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This paper presents some design approaches to hybrid control systems combining conventional control techniques with fuzzy
logic and neural networks. Such a mixed implementation leads to a more effective control design with improved system
performance and robustness. While conventional control allows different design objectives such as steady state and transient
characteristics of the closed loop system to be specified, fuzzy logic and neural networks are integrated to overcome the
problems with uncertainties in the plant parameters and structure encountered in the classical model-based design. Induction
motors are characterised by complex, highly non-linear and time-varying dynamics and inaccessibility of some states and
outputs for measurements, and hence can be considered as a challenging engineering problem. The advent of vector control
techniques has partially solved induction motor control problems, because they are sensitive to drive parameter variations
and performance may deteriorate if conventional controllers are used. Fuzzy logic and neural network-based controllers are
considered as potential candidates for such an application. Three control approaches are developed and applied to adjust the
speed of the drive system. The first control design combines the variable structure theory with the fuzzy logic concept. In the
second approach neural networks are used in an internal model control structure. Finally, a fuzzy state feedback controller
is developed based on the pole placement technique. A simulation study of these methods is presented. The effectiveness of
these controllers is demonstrated for different operating conditions of the drive system.
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1. Introduction

AC motors, particularly the squirrel-cage induction motor
(SCIM), enjoy several inherent advantages like simplicity,
reliability, low cost and virtually maintenance-free elec-
trical drives. However, for high dynamic performance in-
dustrial applications, their control remains a challenging
problem because they exhibit significant non-linearities
and many of the parameters, mainly the rotor resistance,
vary with the operating conditions. Field orientation con-
trol (FOC) or vector control (Vas, 1990) of an induction
machine achieves decoupled torque and flux dynamics
leading to independent control of the torque and flux as for
a separately excited DC motor. FOC methods are attrac-
tive but suffer from one major disadvantage: they are sen-
sitive to motor parameter variations such as the rotor time
constant and an incorrect flux measurement or estimation
at low speeds (Trzynadlowski, 1994). Consequently, per-
formance deteriorates and a conventional controller such
as a PID is unable to maintain satisfactory performance
under these conditions.

Recently, there has been observed an increasing in-
terest in combining artificial intelligent control tools with
classical control techniques. The principal motivations for
such a hybrid implementation is that with fuzzy logic and

neural networks issues such as uncertainty or unknown
variations in plant parameters and structure can be dealt
with more effectively, hence improving the robustness of
the control system. Conventional controls have on their
side well-established theoretical backgrounds on stability
and allow different design objectives such as steady state
and transient characteristics of the closed loop system to
be specified. Several works contributed to the design of
such hybrid control schemes (Caoet al., 1996; Chen and
Chang, 1998; Shaw and Doyle, 1997).

In this paper three control methods are introduced
and applied to an indirect field-oriented induction motor.
In the first design approach the basic fuzzy logic controller
(FLC), regarded as a kind of variable structure controller
(VSC) (Hunget al., 1993) for which stability and robust-
ness are well established, is developed. This follows the
interpretation of linguistic IF–THEN rules as a set of con-
troller structures that are switched according to the pro-
cess states (Kawaji and Matsunaga, 1994).

The second design approach is based on the well-
known internal model control concept (Morari and
Zafiriou, 1989). To improve the robustness of the con-
troller, neural networks are introduced to form the forward
and inverse model control algorithm in place of the clas-
sical model-based structure. In the third approach, the ba-
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sic idea of the proposed controller is similar to the gain-
scheduling technique. The design is based on a reduced-
order state space model of the motor drive from which a
family of local state space models covering the operating
range of the drive system are defined. We then use the
state feedback design concept to get a linear state feed-
back controller for each local model (Caoet al., 1999;
Mei et al., 1998). These local controllers are inferred into
one global state feedback controller using a simple fuzzy
inference technique.

These controllers are evaluated under simulations for
a variety of operating conditions of the drive system and
the results demonstrate the ability of the proposed control
structures to improve the performance and robustness of
the drive system. A speed observer based on neural net-
works is designed and included in the closed-loop control
structure to achieve a sensorless operation of the drive sys-
tem.

