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Continuous multidimensional systems described by partial differential equations can be represented by discrete systems in
a number of ways. However, the relations between the various forms of continuous, semi-continuous, and discrete mul-
tidimensional systems do not fit into an established framework like in the case of one-dimensional systems. This paper
contributes to the development of such a framework in the case of multidimensional systems. First, different forms of partial
differential equations of physics-based systems are presented. Secondly, it is shown how the different forms of continuous
multidimensional systems lead to certain discrete models in current use (finite-difference models, multidimensional wave
digital filters, transfer function models). The links between these discrete models are established on the basis of the respec-
tive continuous descriptions. The presentation is based on three examples of physical systems (heat flow, transmission of
electrical signals, acoustic wave propagation).
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1. Introduction

This paper deals with a fundamental problem in the theory
of linear systems: Consider the description of a continu-
ous system given in terms of the basic laws of science. A
discrete system approximating the continuous system in
a certain sense is sought. This problem arises typically
when emulating the behaviour of a real-world system on
a digital computer.

For one-dimensional systems, this problem has been
extensively studied in various fields, such as control the-
ory, signal processing, and system simulation. Especially
for linear and time-invariant systems, a number of differ-
ent models have been developed. They can be grouped
into ordinary differential equation models, transfer func-
tion models and graphical descriptions:

• Ordinary differential equations

Ordinary differential equation models relate the in-
put quantity and a number of their derivatives to the
derivatives of the output quantity. The scalar differ-
ential equation of such an input-output model can be
converted to a first-order equation for a vector of in-
ternal variables, the so-called state-space description.

• Transfer functions

The application of suitable functional transforma-
tions for the independent variable (often the time
variable) leads to a transfer function description. It

is much easier to use than differential equations,
since all derivatives are turned into algebraic op-
erations. Widely used functional transformations
are the Laplace transformation for initial-value prob-
lems and the Fourier transformation for frequency re-
sponse characterizations.

• Graphical descriptions

Graphical descriptions are a valuable tool for system
modelling, e.g. electrical or duct flow networks or
bond graphs. Other graphical descriptions are de-
rived from differential equation models or transfer
functions such as signal flow graphs or pole-zero di-
agrams.

The popularity of all the three families of system
models can be attributed to the following reasons:

• These models can be generally applied, since they
are independent of the physical nature of the system.

• The links between these models are well established.
An experienced user can gain considerable insight
into the system behaviour by switching between
these alternative descriptions.

• These models for continuous systems are suitable for
the derivation of the corresponding discrete models.
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The discretization of continuous systems is of spe-
cial interest in this context. Methods of the conver-
sion of a continuous system into a discrete one include
time-domain methods (e.g. impulse-invariant transforma-
tion, numerical integration) or frequency-domain meth-
ods (e.g.s-to-z plane mappings). In many cases the rela-
tions between time-domain and frequency-domain meth-
ods are also established (e.g. trapezoidal rule and bilin-
ear transformation). For a survey of these methods see,
e.g. (Kowalczuk, 1993). Furthermore, there also exist dis-
cretization methods which preserve not only the input-
output behaviour of a system, but also internal proper-
ties such as passivity (wave digital filters, cf. (Fettweis,
1986)).

For multidimensional (MD) systems the situation has
not reached this state of maturity yet. While partial differ-
ential equations (PDEs) are a widely applied mathemati-
cal model for continuous MD systems, transfer function
models or graphical descriptions are not commonly used.
An example of a graphical description of continuous MD
systems are the MD Kirchhoff circuits presented in (Fet-
tweis and Nitsche, 1991). Transfer functions models for
MD systems are described in (Rabenstein, 1998).

