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FACTORIZATION OF THE POPOV FUNCTION OF

A MULTIVARIABLE LINEAR DISTRIBUTED

PARAMETER SYSTEM IN THE NON-COERCIVE CASE:

A PENALIZATION APPROACH†

Luciano PANDOLFI
∗

We study the construction of an outer factor to a positive definite Popov function
Π(iω) of a distributed parameter system. We assume that Π(iω) is a non-
negative definite matrix with non-zero determinant. Coercivity is not assumed.
We present a penalization approach which gives an outer factor just in the case
when there exists any outer factor.

Keywords: linear distributed systems, dissipative systems, factorization, outer

factor, Popov function

1. Introduction

Let Π(iω) be a matrix-valued function defined on the imaginary axis, and let Π(iω) =
Π∗(iω) ≥ 0. The ‘factorization problem’ consists in the following: we wish to find a
‘factor’ M(z), with suitable properties, such that

Π(iω) =M∗(iω)M(iω), (1)

where ∗ denotes both the conjugate of a complex number and the conjugate of a
matrix or an operator.

The first result of this type is the well-known Fejer-Riesz theorem (Riesz and Sz-
Nagy, 1955), which states that if Π(iω) is a (scalar) polynomial, then we can choose
a polynomial M(z) which, additionally, does not have zeros in the right half-plane.
Extensions to polynomial, hence also to rational matrices are known and have been
widely used in systems theory (Anderson 1967; Balakrishnan, 1995; Francis, 1987;
Kalman, 1963; Yakubovich, 1973; Youla, 1961).

The fact that we want to stress is the following: let us assume for a moment that
Π(iω) is a rational (square) matrix function, and that R = lim|ω|→+∞Π(iω) is an
invertible matrix, and hence a positive definite matrix. In this case the factorization
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problem is equivalent to the solution of a special Algebraic Riccati Equation, and
hence to the solution of a suitable Quadratic Regulator Problem. This observation
has been used in both ways: it has been proposed to solve the Riccati equation in order
to solve the factorization problem or, alternatively, to solve the factorization problem
in an independent way and then to use the factor in order to solve the quadratic
regulator problem (Callier and Winkin, 1990; 1992).

In this paper we are interested in the factorization problem and in the study of
the properties of the factor in the case when the function Π(iω) is matrix-valued
and non-rational, but it is the Popov function (equivalently, the spectral density) of
the pair of a quadratic form and a distributed control system. The control may enter
the system as a distributed or a boundary control. In fact, we shall see that even
the boundary control case can be reduced to the analysis of an equivalent distributed
control system.

Finally, let us discuss the properties to be imposed on the factor. It is clear that
if Π(iω) ≥ 0, then M(iω) =

√

Π(iω) is a factor of Π(iω); but this kind of factor is of
little use. We require that the factor admit a holomorphic extension to the right half-
plane and, furthermore, that the factor be an outer factor. The properties of outer
factors are discussed in the next section. A factorization of the form (1) is called a
spectral factorization if the factor M(z) is an outer function.

The factorization problem is empty if Π(iω) ≡ 0, so that we consider the case,
where Π(iω) 6≡ 0. In fact, we assume even more, i.e. that

detΠ(iω) 6≡ 0.

It is known (Nikolski, 1982) that the determinant of an outer square matrix-valued
function may be identically zero; but if it is not identically zero, then it is a scalar-
valued outer function. Hence it does not have unstable zeros. For this reason, in
Section 5 we study the construction of a factor of Π(iω) without zeros in the right
half-plane. In Section 6 we give conditions under which this factor without right half-
plane zeros is in fact an outer factor. General properties of outer functions, introduced
in Section 2, are used for this purpose. In Section 3 we present some examples of Popov
functions of boundary control systems. In fact, in Section 4 we show that, in order to
construct a factor, a boundary control system can always be reduced to an equivalent
distributed control system. The results and methods of this paper are an adaptation
of the results of (Pandolfi, 1998, sec. 5.1).