2. Induction Motor Equations

The d-q dynamic model of the SCIM with the reference
frame fixed to the stator is given by (Trzynadlowski, 1994)
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are the rotor flux components expressed in the stator ref-
erence frame.

The field orientation principle is based on the follow-
ing conditions which are expressed in the excitation refer-
ence frame:

Φe
qr = 0, Φe

dr = constant. (4)

Hence the equations ensuring the field orientation are ex-
pressed as
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whereTr = Lr/Rr is the rotor time constant.

Under these conditions, the induction machine is
transformed into a linear current/torque converter:

Te = KT Φe
dri

e
qs. (6)

Hence the rotor torque and flux may be controlled sep-
arately throughiqs and ids, respectively. The adequate
torque referenceT ∗

e is generated from the speed error via
the controller while the flux referenceΦ∗

r is kept constant
for each operating point.

In order to design a controller, the reduced-order
model of the SCIM given by Fig. 1 is used. HereTL

Fig. 1. Simplified field-oriented model of the SCIM.

is the disturbance torque. The state space representation
is obtained as[
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wherex1 = ω, x2 = dω/dt and

KT =
3pLm

4Lr
, K ′
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2
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3. Speed Controller Design

The overall block diagram of a current controlled PWM
induction motor with indirect field orientation is given in
Fig. 2. The field-oriented control block receives the com-
puted torque from the speed controller and the flux from
the field weakening block. In the look-up table used for
field-weakening, the flux is assumed to be constant when
the motor operates below the rated speed, and beyond the
rated speed the flux speed product is held constant.

The FOC block performs the slip calculation and
generatesie

∗

qs and ie
∗

ds. Inside theqde to the abc trans-
formation block, the following transformations are per-
formed:

qde → qds

{
is
∗

qs = ie
∗

qs cos θs + ie
∗

ds sin θs,

is
∗

ds = −ie
∗

qs sin θs + ie
∗

ds cos θs,
(9)
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Fig. 2. Speed control of the current regulated indi-
rect field-oriented induction motor.

qds → abc
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Hereθs represents the sum of the slip and rotor angles.

A sinusoidal current source of variable magnitude
and frequency is used to represent the fundamental com-
ponent of the actual PWM inverter waveform. This avoids
lengthy simulation times caused by the PWM switchings.
Nevertheless, such a simulation study can still provide
some understanding of the control strategies implemen-
tation, tuning and analysis.

3.1. Fuzzy Variable Structure Control (FVSC)

The VSC strategy consists in switching to a different con-
trol structure on each side of a given switching surface ac-
cording to a predefined switching function. An interesting
characteristic of the VSC is that under certain conditions
the system responds with a sliding mode on the switch-
ing surface and in this mode the system is insensitive to
parameter variations and disturbances.

The basic control law of Variable Structure Systems
(VSS) is given by

u = −Ksgn (S), (11)

whereK is a constant parameter,sgn (·) is the sign func-
tion andS is the switching function defined by

S = fT x. (12)

When S = 0, this represents the switching surface and
gives the desired dynamics.

Similarly, the fuzzy rules

Ri : IF Ai AND Bi THEN Ci (13)

may be interpreted as a control structure that is switched
according to the system states. Hence fuzzy controllers
can be viewed as a class of variable structure controllers.

Let the desired dynamics of the drive system be spec-
ified in terms of the switching surface shown in Fig. 3. The
error trajectory approaches the switching surface gradu-
ally with the slopes−mf and −ms corresponding to
fast and slow dynamics, respectively.

Fig. 3. Membership functions adjustment withms and mf .

With reference to Fig. 3, the slopes of the error tra-
jectory are obtained as

ms =
Lde0me

Le0mde
,

mf =
Lde0 −

Lde0

mde

Le0 −
Le0

me

=
Lde1 −

Lde1

mde

Le1 −
Le1
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.

(14)

By specifying the desiredms and mf , and assum-
ing the range of the error signal{Le, me}, the member-
ship functions related to the error and its change of tri-
angular shape chosen here are adjusted by the following
relationships:

mde =
Lde0me

msLe0
,

Ldei = mfLei − (mf −ms)
Le0

me
, i = 0, 1.

