
Int. J. Appl. Math. Comput. Sci., 2002, Vol.12, No.3, 391–401

TOWARDS A LINGUISTIC DESCRIPTION OF DEPENDENCIES IN DATA

ILDAR BATYRSHIN∗, M ICHAEL WAGENKNECHT∗∗

∗ Institute of Problems of Informatics
Academy of Sciences of Tatarstan and Kazan State Technological University

K. Marx Str. 68, Kazan, 420015, Russia
e-mail:batyr@emntu.kcn.ru

∗∗ University of Applied Sciences Zittau/Görlitz
IPM Theodor-Körner-Allee 16, 02763 Zittau, Germany

e-mail:m.wagenknecht@hs-zigr.de

The problem of a linguistic description of dependencies in data by a set of rulesRk: “If X is Tk then Y is Sk” is
considered, whereTk ’s are linguistic terms likeSMALL, BETWEEN 5 AND 7describing some fuzzy intervalsAk. Sk ’s
are linguistic terms likeDECREASINGandQUICKLY INCREASINGdescribing the slopespk of linear functionsyk =
pkx + qk approximating data onAk. The decision of this problem is obtained as a result of a fuzzy partition of the domain
X on fuzzy intervalsAk, approximation of given data{xi, yi}, i = 1, . . . , n by linear functionsyk = pkx + qk on these
intervals and by re-translation of the obtained results into linguistic form. The properties of the genetic algorithm used for
construction of the optimal partition and several methods of data re-translation are described. The methods are illustrated
by examples, and potential applications of the proposed methods are discussed.
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1. Introduction

The problem of a linguistic description of dependencies in
data arises in such areas as process monitoring, diagnosis
and control, data mining, qualitative reasoning about pro-
cesses, etc. (Babuska, 1998; Batyrshinet al., 1994; Deo-
gunet al., 1997; Kivikunnas, 1999; De Kleer and Brawn,
1984; Forbus, 1984; Zadeh, 1973; 1975; 1999). Here we
consider the problem of the linguistic description of de-
pendencies in given data{xi, yi}, i = 1, . . . , n by a set
of rules Rk: “If X is Tk then Y is Sk”, where Tk ’s
are linguistic terms likeSMALL, LARGE, BETWEEN 5
AND 7 describing some fuzzy intervalsAk on X. Sk ’s
are linguistic terms likeDECREASINGandQUICKLY IN-
CREASINGthat characterize the speed of change ofy on
these intervals.

Fuzzy rules with such right-hand sides (consequent
parts) were considered in (Batyrshin, 2002; Batyrshin and
Panova, 2001), where the methods of representation of
such rules by fuzzy relations were proposed. In the fol-
lowing, we consider the inverse problem: How to gen-
erate such a set of fuzzy rules based on given numerical
data {xi, yi}, i = 1, . . . , n? We propose that a solution
to this problem may be obtained as a result of approxi-
mation of given data by linear functionsyk = pkx + qk

on fuzzy intervalsAk (defining an optimal fuzzy parti-
tion of the domain ofX) and by subsequent re-translation

of the result into linguistic form. For the construction of
the optimal fuzzy partition a genetic algorithm is applied.
Approximating functions are analytically calculated. Re-
translation functions describe linguistically the fuzzy in-
tervals Ak and the slopespk of approximating linear
functions yk = pkx + qk on these intervals. As a result,
a rule base is constructed.

The problem considered can be divided into two mu-
tually related parts: (a) construction of a fuzzy partition
of the domain of the input variableX on fuzzy inter-
vals with optimal linear approximation of given data on
these intervals, and (b) linguistic interpretation of the ob-
tained fuzzy intervals and lines. The first problem is
connected with fuzzy piece-wise linear approximation of
data, approximation by polygons and splines, shape anal-
ysis, fuzzy trend analysis and regression analysis, approx-
imation of data by fuzzy Sugeno models, etc. (Babuska,
1998; De Boor, 1978; Friedman, 1991; Goodrich, 1994;
Huarng, 2001; Janget al., 1997; Kacprzyk and Fedrizzi,
1992; Kivikunnas, 1999; Kosko, 1997; Loncaric, 1998;
Wang, 1997; Yuet al., 2001). The second problem is
related to the theory of fuzzy information granulation
and computing with words (Batyrshin and Panova, 2001;
Zadeh, 1997; 1999). The proposed approach to construc-
tion of rule bases from given data may be also considered
as a calculation of granular derivatives (Batyrshin, 2002).
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These problems will be discussed in the following
sections. The tackling of the first problem is based on
step-wise applications of a genetic algorithm for finding
knots, i.e., the points of intersection of fuzzy sets consti-
tuting the partition of fuzzy sets, and optimizing the pa-
rameters of these sets given a fitness function. Initially,
a partition with a sufficiently large number of fuzzy sets
which is sequentially reduced till some final optimal par-
tition is chosen. There are three reasons for applying the
decremental approach. First, small fuzzy intervals which
are not meaningful for linguistic interpretation are deleted.
Second, intervals with a small number of given points are
deleted since small errors in initial data in such intervals
may cause large deviations in slopes. Third, the neighbor
intervals with similar linguistic interpretations of depen-
dencies are merged. The application of a basic genetic
algorithm (Goldberg, 1989) enables a sufficiently fast so-
lution of the problem considered with easy handling of
penalties, criteria and other components.