Furthermore, there are no general continuous-to-
discrete transformations for MD systems. Discretization
methods for PDEs from numerical mathematics do not
attempt at modelling a discrete system. They rather set
up a system of algebraic equations, which can be solved
for the solution of the PDE. Other methods are by its
nature mixed continuous-discrete (e.g. a linear repetitive
process model (Rogerset al., 1997)) or fully discrete (e.g.
the Roesser model (Roesser, 1975)). The existence and
uniqueness of solutions of partial difference equations,
also with respect to boundary conditions, were discussed,
e.g., in (Gregor, 1998; Veit, 1996).

The existing framework for the design of discrete
MD systems from continuous models is the MD wave
digital principle (Fettweis, 1994), although the treatment
of initial and boundary conditions is still a subject of re-
search (Fettweis, 1999). Another approach, i.e. the func-
tional transformation method, considers initial and bound-
ary conditions, but it requires the knowledge of eigenfunc-
tions and eigenvalues of the problem (Rabenstein, 1998).

Unfortunately, there is no established framework
which links continuous, semi-discrete, and fully discrete
models of various kinds and which would allow us to de-
rive one from another. This paper attempts at making a
contribution to such a framework. It shows how certain
discrete MD models in current use can be derived from a
PDE description of the underlying continuous system.

We consider MD systems with a continuous-time,
continuous-space description derived from the first prin-
ciples of physics. The restriction to time and space as in-

dependent variables has been made for the clarity of our
presentation and does not limit the general applicability.
Three examples of such systems are introduced in Sec-
tion 2. Section 3 presents a unified description of mod-
els for different physical phenomena. Section 4 shows
that the widespread scalar PDE respresentation can be ob-
tained from this unified description by matrix operations.
The links between these various forms of continuous PDE
models and the corresponding discrete models are estab-
lished in Section 5.

2. Physical Models

Throughout the paper, we use three different physical phe-
nomena as examples for the general form of a PDE intro-
duced below. These examples are taken from the fields of
heat transfer, electromagnetics and acoustics. The com-
mon analysis of these problems consists in setting up re-
lations between a scalar potential quantity (temperature,
voltage, pressure) and a vector valued flux quantity (heat
flux, current, velocity). These relations involve an en-
ergy balance and a potential-flux relationship. They are
given below for each of the three examples, using the fol-
lowing notation: time coordinatet, scalar or vector val-
ued space coordinatex or x, potential quantityu(x, t),
scalar or vector valued flux quantityi(x, t) or i(x, t).
Time and space derivatives are denoted byDt = ∂/∂t,
Dx = ∂/∂x, grad, and div.

Example 1. The simplest description of the heat flow
through a wall is obtained by considering only compo-
nents in one spatial direction (x). The conservation of en-
ergy requires a balance between the temporal changes in
the temperatureu(x, t) and the scalar heat fluxi(x, t):

cDtu(x, t) + Dxi(x, t) = 0, (1)

with the heat capacityc. The heat flow in solids is gov-
erned by Fourier’s law:

Dxu(x, t) + ri(x, t) = 0, (2)

where r is the inverse of thermal conductivity.

Example 2. A standard model for electrical transmission
lines is written in terms of the currenti(x, t) and the volt-
ageu(x, t). For long and thin lines, the space variablex
is scalar. The electrical parameters are given by the series
inductancel, shunt capacitancec, series resistancer, and
shunt conductanceg. For an infinitesimal section of the
transmission line, the voltage drops sum up to zero:

lDti(x, t) + ri(x, t) + Dxu(x, t) = 0, (3)

and the sum of all currents is zero:

cDtu(x, t) + gu(x, t) + Dxi(x, t) = 0. (4)



Towards a framework for continuous and discrete multidimensional systems 75

Example 3.With reasonable simplifications, the propaga-
tion of sound waves in the air is governed by the equation
of motion:

ρ0
∂

∂t
i(x, t) + gradu(x, t) = 0, (5)

and the equation of continuity:

1
ρ0 c2

∂

∂t
u(x, t) + div i(x, t) = 0 (6)

for the sound pressureu and the particle velocityi. Here
x is the vector of space coordinates (x, y, z), ρ0 is the
static density of the air, andc is the sound speed.