(15)

The controller structure is Proportional-Integral (PI) and
is illustrated in Fig. 4.

Here KP = KuR(Kde) and KI = KuR(Ke) are
the controller proportional and integral gains, andR(·)
is defined by the controller rule base which is summa-
rized in Table 1. Here NB (Negative Big), NM (Nega-
tive Medium), NS (Negative Small), Z (Zero), PS (Posi-
tive Small), PM (Positive Medium) and PB (Positive Big)



M.A. Denai and S.A. Attia224

Fig. 4. Fuzzy PI controller structure.

are linguistic variables. The max-min inference method
was used and the defuzzification procedure was based on
the centre of area method.

Table 1. FVSC rule.

← e →
NB NM NS EZ PS PM PB

PB Z PS PM PB PB PB PB

↑ PM NS Z PS PM PB PB PB

PS NM NS Z PS PM PB PB

de EZ NB NM NS Z PS PM PB

NS NB NB NM NS Z PS PM

↓ NM NB NB NB NM NS Z PS

NB NB NB NB NB NM NS Z

3.2. Internal Model Controller Based on Neural
Networks (NIMC)

The basic architecture of a classical internal model con-
troller (IMC) is illustrated in Fig. 5 (Morari and Zafiriou,
1989). A system modelGm is placed in parallel with the
actual systemG. The control signalu is applied simul-
taneously to the system and the system model. The differ-
encey−ym, which gives an estimate of the disturbanced
and/or system changes, is used to adjust the command sig-
nal y∗. An attractive feature of the IMC is that it produces
an offset-free response even when the system is subjected
to a constant disturbance.

Fig. 5. IMC structure.

If a perfect model is assumed(G = Gm), then the
closed-loop system is stable if the controllerC and the
system are stable. However, under mismatch conditions
(G 6= Gm), a low pass filter is introduced in the feedback
loop to improve the controller robustness with respect to
modelling errors.

Since the controller is the inverse of the system
model (i.e.C = G−1

m ), the system model should be in-
verse stable. Although this design technique produces a
robust controller, it does require a model of the controlled
process to be formulated and hence it possesses the short-
comings of model-based control techniques.

Artificial Neural Networks (ANN’s) are potential
candidates for approximating complex non-linear process
dynamics and have been used to formulate a variety of
control strategies (Hunt and Sbarbaro, 1991; Huntet al.,
1992; Kwan and Lewis, 2000). There are two basic design
approaches:

• Direct design, where the neural network is itself the
controller. The most fundamental method is termed
direct inverse control. It uses a trained inverse model
of the process as a controller.

• Indirect design: the controller uses a neural network
to predict the process output.

In the following, ANN’s are used in combination with an
IMC structure to give the overall SCIM control system de-
picted in Fig. 6. Here Net 1 and Net 2 are neural networks

Fig. 6. Neural network-based IMC control.

representing the SCIM inverse and forward models, re-
spectively.F is a first-order compensating filter included
to provide the desirable transient response and robustness
chosen as

F (z) =
1− α

z − α
, 0 < α < 1. (16)

With reference to Fig. 1, the speed transfer function
is obtained as

ω =
2
p

ΦriqsKT

sJ
=

K ′
T

s
iqs. (17)

Discretizing (17) with a sampling periodTs leads to the
following difference equation:

ω(k) = ω(k − 1) + K ′′
T

[
iqs(k) + iqs(k − 1)

]
, (18)

where

K ′′
T = K ′

T

Ts

2
. (19)
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The SCIM neural network model Net 2 is a Multi-
layer Perceptron (MLP) with a three-neuron input layer,
a ten-neuron hidden layer and a one-neuron output layer
trained using the Levenberg-Marquardt Algorithm (LMA)
(Si and Zhou, 1996) as illustrated in Fig. 7(a).

The inverse model is described by the following dif-
ference equation:

iqs(k) =
1

K ′′
T

[
ω(k)− ω(k − 1)

]
− iqs(k − 1). (20)

The stability of the training process is improved by using
a different discretisation procedure. For smallTs the dif-
ference equation is obtained as

(z − 1)ω(k) = 2K ′′
T iqs(k). (21)

The inverse model is trained with the same procedure as
illustrated in Fig. 7(b).