In the following sections we describe in greater detail
the formulation of the problem and methods applied for
its solution and illustrate them on examples of linguistic
interpretation of given data.

2. Notation and Problem Formulation

Let D = {(xi, yi)}, xi ∈ X, yi ∈ Y , i = 1, . . . , n
be a given data set, whereX and Y are real intervals,
X = [xl, xr] for xl < xr, Y = [yl, yr] for yl < yr.
Write XD = {xi}, i = 1, . . . , n and YD = {yi}, i =
1, . . . , n. Our goal is to approximate the underlying crisp
dependence between inputx and outputy by a set of
rules

Rk : If X is Tk then Y is Sk,

where Tk ’s are linguistic terms likeSMALL, LARGEand
BETWEEN 5 AND 10describing some fuzzy intervals
(normal and convex fuzzy setsAk: X → [0, 1]). The
Sk ’s are linguistic terms likeDECREASING, CONSTANT
andQUICKLY INCREASINGwhich describe the speed of
the change of the functiony on Ak. We will suppose that
the linguistic termSk characterizes the slopepk of the
function yk = pkx + qk that approximates the given data
YD on Ak.

We will suppose that the membership functions of
Ak are continuous, strictly increasing on the left of the
kernels K(Ak) and strictly decreasing on the right of
the kernels ofAk, which takes place for most popular
membership functions (Janget al., 1997; Klir and Fol-
ger 1988). Here, “kernel” means the elements on the real
line with membership 1. For brevity, we will denote by
Ak(x) the membership value inx. As result, allα-cuts
and, particularly, the kernels of fuzzy intervals are closed
crisp intervals. Denote byAα = [xαl, xαr] the α-cut of

a fuzzy setA. The valueha = xαr − xαl is called the
spreadof Aα or the width ofA at levelα. A fuzzy set is
called thesingletonat x0 ∈ X if A(x) = 1 at x = x0

and A(x) = 0 otherwise.

Definition 1. We say that a setP = {Ak}, k = 1, . . . ,m
of fuzzy intervals onX defines an(α, β)-fuzzy partition
of X, if

sup
j 6=k

(
sup
x∈X

(
(Aj ∩Ak)(x)

))
= α

and

inf
x∈X

(( m⋃
k=1

Ak

)
(x)

)
= β,

where0 ≤ α < 1, 0 < β ≤ 1. For the sake of simplicity,
(α, β)-fuzzy partitions will be called fuzzy partitions. An
(α, β)-partition will be written also as theα-partition.

It follows that the intersection of kernels of fuzzy sets
in fuzzy partitions is empty and hence they may be or-
dered. We will say that a fuzzy intervalAj is located
on the left-hand side of a fuzzy intervalAk if xu < xv

for some xu ∈ K(Aj) and xv ∈ K(Ak). Such an or-
dering relation will be denoted byAj ≺ Ak. Obviously,
this ordering defines a linear strict ordering relation on the
classes of fuzzy partitions. We will suppose that in any
fuzzy partition P = {Ak}, k = 1, . . . ,m, the index-
ing of fuzzy intervals corresponds to their ordering, i.e.,
Ak ≺ Ak + 1 for all k = 1, . . . ,m− 1.

We will assume that for allk = 1, . . . ,m − 1 and
for all points x located between the kernel points ofAk

and Ak+1 we have(Ak ∪Ak+1)(x) > 0.

Definition 2. A point x0k is called aknot if the mem-
bership function of the intersectionAk ∩ Ak+1 of two
neighboring intervals of partitionP attains its maximal
value there. The borders of the setX = [xl, xr] will also
be denoted as knots:x00 = xl and x0m = xr.

The existence and uniqueness of knotx0k follows
from the strict monotonicity of membership functions on
both the sides of the kernels of fuzzy intervals.

Definition 3. We call a partitionP normal if for all
k, j = 1, . . . ,m and k 6= j we haveAk(x) > Aj(x)
if x ∈ (x0k−1, x0k).

It is clear that anyα-partition is normal.

Definition 4. We say that a fuzzy intervalAk con-
tains the pointsxi from the initially given dataXD if
xi ∈ [x0k−1, x0k) for k = 1, . . . ,m − 1 and xi ∈
(x0k−1, x0k] for k = m. In these cases we will also say
that xi “belongs” to Ak. The set of points fromXD be-
longing to Ak will be denoted byXD(Ak). The distance
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between knotsW (Ak) = x0k − x0k−1 will be called the
width of the fuzzy setAk in the fuzzy partitionP .

Let LX = {T1, T2, . . . } be a set of elements called
terms, i.e.,LX is a linguistic variable and its elements
will be called the values ofLX (Zadeh, 1975). We will
suppose thatLX contains a special elementλ denoting
the term “meaningless.”

Definition 5. A function NX : F (X) → LX , where
F (X) is a set of all fuzzy subsets ofX, will be called
there-translation functionand NX(A) will be called the
nameof a fuzzy setA on X.