2. Properties of Outer Matrix-Valued Functions

In this section we recall the properties of an outer matrix-valued function M(z). We
recall that H2m is the Hilbert space of the Laplace transformations of functions in
L2(0,+∞; � m). Alternatively, f(z) ∈ H2m if and only if

‖f‖2H2 = sup
x>0

1

π

∫ +∞

−∞

‖f(x+ iy)‖2 dy <∞.
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Definition 1. Let M(z) be an m×m matrix-valued function which is holomorphic
and bounded on the half-plane <e z > 0 (i.e. let it belong to H∞). We say that it is
an outer function when

clM(z)H2m = H
2
m.

The previous definition can be weakened in at least two directions. The first one
removes the assumption, implicit in the previous definition, that M(z) is a square
matrix whose determinant is not identically zero. The second direction removes the
boundedness assumption on M(z). We do not insist on this.

The previous definition applies in both the matrix and in the scalar cases, and it
can be useful for actual verification that a given M(z) is outer, see Example 1 in the
following section. However, we can give two further tests for a function to be outer.
First, we give a test for scalar-valued functions which are bounded (Garnett, 1981,
p.67):

Theorem 1. Let M(z) be scalar-valued, holomorphic and bounded in the right half-
plane <e z > 0. The function M(z) is outer if and only if there exists z0 = x0 + iy0
with x0 > 0 such that

log
∣

∣M(z0)
∣

∣ =
1

π

∫ +∞

−∞

log
∣

∣M(it)
∣

∣

x0
x20 + (y0 − t)2

dt. (2)

If this is the case, then (2) holds for every x0 > 0, y0 ∈
�
.

As a consequence of Theorem 1, the integral is finite for every x0 > 0, y0 ∈
�
.

Hence, if M(z) satisfies the assumption of the theorem, then M(z0) 6= 0 for every
z0 = x0 + iy0, x0 > 0. It may have zeros on the imaginary axis.

In the rational case (and only in this case!) the converse holds: if M(z) is rational
and without zeros in <e z > 0, then it is an outer function.
The following test applies to matrix-valued functions (Nikolski, 1982, p. 22):

Theorem 2. Let M(z) be a bounded square matrix-valued function which is holomor-
phic in <e z > 0. Let detM(z) 6≡ 0. In this case the matrix-valued function M(z) is
outer if and only if the scalar-valued function detM(z) is outer.

In this paper we give some conditions under which the Popov function of a linear
system admits a spectral factorization. Moreover, we present an iterative construction
of the factor.

3. Problem Description and Examples of Popov Functions

We consider the following system in a Hilbert space:

ẋ = Ax +Bu. (3)
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Here x ∈ X , u ∈ U , and A generates a C0-semigroup on X which is exponentially
stable. For the moment let B ∈ L(U,X).
We shall assume that U is a finite-dimensional space, U =

� m . We introduce
the quadratic form

F (x, u) = 〈x,Qx〉+ 2<e 〈x, Su〉+ 〈u,Ru〉, (4)

where Q = Q∗, R = R∗ and S are bounded linear operators between the appropriate
spaces. We are not assuming any positivity on the operators Q and R.

The function Π(iω) defined below will be called the ‘Popov function’:

u∗Π(iω)u = F
(

(iωI −A)−1Bu, u
)

. (5)

This function is well-defined on the imaginary axis since the semigroup eAt is expo-
nentially stable.

We note a special case: if Q = 0 and R = 0, then Π(iω) is the real part of the
transfer function

T (iω) = S∗(iωI −A)−1B.

The Popov function is a quadratic form which may or may not be sign definite. It
must be non-negative definite for the solutions of important problems (Anderson and
Vongpanitlered, 1973; Pandolfi, 1997), and if it is non-negative definite, then it is
important to understand its factorization properties.

The previous arguments have been presented under the assumption that B ∈
L(U,X) is a distributed control action. It may well be possible that B takes values
in a space which is larger than X and, nevertheless, the formula

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds

can be suitably interpreted. This is the case of the classes identified in (Lasiecka and
Triggiani, 2000), i.e. the case where imB ⊆ (dom (−A∗)γ)′, γ < 1, if A generates a
holomorphic semigroup, and the case where

imB ⊆
(

dom (−A∗)
)′
and

∫ T

0

‖B∗eA∗tx‖2 dt ≤M‖x‖2 ∀x ∈ domA∗, T > 0.