(a)

(b)

Fig. 7. Training of the forward (a) and the inverse (b) SCIM
neural model based on the reduced-order model.

Finally, a reference model is introduced to overcome
the problem associated with the future valueω(k + 1).
The overall block diagram of the closed-loop control sys-
tem is represented in Fig. 8.

Fig. 8. Closed-loop system structure.

3.3. Fuzzy State Feedback Controller (FSFC)

To formulate the design problem, assume that a family
of linear state space models can be obtained for differ-
ent operating points of the system. A related global fuzzy
model can be formulated by the following rules (Caoet
al., 1999):

Ri : IF x1 is F i
1 AND x2 is F i

2 . . . AND xn is F i
n,

THEN

{
ẋ = Aix + Biu,

y = Cx,
i = 1, . . . , L.

(22)

The nominal model can be described analytically by

ẋ = A0x + B0u (23)

with

A0 =
L∑

i=1

µiAi, B0 =
L∑

i=1

µiBi, (24)

µi being the membership factor for thei-th rule using the
sum-prod inference method.

The basic idea is to develop for each rule a state feed-
back control law using the classical pole placement topol-
ogy. These local controllers are inferred into one global
fuzzy state feedback controller for the overall operating
regimes of the system.

The state feedback is formulated as

Ri : IF x1 is F i
1 AND x2 is F i

2 . . . AND xn is F i
n,

THEN

{
ẋ = Aix + Biu,

u = −Kix,
i = 1, . . . , L,

(25)

whereKi is the gain vector related to the(Ai, Bi) state
space model computed using Ackermann’s algorithm.

These local state feedback controllers are inferred
into one global fuzzy state feedback controller for the
overall operating regimes of the drive system:

K =
L∑

i=1

µiKi. (26)

Hence the fuzzy rules related to the motor speed are for-
mulated as follows:

Ri : IF x1 is F i,

THEN

[
ẋ1

ẋ2

]
=

[
0 1
0 −T−1

r

][
x1

x2

]

+

[
0

K ′
T (F i)/Tr

]
ieqs,

(27)
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where F i corresponds to the fuzzy seti defined by the
linguistic labels {NG, NM,. . . }, and K ′

T (F i) is the gain
value for a given interval.

Furthermore, an integral action was introduced in the
control structure in order to cope with steady state er-
rors. The overall control system configuration is shown
in Fig. 9.

Fig. 9. Fuzzy state feedback configuration with integral action.

With reference to Fig. 9, the fuzzy adaptation mechanism
is based on the following algorithm:

Ri : IF x1 is F i,

THEN

[
ẋ1

ẋ2

]
=

[
0 1
0 −T−1

r

][
x1

x2

]

+

[
0

K ′
T (F i)/Tr

]
ieqs,

(28)

ieqs =
ki
3

s
e− ki

1x1 − ki
2x2, (29)

where ki
3 is the integral gain related to the operating

point. The state feedback gain with integral action and
the fuzzy controller gain are obtained as

Ki =
[

ki
1 ki

2 ki
3

]
, K =

5∑
i=1

µiKi. (30)

4. Design of a Speed Observer

In the drive closed-loop control scheme a rotational trans-
ducer is often included to produce the speed measurement
feedback signal. These sensors lower the system reliabil-
ity in a hostile environment and increase the overall sys-
tem investment. Recent investigations have been focused
on the design of sensorless drives. Several approaches
have been proposed (Elloumiet al., 1998; Kim et al.,

1998; Tajima, 1993; Zhen and Xu, 1998). In what fol-
lows, a speed estimator is designed based on neural net-
works. In Appendix B the equations of a classical speed
observer are derived.

Next, an MLP neural network with one ten-neuron
hidden layer and logarithmic activation functions is ap-
plied to speed identification and trained according to the
process described in Fig. 10.

Fig. 10. Training of the neural network speed observer.

The neural network observer is trained to approxi-
mate the equation of the speed observer. In the training
mode, a set of data was used to adjust interconnection
weights of the network. Once these weights had been de-
termined, the testing data (different from the training data)
were fed to the network in order to evaluate the NN speed
observer and to validate its generalisation capability. The
training includes 5000 epochs and the testing includes 500
epochs.