For example, the setTEMPERATURET = {SMALL,
LARGE 100◦, BETWEEN 30◦ AND 40◦, NORMAL,
VERY HOT,λ} defines the values of the linguistic vari-
ableTEMPERATURE, which may be used for linguistic
re-translation of fuzzy sets defined on a set of numerical
values of temperatureT .

We suppose that the set of values of linguistic vari-
able LX depends on the possible granulation of the set
X which may be determined, e.g., by possible sizes and
locations of fuzzy granules on the setX. The elements
of LX may be generated by some grammar and the re-
translation function may be defined by some re-translation
procedure. We will say thatA is ameaninglessfuzzy set
if NX(A) = λ; otherwise, it will be calledmeaningful.
For example, fuzzy sets may be considered as meaning-
less if their sizes or locations do not match with possible
sizes and locations of fuzzy sets defined by granulation of
X in the problem considered.

Definition 6. We call a functiony = px + q a linear
approximation ofD = {(xi, yi)}, xi ∈ X, yi ∈ Y ,
i = 1, . . . , n on a fuzzy setA: X → [0, 1] if it minimizes
the function

Q(p, q) =
n∑

i=1

[
yi − y(xi)

]2
A(xi) (1)

for all possiblep and q. The parametersp and q can
be obtained similarly to the solution of the least-square
approximation problem (Conte and de Boor 1972). They
can be calculated as follows:

p =
KF − JG

HF −G2
, q =

HJ −KG

HF −G2
,

where

F =
n∑

i=1

A(xi), G =
n∑

i=1

xiA(xi),

H =
n∑

i=1

x2
i A(xi), J =

n∑
i=1

yiA(xi),

K =
n∑

i=1

xiyiA(xi).

Let Z = [pl, pr] be the set of possible values of
slopesp for y = px+q and letLZ = {S1, . . . , St} be a
set of terms used for notation of slopes. For example, we
may haveLZ = {QUICKLY DECREASING, DECREAS-
ING, SLOWLY DECREASING, CONSTANT, SLOWLY IN-
CREASING, INCREASING, QUICKLY INCREASING},
or in short form LZ = {QDE, DEC, SDE, CON, SIN,
INC, QIN}. The re-translation functionNZ : F (Z) →
LZ defined on the set of all fuzzy subsets ofZ will trans-
late numerical values of slopes into linguistic values if
these numerical values are considered as singletons.

Definition 7. We call an(α, β)-fuzzy partitionadmissible
if it is normal and satisfies the following conditions:

K(Ak) ∩X 6= �, k = 1, . . . ,m, (2)

α ≤ α∗, (3)

β ≥ β∗, (4)

W (Ak) ≥ W, k = 1, . . . ,m, (5)

Card
(
XD(Ak)

)
> C, k = 1, . . . ,m, (6)

NZ(pk) 6= NZ(pk+1), k = 1, . . . ,m− 1. (7)

Condition (2) requires that at least one kernel point
of each fuzzy interval belong to the intervalX = [xl, xr].
Conditions (3) and (4) require the intersection of neigh-
boring fuzzy intervals to be not greater than a given
thresholdα∗, and the union of fuzzy intervals cover do-
main X at least at levelβ∗, where α∗, β∗ are fixed
numbers from[0, 1] such thatα∗ < 1 and β∗ > 0.
Condition (5) is determined by restrictions on a possible
granulation ofX. If the width of a fuzzy interval is less
than the possible width of the minimal granuleW , then
such a fuzzy interval is considered as meaningless. Condi-
tion (6) means that each fuzzy interval contains a sufficient
amount of initial data. In the opposite case, small random
fluctuations in data may cause large deviations of the slope
value pk in the approximating functionsyk = pkx + qk.
Finally, (7) requires that the linguistic interpretation of
slope values on neighboring fuzzy intervals obtained by
the re-translation function should be discriminative.

Suppose that re-translation functionsNX and NZ

are defined in a suitable way, an admissible partitionP =
{Ak}, k = 1, . . . ,m of X is constructed and approxi-
mation functionsyk = pkx + qk on Ak are determined.
Then the re-translation function defines the following rule
base:

Rk : If X is NX(Ak) then Y is NZ(pk).
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That is, the problem of a linguistic description of dataD
is reduced to the problem of finding an optimal admissible
partition of a given setX with respect to some optimality
criteria.

We are led to the following problem: Find an ad-
missible fuzzy partition{Ak}, k = 1, . . . ,m of X that
minimizes the fitness function

Qt =
m∑

k=1

n∑
i=1

[yi − yk(xi)]
2t

Ak(xi)

n∑
i=1

Ak(xi)
, (8)

where theyk ’s are linear approximations of given data
D = {(xi, yi)}, xi ∈ X, yi ∈ Y , i = 1, . . . , n on
fuzzy intervalsAk, m is an unknown number of fuzzy
sets andt is some fixed real number used for obtaining
better fitting of given data. In our simulations we used
t = 2.