Large classes of boundary control systems fit in the previous models (Lasiecka and
Triggiani, 2000).

Example 1. Let

Π(iω) =
e2 + 1− 2e cosω + 2

1 + ω2
.

It is clear that this function is non-negative, and

Π(iω) = T ∗(iω) · T (iω), T (z) = e
z + e−z

1 + z
.
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The function T (z) is the transfer function of the system























xt = −xs + x, t > 0, s ∈ (0, 1),
x(t, 0) = u(t),

y(t) =
1

e

∫ 1

0

x(s) ds.

(6)

Hence the function T (z) is the transfer function of a boundary control problem.

Π(iω) is the Popov function that we obtain from the quadratic form F (x, u) =
〈x,Qx〉, Q = C∗C with Cx(·) = y, as described in (6). We note that Π(iω) ≥ 0 for
every ω and lim|ω|→+∞Π(iω) = 0.

We presented a special factorization of Π(iω). We observe that it is a spectral
factorization, since T (z) is an outer function. In fact, T (z)f(z) = g(z) can be solved
in H2 for every g(z) which is the Laplace transform of a function ǧ(t) being differen-
tiable on

�
and square integrable, with compact support in (0,+∞). The functions

ǧ(t) with these properties are dense in L2(0,+∞) so that their Laplace transforms
g(z) are dense in H2. �

The next examples are from (Pandolfi, 1999a). The first one shows that the Popov
function may be coercive even if the operator R in the quadratic form is negative
definite, while the last example is an example of a matrix-valued Popov function,
which is easily derived from a system described by partial differential equations.

Example 2. We consider a system described by

xt = −xθ, 0 < θ < 1, t > 0, x(t, 0) = u(t).

This system is exponentially stable since the free evolution is zero for t > 1.

The functional F (x, u) which we associate to this system is

F (x, u) =
∥

∥x(·)
∥

∥

2

L2(0,1)
− α|u|2,

so that

J(x0;u) =

∫ +∞

0

{

∥

∥x(t, ·)
∥

∥

2

L2(0,1)
− α
∣

∣u(t)
∣

∣

2
}

dt.

If x(0, θ) ≡ 0, then

x̂(z, θ) = e−zθû(z).

Hence

〈u,Π(iω)u〉 = [1− α] · |u|2.

This is non-negative for each α ≤ 1 in spite of the fact that R = −α can be negative.
�
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We observe that in the previous example the limit of Π(iω) for |ω| → +∞ exists,
but it is not equal to the operator R of the quadratic form F (x, u). In contrast with
this, in the ‘parabolic’ case, i.e. when A generates a holomorphic semigroup and
imB ⊆ (dom (−A∗)γ)′, we have

R = lim
ω→+∞

Π(iω).

Hence in the parabolic case R ≥ 0 is implied by Π(iω) ≥ 0 for large ω.
Finally, we consider a third example, taken from Pandolfi (1999a).

Example 3. We consider the acoustics equations (on the interval 0 < s < 1)
{

xt = −xs, x(t, 0) = u(t) + ay(t, 0),
yt = ys, y(t, 1) = v(t).

(7)

Let

F
(

x(·), y(·), u, v
)

= |u|2 + |v|2 − k
∫ 1

0

∣

∣x(s)
∣

∣

2
ds, k > 0.

We compute the Popov function: we excite the system with the signal u(t) = eztu0,
v(t) = eztv0, and search for solutions of the form x(t, s) = e

ztx0(s), y(t, s) = e
zty0(s).

It is easily seen that x0(s) and y0(s) are given by y0(s) = e
z(s−1), x0(s) =

e−zs[ae−zv0 + u0] so that the Popov function is

Π(iω) = u20 + v
2
0 − k{ae−iωv0 + u0} · {aeiωv0 + u0}

= |u0|2 + |v0|2 − k
{

a2|v0|2 + |u0|2 + 2a cosωu0v0
}

.

