happening, and a new numerical theory utilizing
the fact that a control problem is involved must be used.

One example of this occurs in optimal control. There are several numerical meth-
ods for solving optimal control problems. One of them is the direct transcription ap-
proach (Betts, 2001). In this method the dynamics are discretized using a discretiza-
tion from a numerical integrator. The resulting discrete nonlinear programming prob-
lem is then solved using an optimization algorithm. The solution is evaluated and, if
necessary, the problem is resolved using a finer time discretization.
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One such direct transcription code is SOCS (Sparse Optimal Control Software),
developed at the Boeing corporation. In working with SOCS it was found that the
existing numerical theory did not correctly describe what was occurring when inequal-
ity constraints were active at the optimal solution (Betts et al., 2000; Betts et al.,
2001; Campbell et al., 2000). When state inequality constraints were active, the opti-
mal solution satisfied a differential algebraic equation, or DAE. DAEs are often called
descriptor systems in the systems literature. Associated with a DAE is an integer
called its index (Brenan et al., 1996). In some cases these DAEs had index three. The
theory for numerical methods for DAEs of index three shows that the discretizations
used by SOCS are not convergent when used as an integrator of DAEs index three
(Campbell et al., 2000). This was confirmed experimentally on the problems in ques-
tion. Yet SOCS was able to solve these state constrained optimal control problems
with no difficulty. In fact, it was able to solve problems where the active constraints
gave index-seven problems and the theory said the discretizations should have been
wildly divergent.

This situation is analyzed and explained in (Betts et al., 2000; 2001) using a
mixture of control and optimization theory and is an example where the existing
numerical theory had to be modified when used in a control setting. In fact, the usual
theory of error propagation took on a completely different role. In the standard theory
of numerical methods for differential equations, one would have said that a small
error early in a calculation could grow dramatically and dominate the calculation.
But when combined with control theory, it became a statement that the optimization
algorithm could generate small perturbations and that a small perturbation correctly
placed enabled the numerical algorithm to overcome the large error predicted by the
usual theory and eliminate it from the computation. This was what was observed
computationally.

4. Conclusion

There is a growing interaction between numerical analysis and systems and con-
trol theory that is enriching both the areas. This interaction was widely evident at
MTNS 2000 and will undoubtedly continue to be prominent at future MTNS meet-
ings.
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