This problem may be considered as a problem of
constraint optimization if conditions (2)–(7) are handled
as constraints in the optimization problem. Another ap-
proach to this optimization problem is to consider the class
of fuzzy partitions satisfying some of the conditions (2)–
(7) and to use other conditions as constraints. In the fol-
lowing sections we describe the approach to solve the op-
timization problem in the class of fuzzy partitions satis-
fying conditions (2)–(4). We consider 0.5-fuzzy partitions
with fuzzy intervals defined by bell membership functions
such that the centers of the first and the last membership
functions coincide with the left and the right borders of the
interval X = [xl, xr] and neighboring membership func-
tions intersect at level 0.5. A genetic algorithm is used
for obtaining the optimal fuzzy partition minimizing cri-
terion (8). If conditions (5)–(7) are not fulfilled for some
fuzzy interval then this interval is merged with one of the
neighbor intervals, the number of classes is reduced and
the genetic algorithm is applied again. Initially, a parti-
tion with a sufficiently large number of fuzzy intervals is
chosen. This partition is sequentially reduced till some
final optimal partition satisfying (5)–(7) will be obtained.

3. Description of Fuzzy Partitions
Used in the Problem

We will consider fuzzy partitions with fuzzy intervals de-
fined as parametric generalized bell membership functions
(Janget al., 1997)

Ak(x) =
1

1 +
∣∣∣x− ck

ak

∣∣∣2bk
, (9)

where ck is the center of a membership function,ak

is its width on the level 0.5 andbk defines its steep-
ness (ak, bk > 0). Moreover, fuzzy partitions{Ak},

k = 1, . . . ,m (m > 1) of X = [xl, xr] will be designed
such thatc1 = xl, cm = xr, and ck+1 = ck +ak +ak+1

are fulfilled for all k = 1, . . . ,m − 1, (m > 2), where
a1 + 2(a2 + · · · + am−1) + am = (xr − xl). If m = 1,
we definec1 = 0.5(xr + xl) and a1 = 0.5(xr − xl).
From the construction it follows that all fuzzy intervals
intersect at level 0.5 and such partitions will be normal
0.5-partitions satisfying conditions (2)–(4). An example
is presented in Fig. 1. As we can see, with increasingbi

the fuzzy sets are changing to “crisp” intervals. This ef-
fect can be used to transform many “crisp” constraint op-
timization problems searching the partition on crisp inter-
vals into a similar fuzzy non-constraint optimization prob-
lem based on maximization of parametersbi. As will be
shown later, the solutions may lead to almost crisp fuzzy
intervals.
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Fig. 1. Fuzzy 0.5-partition of the interval[−10, 10] in 6 fuzzy
intervals defined by generalized bell membership func-
tions with parametersai = 2, i = 1, . . . , 6 and param-
etersbi having from the left to the right the correspond-
ing values 1, 2, 4, 8, 16, 32. It can be seen that with
increasingb the intervals change to “crisp” intervals.

The fuzzy partitions can be determined by parame-
ters ak and bk. Optimization of (8) can be performed
with respect to these parameters subject to constraints
a1+2(a2+· · ·+am−1)+am = (xr−xl) andak, bk > 0,
k = 1, . . . ,m. But the optimization problem is simplified
if we replaceak by knots. These can be calculated as
follows:

x0k = ck + ak, k = 1, . . . ,m− 1, m > 1.

The parametersck and ak can be determined as fol-
lows:

a1 = x01 − x00,

ak = 0.5(x0k − x0k−1), k = 2, . . . ,m− 1, m > 2,

am = x0m − x0m−1,

c1 = xl,

ck = 0.5(x0k + x0k−1), k = 2, . . . ,m− 1, m > 2,

cm = xr,

where x00 = xl, x0m = xr, x0k−1 < x0k, x0k ∈ X =
[xl, xr], k = 1, . . . ,m.
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Hence, for the definition of a fuzzy partition ofX =
[xl, xr] into m intervals, it is sufficient to choosem −
1 knots x01, . . . , x0m−1 within [xl, xr] and definem
parametersbk of membership functions.

4. Description of the Genetic Algorithm

We have applied a genetic algorithm for solution of the
problem of linguistic approximation of data. As has been
mentioned before, for solving this problem special algo-
rithms can be developed like those used in the problem of
piece-wise linear or polygon approximations (Friedman,
1991; Goodrich, 1994; Loncaric, 1998; Yuet al., 2001),
but the use of genetic algorithms can be motivated by sev-
eral reasons. First, genetic algorithms constitute a univer-
sal tool for solving optimization problems, which can be
easily adopted to possible modifications of the optimiza-
tion problem. Second, we try to give some qualitative de-
scription of dependencies in data so we do not need, in
general, an exact solution. Moreover, the granulation of
linguistic terms used for the re-translation of the obtained
fuzzy approximation is usually subjective and tentative.
For this reason, in our simulations we do not try to de-
crease the fitness function (8) as much as possible by in-
creasing the size of the populations generated by the ge-
netic algorithm or by adapting the parameters of the algo-
rithm during the optimization process (Eibenet al., 1999;
Goldberg, 1989; Wong and Hamouda, 2000), etc., when
we see that the obtained results already facilitate a suffi-
ciently good interpretation. Such an approach is in aco-
ordance with the methodology of computing with words
tolerant to imprecision for achieving tractability, robust-
ness, a low solution cost and a better rapport with reality
(Zadeh, 1996).