It is easily seen that Π(iω) is positive definite if and only if k satisfies the following
inequality:

0 < k < k0 = inf
ω

(1 + a2)−
√

(1 + a2)2 − 4a2 sin2 ω
2a2 sin2 ω

.

It is clear that the right-hand side is non-negative. In order for a number k > 0 to
satisfy the previous inequality, we must ascertain that the infimum is strictly positive.
This is easily seen by noting that the function

(1 + a2)−
√

(1 + a2)2 − 4a2 sin2 ω
2a2 sin2 ω

is periodic in ω and continuous, for ω 6= nπ, and that its limit for ω → nπ is
1/[1 + a2] > 0 for each integer n. Consequently, there exists a positive number k0
such that if k ∈ (0, k0), we are in the coercive case; if k = k0, the Popov function is
non-negative. If k > k0, the Popov function is not sign-definite. �

The examples above are examples of boundary control systems. It is by now well
understood that the factorization problem for systems with boundary controls can
be reduced to the solution of a factorization problem for a system with distributed
control action. This is recalled in the next section, see (Pandolfi, 1994; 1995; 1998;
1999a; 1999b) for more details.
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4. From Boundary to Distributed Control Actions

A general model for the analysis of boundary control systems, now widely used, was
proposed by Fattorini (1968). It is based on the following variation-of-constants for-
mula:

x(t) = eAtx0 −A
∫ t

0

eA(t−s)Du(s) ds. (8)

In spite of the operator A in front of the integral, this formula makes sense in X for
large classes of systems (Lasiecka and Triggiani, 2000).

For simplicity, we assume that eAt is exponentially stable. (See (Pandolfi, 1998)
for the stabilizable case.) Let u(·) be continuously differentiable and x(0)−Du(0) ∈
domA. Then ξ(t) = x(t) −Du(t) is a classical solution to

ξ̇ = Aξ −Du̇, ξ0 = ξ(0) = x(0)−Du(0), (9)

and conversely.

We ‘augment’ (9) and we study the system
{

ξ̇ = Aξ −Dv,
u̇ = v.

(10)

Here we consider formally v(·) as a new ‘input’, see (Pandolfi, 1994; 1995). Moreover,
we note that, eAt being exponentially stable, it is possible to stabilize the previous
system with the simple feedback v = −u.
We associate the following quadratic form

F (ξ +Du, u) (11)

with the augmented system (10) (the quadratic form F (x, u) is in (4)). This quadratic
form does not depend explicitly on the new input v(·): it is a quadratic form of the
state, which is now Ξ = [ξ, u].

It is easy to expect that the factorization problems for the original and augmented
systems are related. In order to see this, we apply the stabilizing feedback v = −u+ν
(a transformation which does not affect the problem), and we write down the Popov
function for the stabilized augmented system. A simple computation shows that the
Popov function of the augmented system is

P (iω) =
Π(iω)

1 + ω2
, (12)

where Π(iω) is the Popov function of the original system.

Hence, the transformations outlined above from the original to the augmented
system do not affect the positivity of the Popov function. Moreover, if ωsΠ(iω) is
bounded from below, then so is ωs+2P (iω). This observation is crucial in the analysis
of the quadratic regulator problem in the non-coercive case and in the study of the
factorization problem. Owing to this observation, from now on we shall study the
factorization problem under the further, nonrestrictive assumption that the input
acts as a distributed control.
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5. Factorization: A Factor without Right Half-Plane Zeros

We recapitulate: our system is described by (3) with B ∈ L(U,X) and F (x, u) =
〈x,Qx〉, so that

〈

u,Π(iω)u
〉

=
〈

(iωI −A)−1Bu,Q(iωI −A)−1Bu
〉

.

We recall that the factorization problem for a boundary control system can always
be reduced to the factorization problem for a distributed control system, so that the
assumption B ∈ L(U,X) is not restrictive in this context.
By assumption, we have

Π(iω) ≥ 0 ∀ω ∈ �
quadand Π(iω) 6≡ 0.