The results are illustrated in Fig. 11, which demon-
strates the ability of the trained neural network to track
low- and high-speed waveforms. The neural network
model was trained only under nominal speed conditions
and the fluctuations observed at low-speed operation may
be a result of this.

5. Performance Evaluation

The parameters of the induction motor considered in this
study are summarised in Appendix A. The performances
of the proposed controllers are evaluated separately under
a variety of operating conditions.

5.1. FVSC

Initial simulations are performed in order to establish the
suitable range of the design parametersmf and ms. In
Fig. 12 the speed responses for different values of these
parameters are shown. The tuning parameters were fixed
to [5 5], which produced satisfactory response character-
istics in the simulations considered.

Next, the drive system under FVSC is subjected to
a variable speed reference profile as illustrated in Fig. 13.



Fuzzy and neural control of an induction motor 227

Fig. 11. Performance of the ANN-based speed ob-
server for high- and low-speed conditions: (a)
actual motor speed, (b) neural network output.

Fig. 12. Step response of the SCIM for different
mf andms: [mf ms] = [10 5] (dotted),
[5 5] (dash-dot),[5 10] (dashed).

As seen from the figure, the actual rotor speed overlaps the
variable speed reference. The performance of the design
controller is evaluated in the presence of load changes.
In Fig. 14 the speed response under two load variations
from 0 to 80 Nm and from 80 to 40 Nm applied at 0.6 sec
and 0.8 sec, respectively, is shown. This result demon-
strates the ability of the controller to produce the required
torque compensating the component in order to maintain
a stable response.

Fig. 13. Drive system response under
a variable speed reference.

Fig. 14. Speed response with two load changes.

Speed sensorless operation of the drive system is il-
lustrated in Fig. 15, which demonstrates comparable per-
formance with extra small fluctuations in the response.

5.2. NIMC

The inverse and forward models Net1 and Net2 are based
on the reduced-order model and applied to the actual
SCIM model given by (1). Connecting Net2 in series with
the SCIM model leads to a time shift between the input
and output signals as illustrated by Fig. 16.

In IMC, the linear filterF (z) is designed to provide
a desirable robustness with respect to modelling errors and
improves the tracking properties to the overall closed-loop
drive system. In Fig. 17 the speed response is shown for
different values of the filter cut-off frequencyα. It ap-
pears that larger values ofα slow down the response. In
what follows, α is fixed to 0.5.
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Fig. 15. Speed response with two load changes
with neural network-based observer.

Fig. 16. Input and output signals of the series
transfer function: input signal (first-order
model, dashed), output signal (solid).

In the following simulation, the performance of the
IMC structure based on a first-order reference model with
a time constant of 0.021 sec is subjected to load changes.
In Fig. 18, load variations are applied from 0 to 80 Nm
and from 80 to 40 Nm at 0.6 sec and 0.8 sec, respectively.

The neural network model prediction error related to
this result is given in Fig. 19. In the initial adaptation
stage the neural network output exhibits some fluctuations
due to the new operating conditions and this also affects
the torque response. However, the controller is able to
maintain a stable response, which confirms the robustness
of the neural network-based IMC structure with respect to
the model-based one.

Fig. 17. Speed response for different values ofα.

Fig. 18. NIMC speed control under load changes.

Fig. 19. Neural network model prediction error.
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5.3. FSFC

In this simulation study five operating points are used for
defining the fuzzy state space models using the reduced-
order model of the induction motor corresponding to the
speeds 1500, 1900, 2250, 2600 and 3000 rpm. On the ba-
sis of these local models, local state feedback controllers
stabilizing the drive system around these operating points
are designed using Ackerman’s formula with the desired
pole configurations shown in Table 2.

Table 2. Desired pole configurations for FSFC.