As was pointed out in Section 3, a fuzzy parti-
tion can be defined bym − 1 knots x01, . . . , x0m−1

and m parameters b1, . . . , bm. The vector s =
(x01, . . . , x0m−1, b1, . . . , bm) with 2m−1 elements will
be called a string. The valuesx00 = xl, x0m = xr are
fixed and are not included in the string. In general, we will
assume thatm > 1. If m = 1, then optimization will be
performed with respect to one parameterb1.

Suppose that conditionsx0k−1 < x0k, x0k ∈ X =
[xl, xr], andbk > 0, k = 1, . . . ,m are fulfilled. Then the
string s defines a fuzzy partition{Ak}, k = 1, . . . ,m of
X into fuzzy intervals and we can calculate for each fuzzy
interval the optimal approximationsyk = pkx + qk due
to (1). As a result, we can calculate the value of the fitness
function (8) for the obtained fuzzy partition and approxi-
mation functions. Our goal is to find a strings minimiz-
ing the fitness function (8). The set of strings considered
in some step of the genetic algorithm will be called a pop-
ulation.

Assume that a sufficiently large number of intervals
m in fuzzy partitions have been chosen. The genetic algo-
rithm starts with some initial string defining the partition
of X and the value of the fitness function for this string
is calculated. As such an initial string we may use the pa-
rameters of the fuzzy partition ofX defined bym equal
fuzzy sets (see the top panel in Fig. 2.). Then a population
with n1 strings is randomly generated and the values of
the fitness function for each string are calculated. Next,
n2 strings with minimal values of fitness function are se-
lected from then1 + 1 strings. These “best” strings are
called an elite.
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Fig. 2. The set of fuzzy partitions sequentially constructed by
the algorithm in Example 1 and the rule base describ-
ing the final results: IFX IS LESS THAN 3 THEN
Y IS SLOWLY INCREASING; IF X IS GREATER
THAN 3 THEN Y IS SLOWLY DECREASING.
Parameters of lines: (p1, q1) = (1.4446, 5.1798),
(p2, q2) = (−1.3869, 5.4134).

The strings from the elite are used for generation of
new strings. This can be done in various ways. We have
used the following method.

For two stringspk and pj from the elite (called par-
ents) the set of strings (called children) is generated as
follows. First, an indexi of knots (1 ≤ i ≤ m − 1) is
randomly generated and two new children are obtained as
a result of the mutual replacement of knotsx0i between
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parents. Second, a new indexi is randomly generated and
two new children are obtained as a result of the mutual
replacement of all knots with numbers1, . . . , i between
parents. Similar ways of generating of new strings are
called a crossover operation (Goldberg, 1989). As a re-
sult, the set of2n2(n2− 1) new strings is generated from
n2 elite strings. In both the cases the generation of ran-
dom integer numbers uniformly distributed on[1,m− 1]
was used.

Then the following mutation operation was applied
to all ns = 2n2(n2−1)(2m−1) elements of new strings.
First, ns normally distributed real numbers were gener-
ated. Then all these numbers were normalized to the inter-
val [−1, 1] and multiplied by the parameterM denoting
the maximal mutation value. In our simulations we used
M = 0.01(xr − xl) for all parameter values, but in gen-
eral this value may be different for knots and parameters
bk. The obtained random mutation values were added to
the elements of new strings.

The mutated knot values which did not satisfy the
constraintsx0k ∈ [xl, xr], were symmetrically mirrored
into this interval. Finally, all knots in each new string
were sorted to satisfy the requirementx0k−1 < x0k,
k = 1, . . . ,m− 1.

The obtained set of new strings is called a new pop-
ulation. For each string from the obtained set the value of
the fitness function was calculated. The strings of the new
population were joined with the elite strings from the pre-
vious population and a new elite withn2 strings having
minimal values of the fitness function was chosen.

The genetic algorithm finishes its work aftern3 gen-
erations of new populations and selections of new elites.
The best string from the final elite with the minimal value
of the fitness function is considered as a solution of the
optimization problem for given number of fuzzy intervals
in fuzzy partitions. The obtained fuzzy partition withm
fuzzy intervals satisfies conditions (2)–(4).

Then the fulfilment of conditions (5)–(7) for the
fuzzy intervals of the obtained partition is verified. If
one of these conditions is violated for some fuzzy interval,
then this interval is merged with the neighboring interval
and a new partition withm− 1 intervals is obtained. The
string with parameters of the latter is used as the initial
string for a new start of the genetic algorithm. The use of
the genetic algorithm and the merging procedure are re-
peated if the obtained fuzzy partition does not satisfy all
conditions (5)–(7).

An example of such sequentially obtained fuzzy par-
titions and corresponding approximations of given data is
presented in Fig. 2. The upper partition and corresponding
optimal approximations of the criterion (1) are defined by
the first initial string with equal fuzzy intervals. The next
three partitions were obtained by the genetic algorithm,

and merging rare intervals not satisfying condition (6)
were used twice. The lower partition and approximations
correspond to the final solution of the optimization prob-
lem.