The approach that we adopt to the factorization is via penalization. This approach
was used in (Pandolfi, 1998) in the scalar case.

We consider the quadratic forms Fn(x, u) = 〈x,Qx〉+‖u‖2/n and the associated
Popov functions Πn(iω) = Π(iω) + 1/n. It is known (Louis and Wexler, 1991) that
the following Algebraic Riccati equation admits a maximal solution P = P ∗ such
that A− nBB∗P generates an exponentially stable semigroup

〈Ax, Py〉+ 〈Px,Ay〉+ 〈x,Qy〉 − n〈B∗Px,B∗Py〉 = 0, (13)

and the function

Mn(z) =
√
nB∗Pn(zI −A)−1B + 1/

√
n

is a spectral factor of Πn(iω),

Πn(iω) =M
∗
n(iω)Mn(iω).

In fact, it has another property: its inverse M−1n (z) is bounded in the right half-plane:

M−1n (z) =
√
n− n3/2B∗Pn(zI − A−

√
nBB∗Pn)

−1B.

The matrix function M−1n (z) is bounded in the right half-plane because Pn is a
stabilizing solution of the Riccati equation. See in particular Lemmas 2.6–2.8 in (Louis
and Wexler, 1991) for the previous properties.

We note explicitly that the factor Mn(z) has a realization in terms of the same
operators A and B which appear in the description of the system. Our strategy is
now to study the limit of the sequence {Mn(z)}. Due to the factor

√
n, it is not at

all clear that {Mn(z)} is a bounded sequence. In fact, we prove that this is indeed
the case. This can be proved as follows: we note that Mn(z) is an H

∞ function, and
hence

sup
<e z>0

‖Mn(z)‖2 = sup
ω∈ �
‖Mn(iω)‖2 = sup

ω∈ �
‖Π(iω) + 1/n‖ ≤ const.

This proves the boundedness of Mn(z) in <e z > 0, uniformly in n.
If a semigroup is holomorphic (and exponentially stable), we get more. We observe

that, under this assumption, in the previous proof we can replace the real axis with a



Factorization of the Popov function of a multivariable linear distributed. . . 1257

line <e z = −σ, σ > 0. Hence, in the holomorphic case we get boundedness even in
a half-plane <e z > −σ. Now we add and subtract iω to the Riccati equation, and
we replace x and y with (A− iω)−1B. We thus obtain

n ·B∗(A∗ + iωI)−1PBB∗P (A− iω)−1B

= B∗(A∗ + iω)−1PB +B∗P (A− iω)−1B

+B∗(A∗ + iω)−1Q(A− iω)−1B.

This equality can be analitically extended from the imaginary axis to a sector

S̃ = {z : π/2− θ ≤ |arg z| ≤ π/2 + θ},

where 0 < θ < π/2. On this set the following equality holds:

n‖B∗Pn(zI −A)−1B‖2

= B∗(A∗ + z)−1Q(A− zI)−1B +B∗(A∗ + zI)−1PB

+B∗P (A− zI)−1B.

It is well-known that there exists a number c such that ‖Pn‖ < c for every n.
Moreover, ‖(zI − A)−1‖ < c and ‖(zI + A∗)−1‖ < c are bounded in S̃ . Hence we
have the boundedness of

√
nB∗Pn(zI −A)−1, uniformly in n and in z in S̃ . As we

already know the boundedness for <e z > −σ, the following result can be formulated:

Theorem 3. There exists a constant µ such that ‖M(z)‖ < µ for each z, <e z > 0.
In the holomorphic case the inequality can be extended to the sector S = {z : |argz| ≤
π/2 + θ}.

Now we use again the fact that the input u is finite dimensional. In this case
Mn(z) is a matrix: in fact, it is a square matrix. We noted that its inverse exists so
that its determinant is non-zero for <e z > −σ′, where σ′ > 0 is any number such
that

‖e(A−BB∗P )t‖ < const · e−σ′t

(both in the parabolic and hyperbolic cases).