Eigenvalue Magnitude Damping Frequency

First 9.51e−1 9.51e−1 1.00 5.00e+1

pole confi- 9.44e−1+5.40e−2i 9.46e−1 7.00e−1 8.00e+1

guration 9.44e−1−5.40e−2i 9.46e−1 7.00e−1 8.00e+1

Second 9.79e−1 + 2.10e−2i 9.79e−1 7.00e−1 3.00e+1

pole confi- 9.79e−1−2.10e−2i 9.79e−1 7.00e−1 3.00e+1

guration 9.14e−1 9.14e−1 1.00 9.00e+1

Then the five controller gains are directly inferred
into a global state feedback controller using a simple fuzzy
inference procedure. The resulting membership function
of the global controller is given in Fig. 20. The step re-
sponses related to the pole configurations given above are
shown in Fig. 21.

Fig. 20. FSFC membership function.

Next, the performance of FSFC with the first pole
configuration is evaluated under different operating con-
ditions of the drive system. The load torque is kept con-
stant while the drive system is subjected to step changes
and a slow ramp as shown by Fig. 22. The response to the
ramp is rather slow, which can be improved by selecting
different pole locations.

Fig. 21. Speed step responses: the first (dotted)
and the second configuration (dashed).

Fig. 22. Speed response following a variable reference.

The drive system is now tested under a variable speed
reference and load torque changes simultaneously. The
result of Fig. 23 reveals a good control with zero steady
state errors and no fluctuations in the drive response. By
changing the operating point, the controller is expected to
adjust its feedback and integral gains as shown in Fig. 24.

5.4. Comparative Study of FVSC, NIMC and FSFC

The proposed controllers are now compared under the
same operating conditions of the drive system. Figure 25
shows the responses under a step change in the speed ref-
erence. Under FVSC control, the drive speed response
rises slowly with a noticeable overshoot. FSFC exhibits a
faster transient response initially but settles down slowly.
According to Fig. 25, NIMC leads to shorter rising and
settling times. The results demonstrate comparable steady
state performance.
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Fig. 23. Speed response under load torque variations.

Fig. 24. Controller gains variations.

Fig. 25. Drive speed step response: FVSC (solid),
FSFC (dotted), and NIMC (dashed).

The quantitative criteria for measuring the perfor-
mance are chosen as IAE (Integral of the Absolute Error)
and ITAE (Integral of Time weigthed Absolute Error):

IAE =
∫
|e|dt, ITAE =

∫
t |e|dt. (31)

IAE accounts mainly for errors at the beginning of the re-
sponse and to a lower degree for the steady state deviation.
ITAE takes account of the error at the beginning but also
emphasises the steady state. The drive system is subjected
to a constant step input and the simulation time of 1 sec
is taken. The results summarized in Table 3 confirm that
NIMC achieves a better transient performance than FSFC
and FVSC.

Table 3. Comparative performance with integral criteria.

IAE ITAE

FVSC 5.9110 0.0059

FSFC 4.2727 0.0021

NIMC 2.9038 0.0014

It is well known that during the normal operation of
a drive, induction motor parameters undergo variations
due to thermal changes, saturation and other non-linear
effects. Among these there is a rotor resistance, which,
in turn, causes the rotor time constant to vary sometimes
up to 50%. As stated above, this results in performance
deterioration of the FOC.

In the next simulation result, the robustness of the
three controllers with respect to a variation in the ro-
tor time constant is investigated. This situation is simu-
lated by a linear variation in the rotor resistance such that
Rr = 0.0764(1 + 2.5t) corresponding to a variation of
50% in the rotor time constant. Figure 26 illustrates the
results of this simulation. The dotted line corresponds to
a constant Rr while the solid one is related to a vari-
able Rr. At t = 0.4 s, whereRr is twice as large as
its nominal value, a second step change in the speed refer-
ence is applied. From Fig. 26(a) it can be seen that FVSC
is slightly affected while NIMC (Fig. 26(b)) and FSFC
(Fig. 26(c)) demonstrate robust performance toRr varia-
tions.

6. Conclusions

This paper presents some design approaches to hy-
brid control architectures combining conventional control
techniques with fuzzy logic and neural networks. Such
hybrid structures lead to robust and easily tuned con-
trollers, and are very well suited for systems with uncer-
tain or unknown variations in plant parameters and struc-
ture. The induction motor is one of such difficult systems
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Fig. 26. Performance of (a) FVSC, (b) NIMC and (c)
FSFC under variableRr, Rr = constant
(solid) andRr = 0.0764(1+2.5t) (dashed).

and hence it can be considered as a challenging engineer-
ing problem for evaluating the performances of the de-
signed controllers.