5. Merging Procedures

Let us describe the procedure of merging fuzzy intervals
of the partition obtained by the genetic algorithm. First,
the fuzzy intervals of this partition are tested on the ful-
filment of (5). If this condition is not fulfilled for some
fuzzy interval, i.e., it is meaningless, then we evaluate the
values of the fitness functions of two possible partitions
obtained after merging this meaningless interval with left
or right neighboring interval. (Of course, if the meaning-
less fuzzy interval is the first or the last in the partition,
then we have no choice.) The parameters of the partition
with a smaller value of the fitness function define an ini-
tial string for the new start of the genetic algorithm. The
new string is obtained from the analyzed string as a re-
sult of deleting parameterbk of the meaningless interval
and deleting the knot from the left or the right side of this
interval.

If condition (5) is fulfilled for all intervals, then the
intervals of the partition are tested to see whether they
fulfil condition (6). If this condition is violated for some
fuzzy interval, then the choice of the left or the right neigh-
bor, merging intervals and definition of the initial string
for starting the genetic procedure are produced similarly
to the procedures described above.

If conditions (5) and (6) are fulfilled for all intervals,
then the intervals of the fuzzy partition obtained by the
genetic algorithm are tested with respect to (7). If this
condition is fulfilled for all the fuzzy intervals of the par-
tition, then the optimal partition obtained by the genetic
algorithm is considered as a solution of the optimization
problem and the partition with approximating lines is re-
translated into the set of linguistic rules. This set of rules
is considered as the solution of the problem of linguistic
description of data dependencies. The re-translation pro-
cedures are discussed in the following section.

Suppose that (7) is not fulfilled for some pairs of
slopes of approximating lines obtained on neighboring
fuzzy intervals of the fuzzy partition, i.e., some pair of
neighboring slopes got the same name after application of
the re-translation procedure. In this case we analyze all
possible new partitions withm− 1 intervals obtained af-
ter merging two neighbor intervals with the same slope
name. The partition with the minimal value of the fitness
function is chosen for determination of the initial string for
the new start of the genetic algorithm. This new string is
obtained from the string corresponding to the optimal par-
tition with m intervals as a result of deleting the knotx0k
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between merged intervalsAk and Ak+1 and deleting
one of two parametersbk or bk+1 with the smaller value.

6. Re-Translation Procedures

Two re-translation procedures for generation rules from
fuzzy partitions and linear approximations are used.
These procedures depend on granulation of the set of val-
ues of variableX and granulation of the set of possible
slope valuesZ.

Since the rules considered describe the linguistic
evaluations of the speed of change of variableY in some
fuzzy intervals of values of variableX, it is supposed
that the length of these intervals cannot vanish, and it is
bounded from below by some valueW (see condition
(5)). In the opposite case, such intervals are considered as
meaningless. The length of fuzzy intervals may be calcu-
lated as the width of the corresponding fuzzy sets at level
β if (α, β)-fuzzy partitions are used in the problem of
linguistic description of data. It should be noted that the
granulation of fuzzy values ofX and fuzzy intervals on
X may be different. For example, the fuzzy value ofX
may be represented by a singleton or by a fuzzy set with
small width in the rule like “IfX is 5 thenY is SMALL.”

Consider several possible methods of defining the
re-translation procedureNX : F (X) → LX . Some of
these methods are discussed in (Zadeh, 1975) and in other
works on fuzzy sets theory. We have the following:

1. A precisiation functionM which makes the mean-
ing of linguistic terms fromLX precise is explicitly
given byM : LX → F (X) such that the meaning of
the termT is represented by fuzzy setA = M(T ).
The re-translation procedureNX can be based on
a search for a linguistic termT ∗ from LX which
has the meaningM(T ∗) similar in some sense to
the given fuzzy intervalAk, e.g., when some sim-
ilarity measureD(Ak,M(T )) has maximal value
for T = T ∗. We used a similar approach for re-
translation of numerical slope functionspk into lin-
guistic values of the slopes fromLZ .

Generally, the re-translation procedure may
yield several re-translations of a fuzzy set with al-
most equal similarity values. In this case the possi-
ble linguistic re-translations should be given together
with the corresponding similarity values. Such a pol-
ysemy of re-translation results can be used when the
difference between these similarity values is small.

2. A precisiation functionM may be given implicitly
when the procedure of the calculation of the name of
the fuzzy intervalA is determined. One of the pos-
sible methods of such calculation of names is the fol-
lowing. Some grid{Gj} is defined on the interval

X and the nodes of this grid are used as the possible
ends in the linguistic description of intervalsLESS
THAN Gj , BETWEENGj AND Gk, GREATER
THAN Gj . In this case the knots of the optimal fuzzy
partition may be replaced by the nearest nodes of
this grid and these nodes will determine the names of
the corresponding fuzzy intervals. It is clear that the
nameBETWEENGj AND Gk does not determine
the crisp interval[Gj , Gk], but it describes some set
of fuzzy intervals similar to this crisp interval. In
such an interpretation this method of re-translation
looks like the previous one.

The described procedure of re-translation of
fuzzy intervalsAk of optimal fuzzy partitions was
used in our simulation examples considered below.