We can apply the Montel theorem to the entries of Mn(z) and obtain the ex-
istence of a subsequence, still denoted by {Mn(z)}, which converges to a certain
matrix-valued function M0(z) uniformly on compact sets of <e z > −σ.
This matrix M0(z) is holomorphic and bounded for <e z > 0 in the general

case, and <e z > −σ, σ > 0, (and even in S) in the holomorphic case.

Theorem 4. Let M0(z) be the function constructed above. The function detM0(z)
does not have unstable zeros.
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Proof. In fact, we have

Π(iω) = lim
n
Πn(iω) = lim

n
M∗n(iω)Mn(iω) =M

∗
0 (iω)M0(iω).

Hence M0(iω) is a factor of Π(iω) which is not identically zero, since Π(iω) is not
identically zero. If z0, with <e z0 > −σ (σ > 0 in the parabolic case, σ = 0 in the
hyperbolic case), is a zero of M0(z), then the Hurwitz theorem implies the existence
of a sequence {zn} such that zn → z0 and detMn(zn) = 0. This is not possible since
each matrix Mn(z) is invertible in a neighborhood of z0.

6. A Condition for Spectral Factorization

The factor M0(z) constructed in the previous section is a candidate for an outer
factor. In fact, we prove that it is an outer factor provided that an outer factor exists!

Theorem 5. The factor M0(z) is outer if the function

1

1 + ω2
log
[

detΠ(iω)
]

is integrable.

Proof. We assume that detΠ(iω) 6≡ 0, so that we also have detM0(iω) 6≡ 0. Hence
we must only prove that detM0(z) is a scalar outer function, i.e. that it satisfies (2).
We prove that (2) holds when z0 = 1. We know that Mn(z) is an outer function, so
that the following holds:

log |detMn(1)| =
1

π

∫ +∞

−∞

log |detMn(it)|
x0
1 + t2

dt.

The limit of the left-hand side for n→ +∞ is log |detM0(1)| and M0(z) satisfies
condition (2) if we can prove that we can exchange the limit for n → +∞ and the
integral.

The function Mn(it) is bounded from above, but it tends to zero at infinity so
that the logarithm is unbounded. Yet we get

[

detMn(it)
]2
= detΠn(it) ≥ detΠ(it).

In fact, if P ≥ Q and detQ 6= 0, we have Q−1/2PQ−1/2 ≥ I , i.e. 1 ≤
det(Q−1/2PQ−1/2) = detP/ detQ. Hence we have the following inequalities:

log detΠ(iω)

2(1 + ω2)
≤ log |detMn(iω)|

1 + ω2
≤ const
1 + ω2

.

The functions on both the sides of the inequalities are integrable on (−∞,+∞)
so that we can apply the dominated-convergence theorem to the sequence
{

1
1+t2 log |detMn(it)|

}

and we see that we can exchange the limit and the integral.



Factorization of the Popov function of a multivariable linear distributed. . . 1259

Now we discuss the previous theorem. If Π(iω) admits an outer factor N(z) ∈
H∞ and detΠ(iω) 6≡ 0, then detN(iω) 6≡ 0 so that detN(z) is an outer factor
of detΠ(iω). It is known (Rosenblum and Rovnyak, 1985) that an outer factor of
detΠ(iω) exists if and only if

Π(iω) = Π∗(iω) ≥ 0, log det Π(iω)
1 + ω2

∈ L1( �
). (14)

Consequently, if detΠ(iω) 6≡ 0 and there exists any outer factor, then the assumption
in the theorem is satisfied and we can conclude that M0(z) is an outer factor!

An important case in which the condition in the previous theorem is satisfied
is the one when Π(z) is holomorphic in a neighborhood of the imaginary axis with
detΠ(iω) 6≡ 0, so that log det Π(iω) is locally integrable and the following condition
holds:

Π(iω) ≥ c

1 + |ω|α , |ω| � 0,

where c > 0 and α ≥ 0. In particular, the case α = 0 gives the condition (5) of
(Callier and Winkin, 1999).

Remark 1. We note that condition (14) may hold even if detΠ(iω) has zeros on the
imaginary axis.
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