The performance and robustness of the proposed
controllers have been evaluated under a variety of operat-
ing conditions of the drive system, and the results demon-
strate the effectiveness of these control structures. A com-
parative study of the control strategies in terms of per-
formance and robustness has been conducted. The per-
formance is maintained under rotor resistance variations,
which is known to cause performance deterioration in
vector-controlled induction motors.

NIMC and FSFC achieved slightly improved results
compared with FVSC, although their synthesis was based
on the reduced-order model of the SCIM. The control
techniques studied are very suitable for real time imple-
mentation due to their simplicity, robustness and ease of
tuning.
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List of Symbols and Abbreviations

Pn nominal power

Te, TL electromagnetic and load torques

J rotor inertia

p pairs of poles

ω motor speed

Rs, Rr stator and rotor resistances

Ls, Lr stator and rotor inductance

Lm mutual inductance

Tr rotor time constant

[isds isqs] d- and q-axis stator currents

[isdr isqr] d- and q-axis rotor currents

[V s
ds V s

qs] d- and q-axis stator voltages

[ie
∗

ds ie
∗

qs] stator current references

[Φs
dr Φs

qr] flux linkages in the stator reference frame

Ri rule related to thei-th operating point

L number of operating points

F i
j fuzzy sets for the state variables

SCIM squirrel-cage induction motor

FOC field orientation control

PID proportional-integral-derivative

VSC variable structure controller

VSS variable structure system

FLC fuzzy logic controller

NB negative big

NM negative medium

NS negative small

EZ equal zero

PS positive small

PM positive medium

PB positive big

FVSC fuzzy variable structure control

IMC internal model controller

ANN artificial neural networks

LMA Levenberg-Marquardt algorithm

MLP multilayer perceptron

NIMC neural internal model control

FSFC fuzzy state feedback control

Appendix A

The SCIM parameters are as follows:

Pn nominal power 15 kW

Rs stator resistance 0.1062Ω
Rr rotor resistance 0.0764Ω
Ls stator inductance 0.01604 H

Lr rotor inductance 0.01604 H

Lm mutual inductance 0.01547 H

J rotor inertia 0.01768 kg.m2

2p number of pole pairs 4

Appendix B

Starting from the flux equations

Φs
s = Lsi

s
s + Lmisr, Φs

r = Lmiss + Lri
s
r, (B1)

the expressions forΦs
s and isr can be obtained as

Φs
s =

Lm

Lr
Φs

r + σLsi
s
s, isr =

1
Lr

(Φs
r − Lmiss).

(B2)
Substitution of (B2) in the drive voltage equations gives

V s
s = Rsi

s
s + sΦs

s, V s
r = Rri

s
r + (s− jω) Φs

r.
(B3)

Hence

s

[
Φs

dr

Φs
qr

]
=

Lr

Lm

([
V s

ds

V s
qs

]

−

[
Rs + sσLs 0

0 Rs + sσLs

][
isds

isqs

])
, (B4)

s

[
Φs

dr

Φs
qr

]
=

1
Tr

(
Lm

[
isds

isqs

]

−

[
1 ωTr

−ωTr 1

][
Φs

dr

Φs
qr

])
. (B5)

Equations (B4) and (B5) represent the rotor flux observers
and are termed thevoltage modeland thecurrent model,
respectively. The rotor flux amplitude and phase are

Φr =
√

Φs
dr

2 + Φs
qr

2 and θr = tan−1

(
Φs

qr

Φs
dr

)
. (B6)



Fuzzy and neural control of an induction motor 233

Differentiating (B6) and substituting (B5) leads to the
drive speed

ω =
dθr

dt
− Lm

TrΦ2
r

(
isqsΦ

s
dr − isdsΦ

s
qr

)
. (B7)

In Fig. B1 a block diagram structure of this observer is
given

ω

SCIM

Flux observer
(voltage model)

Speed
observer

V

V

ds
s

qs
s

Fig. B1. Block diagram of the speed observer.
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