3. In the first two methods of re-translation of fuzzy in-
tervals the precisiation function is defined explicitly
or implicitly before application of the re-translation
procedure. In the third method of the re-translation
of fuzzy intervals the precisiation of words used in
linguistic description of data is defined during the
re-translation procedure. In this case the meaning
of words is defined by the fuzzy intervals obtained
in the optimal fuzzy partition and denoted by these
words. For example, the results of data approxima-
tion presented in Fig. 3(c) may be re-translated in the
rule base

IF X IS VERY SMALL THEN Y

IS SLOWLY INCREASING,

IF X IS SMALL THEN Y IS DECREASING,

IF X IS LARGE THEN Y IS SLOWLY

INCREASING,

IF X IS VERY LARGE THEN Y

IS CONSTANT,

where the meaning of wordsVERY SMALL, SMALL,
LARGEand VERY LARGEis determined by fuzzy
intervals obtained as a result of the optimization pro-
cedure.

7. Examples

We illustrate our approach with two examples. The ini-
tial data for these examples were obtained by the pro-
gram generating piece-wise linear functions with random
errors. The generation of such a function is based on the
generation of the following values: the number of func-
tions m. The number of pointsnk for each function
k = 1, . . . ,m, n = n1 + · · · + nm values ofx, sorted
after generation in increasing order, the values ofpk for
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Fig. 3. The last three steps in the linguistic approximation in
Example 2: (a) The width of the last fuzzy interval is
small and it is merged with the neighboring fuzzy inter-
val, (b) The values of the slopes of the approximating
lines on the4-th and5-th intervals equal respectively to
−0.8571 and 0.6604 and have the same name CON-
STANT. Hence, intervals are merged. (c) The values of
the slopes at the last step equal to:1.1939, −3.2649,
2.4231, −0.4542.

each functionyk = pkx+qk, k = 1, . . . ,m, the valueq1,
and the distance valued between neighboring functions
in knots.

After generation of these parameters randomly or de-
terministically, the sequential calculation of the values of
piece-wise linear functionsyi in xi, i = 1, . . . , n, was
performed as follows: calculation ofn1 values of y1

for the first n1 values of xi; calculation of parameter
q2 = yj − p2xj + d, where j = n1; calculation ofn2

values ofy2 for the nextn2 values ofxi; calculation of
parameterq3 = yj − p3xj + d, wherej = n1 + n2, etc.

Further, the generation of the value of the maximal
deviation and the generation of random values of devia-
tions ei of functions valuesyi are performed. Finally,
the values of the functions are calculated asyi = yi + ei,
i = 1, . . . , n.

Appendices 1 and 2 contain two examples of data
generated by this program. The results of the linguistic
description of these data are presented in Figs. 2 and 3,
and they are discussed below. In all simulations we have
used the following parameter values:

1. Initial population size:n1 = 100;

2. Number of elite strings:n2 = 5;

3. Number of generations of new populations:n3 =
10;

4. xl = −10, xr = 10, X = [−10; 10];

5. Maximal mutation value:M = 0.01(xr−xl) = 0.2;

6. Total size of population:N = 1 + n1 + 2n2(n2 −
1)n3 = 501;

7. Minimal width of fuzzy intervals:W = 1;

8. Minimal value of points in the interval:C = 5;

9. Value of parametert in (8): t = 2;

10. The grid size onX in the second re-translation
method: G = W = 1, Gj = integer; the values
of knots were rounded towards the nearest integer;

11. The linguistic variableLZ = {QUICKLY DE-
CREASING, DECREASING, SLOWLY DECREAS-
ING, CONSTANT, SLOWLY INCREASING, IN-
CREASING, QUICKLY INCREASING} was used
for description of the slope values. The granula-
tion of the set of slope valuesZ = [−10, 10]
was defined as the fuzzy0.5-partition of this inter-
val by 6 generalized bell membership functions with
knots {−6,−3,−1, 1, 3, 6}. The first re-translation
method was used. The slope with numerical value
pk obtains the linguistic valueSj of the fuzzy inter-
val to whompk belongs with maximal value. When
the value ofpk is not far from some knot then it is
reasonable to list the names of the neighboring fuzzy
intervals in this knot and the membership values of
pk in these intervals.

Example 1 contains a sufficiently small amount of 20
points listed in Appendix 1. We choosem = 4 of fuzzy
intervals in the initial partition. This example demon-
strates the results of the genetic algorithm and the merg-
ing procedure which merge the fuzzy interval with a small
amount of points (Card (XD(Ak)) ≤ C = 5) with the
neighboring interval (Fig. 2). The linguistic description of
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data was obtained as a result of application of the first two
re-translation procedures described in Section 6, namely

IF X IS LESS THAN 3 THENY

IS SLOWLY INCREASING,

IF X IS GREATER THAN 3 THENY

IS SLOWLY DECREASING.

Example 2 contains 95 points listed in Appendix 2.
Here m = 8 was chosen. Figure 3(a) shows the fuzzy
partition obtained after triple application of the genetic
algorithm with double application of the merging pro-
cedure. This partition contains a small fuzzy interval
(W (A6) < W = 1). It is merged with the neighboring in-
terval. Next, the partition obtained after application of the
genetic algorithm is presented in Fig. 3(b). The last two
approximating lines have a “similar direction” because
they have been provided with the same name CONSTANT
after the re-translation procedure. Figure 3(c) represents
the final results obtained after merging the last two inter-
vals and after application of the genetic algorithm. The
rules obtained as a result of application of the first two
re-translation procedures described in Section 6 are of the
following form:

IF X IS LESS THAN−8 THEN Y

IS SLOWLY INCREASING,

IF X IS BETWEEN−8 AND −2

THEN Y IS DECREASING,

IF X IS BETWEEN−2 AND 3

THEN Y IS SLOWLY INCREASING,

IF X IS GREATER THAN 3 THENY

IS CONSTANT.