3. Vector Partial Differential Equations

The foregoing examples show that physical phenomena
involving potential and flux quantitites are described by a
pair of coupled PDEs. In this section, we combine these
PDEs to different forms of one single vector equation, the
so-called vector PDE. The first form uses the potential and
the flux quantities as unknowns and is called the potential-
flux model. The second form applies a matrix operation
to normalize the unknowns into a uniform physical dimen-
sion. The result is a normalized vector model. In Section 5
we will see that these different forms of a vector PDE give
rise to different discretization approaches.

3.1. Potential-Flux Models

Combining a pair of coupled PDEs into a vector PDE
leads to the general matrix equation

[CDt + L] y(x, t) = 0. (7)

C is a diagonal mass or capacitance matrix andL is
a matrix operator which contains loss terms and spatial
derivative operators. The vector of dependent variables
y(x, t) contains potential and flux quantities. A number
of technically important PDEs have an operatorL of the
form

L = A + B∇, (8)

whereA is diagonal,

B =

[
0 1
1 0

]
, B2 = I, y(x, t) =

[
i(x, t)
u(x, t)

]
. (9)

The spatial derivative operator∇ represents a partial
derivative with respect to one space coordinate, a gradient
or a divergence operation, depending on the number of
spatial dimensions and on whether it is applied to the po-
tential or the flux quantity. All matrix operations for the
differential operators have to be performed according to
the rules of vector analysis for the operator∇.

The matricesA, C, and L for Examples 1–3 are
listed below. The equivalence of the resulting vector PDE
with the corresponding physical models is verified by in-
serting (10)–(12) into (7):

Example 1(continued).

A =

[
r 0
0 0

]
, C =

[
0 0
0 c

]
,

L =

[
r Dx

Dx 0

]
, y(x, t) =

[
i(x, t)
u(x, t)

]
.

(10)

Example 2(continued).

A =

[
r 0
0 g

]
, C =

[
l 0
0 c

]
,

L =

[
r Dx

Dx g

]
, y(x, t) =

[
i(x, t)
u(x, t)

]
.

(11)

Example 3(continued).

A = 0, C =

 ρ0 0

0
1

ρ0 c2

 ,

L =

[
0 grad

div 0

]
, y(x, t) =

[
i(x, t)
u(x, t)

]
.

(12)

3.2. Normalized Vector Models

The vector of unknownsy in (7) directly represents the
variables of the physical model. However, although phys-
ically meaningful, the simultaneous treatment of two de-
pendent variables of different physical natures may be
more complex than necessary for model analysis, dis-
cretization and algorithm design. To avoid the parallel
treatment of flux and potential quantities, these variables
can be normalized to the same physical dimension or to a
dimensionless representation.

Such a normalization is described by a diagonal ma-
trix N with suitable reference quantities on the main di-
agonal. The result is a new vectoryn of dependent vari-
ables:

yn(x, t) = N−1y(x, t), (13)

where the elements ofyn have the same dimension or no
dimension at all. Applying the normalization matrixN
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also to the differential operatorCDt + L in (7) leads to
the normalized representation

[CnDt + Ln] yn(x, t) = 0 (14)

with Cn = NCN and similar for the other matrices. By
a suitable choice of the normalizing constants inN it is
possible to obtain a symmetric representation of the ma-
trix of time and space derivatives[CnDt +Bn∇] in (14).

Example 1 (continued). To normalize the dimension of
y(x, t) to unity, we choose a reference heat fluxi0 and a
reference temperatureu0, and obtain

N =

[
i0 0
0 u0

]
, yn(x, t) =

[
i(x, t)/i0

u(x, t)/u0

]
. (15)

After division by u0i0, the following normalized vector
model is derived:[

r/r0 Dx

Dx r0cDt

] [
i(x, t)/i0

u(x, t)/u0

]
= 0 (16)

with r0 = u0/i0.