Another rule base representation of results obtained
by the third re-translation procedure was discussed in Sec-
tion 6.

8. Conclusions

A novel approach to linguistic description of dependen-
cies in data is discussed. It is based on the following steps:

• construction of an optimal partition of the domain of
the input variable on fuzzy intervals,

• linear approximation of data on these intervals, and

• linguistic interpretation of the obtained intervals and
slopes of the approximating lines.

The resulting linguistic description is presented by a
rule set like “If X is BETWEEN 5 AND 10 thenY is
QUICKLY INCREASING” and “If X is SMALL then

Y is DECREASING”. The rule base is obtained as a so-
lution of an optimization problem. To solve this prob-
lem a genetic algorithm to get optimal partitions and a
procedure for merging improper fuzzy intervals were de-
veloped. Several methods of re-translating the resulting
piece-wise linear approximation into a rule base are con-
sidered. Some examples are given for illustration.

To solve the optimization problem, we applied a ge-
netic algorithm due to the following advantage: it is a uni-
versal method to search for global solutions in various op-
timization problems, it is sufficiently easy to implement,
it can be easily adopted to changing criteria, penalties and
constraints, it enables at least good solutions.

Our approach can be used for the calculation of gran-
ular derivatives of functional and statistical dependencies.
It can be applied to the linguistic description of trends in
time series, systems monitoring, data mining, etc. It en-
ables the construction of knowledge bases with qualitative
description of dependencies between variables of techno-
logical processes, and it can be applied to qualitative rea-
soning about systems.
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Appendices

A. Data for Example 1 (n=20)

x y x y

−10.0000 −7.7509 1.7414 9.3872
−6.8267 −7.4609 2.2874 10.0000
−6.1241 −9.0711 3.8801 −1.5057
−6.0020 0.1509 4.2416 1.4006
−5.7255 0.2243 4.2981 −2.8755
−2.7265 3.6550 4.7007 2.1011
−1.6841 0.6899 7.6622 −6.6539
−0.1373 3.6132 8.1907 −8.2029

0.3609 −0.2915 9.4199 −3.6266
0.7517 9.7924 10.0000 −10.0000



Towards a linguistic description of dependencies in data 401

B. Data for Example 2 (n=95)

x y x y x y x y

−9.4471 −38.5425 −3.4288 −55.4505 0.2733 −59.1599 5.2626 −37.0734
−9.0527 −40.6865 −3.3944 −51.2637 0.3600 −52.7187 5.5896 −38.2003
−8.8474 −33.1958 −2.8965 −54.9816 0.4620 −50.5749 5.7167 −32.3541
−8.8222 −36.0485 −2.8809 −53.5095 0.5419 −54.3786 5.7358 −33.5486
−8.7887 −34.9089 −2.8430 −59.4271 1.4138 −45.9641 5.8350 −32.1922
−8.5806 −37.2669 −2.5869 −57.6790 1.4996 −51.5577 6.3068 −37.4321
−8.2679 −32.4419 −2.5319 −57.6491 1.5529 −52.1622 6.5710 −38.7950
−8.2600 −37.5136 −2.1643 −64.9882 1.6095 −52.5930 6.6178 −34.7479
−7.4741 −31.0294 −2.1484 −61.9582 2.5358 −41.5024 7.1640 −42.3533
−7.4346 −28.8831 −2.0730 −61.2240 2.8413 −37.2804 7.2260 −36.3245
−7.4044 −35.6157 −1.7430 −66.7916 2.9571 −37.2938 7.3733 −44.3554
−7.3604 −33.6554 −1.6694 −72.8488 3.1874 −42.1781 7.4070 −42.0175
−6.7402 −26.6087 −1.6540 −65.0170 3.7524 −33.6750 7.6902 −40.3082
−6.6560 −23.7808 −1.3881 −64.9923 3.9391 −37.7838 7.8643 −38.8957
−6.4721 −28.5493 −1.3631 −65.5904 4.1727 −27.6648 8.3608 −36.2227
−6.2056 −25.8216 −1.2069 −64.9889 4.2134 −31.4800 8.4450 −43.2889
−5.4412 −33.0609 −1.0831 −61.5660 4.2591 −35.0109 8.6460 −40.0743
−4.7016 −39.7065 −1.0197 −67.0000 4.2843 −32.5297 8.8499 −37.5457
−4.5528 −46.2467 −0.7675 −66.4540 4.4596 −29.0383 9.5023 −33.2119
−4.3631 −41.1609 −0.3966 −61.9568 4.5934 −33.5788 9.5600 −39.1880
−4.2147 −49.4907 −0.2415 −62.3230 4.6729 −33.7012 9.5699 −35.8909
−3.9760 −49.1813 −0.1815 −60.5924 4.8522 −32.2902 9.7543 −42.2540
−3.7973 −45.6884 0.0545 −54.2170 5.1393 −37.0249 9.9597 −34.1132
−3.7969 −44.6787 0.1574 −52.9893 5.2392 −29.6977