Example 2 (continued). To normalize the vectory(x, t)
such that all of its elements are currents, we choose a ref-
erence resistancer0 and obtain

N =

[
1 0
0 r0

]
, yn(x, t) =

[
i(x, t)

u(x, t)/r0

]
, (17)

Cn =

[
l 0
0 r2

0c

]
, Ln =

[
r r0Dx

r0Dx r2
0g

]
. (18)

For the special choicer2
0 = l/c we obtain a symmetric

representation

[CnDt + Bn∇] =

[
lDt r0Dx

r0Dx lDt

]
. (19)

Example 3(continued). We apply a normalization similar
to that of the previous example also to the potential-flux
model of the acoustic wave equation in (12):

N =

[
1 0
0 r0

]
, yn(x, t) =

[
i(x, t)

u(x, t)/r0

]
, (20)

Cn =

 ρ0 0

0
r2
0

ρ0 c2

 , Ln =

[
0 r0 grad

r0 div 0

]
. (21)

Again, Cn can be simplified by a special choice of the
normalizing constant:

r0 =
√

3 ρ0c, Cn =

[
ρ0 0
0 3ρ0

]
. (22)

Now the normalized vector model for the acoustic wave
equation has the form[

ρ0Dt r0 grad

r0 div 3ρ0Dt

] [
i(x, t)

u(x, t)/r0

]
= 0. (23)

The symmetric form of this vector PDE is even more obvi-
ous when the operators for the gradient and the divergence
are broken down into their components:

ρ0Dt 0 0 r0Dx

0 ρ0Dt 0 r0Dy

0 0 ρ0Dt r0Dz

r0Dx r0Dy r0Dz 3ρ0Dt




ix(x, t)
iy(x, t)
iz(x, t)
u(x, t)

r0

 = 0. (24)

4. Scalar Partial Differential Equations

The vector PDEs considered above reflect the physical na-
ture of the relevant continuous MD system, since they
contain both potential and flux quantities as dependent
variables. If only an input-output model is required, one of
the two dependent variables can be eliminated from (7). It
is instructive to perform the elimination of either the flux
or potential simultaneously. Expressing this elimination
process as matrix diagonalization will provide insight into
the nature of the differential operatorL.

The key to the diagonalization of (7) is the definition
of another differential operator̃L, which is closely asso-
ciated withL from (8). The most general definition of̃L
is given in terms of the Hermitian matricesAH and BH :

L̃ = AH − (B∇)H . (25)

We make use of this general definition when the
properties ofL̃ are further explored in Section 5.2. For
the real and symmetric matrices in the examples below,L̃
has the form

L̃ = A−B∇. (26)

We show now that the operator̃L plays the key role in a
very general description of the elimination process men-
tioned above. To this end, we attempt to diagonalize the
differential operator[CDt + L] in (7) by left multiplica-
tion with B[CDt + L̃]B.

Some matrix algebra gives

B[CDt + L̃]B[CDt + L] = M2 − I∇2, (27)

where I is the identity matrix and

M = B[CDt + A]. (28)
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If the matricesA, B and C fulfil the properties given in
Section 3.1 (A and C diagonal,B = I2) then M2 is
diagonal. Thus[

M2 − I∇2
]
y(x, t) = 0 (29)

is a set of two decoupled PDEs for the flux and for the
potential quantity contained iny(x, t). This process is
shown in detail for the examples considered above.

Example 1 (continued). ForA and C from (10), L̃
results in

L̃ =

[
r −Dx

−Dx 0

]
, (30)

and [CDt + L̃] from (27):

[CDt + L̃] =

[
r −Dx

−Dx c Dt

]
. (31)

The matrix M from (28) and its square are respectively
given by

M =

[
0 c Dt

r 0

]
, M2 = I rc Dt . (32)

Obviously, M2 is a diagonal matrix. Then from (27) we
obtain

M2 − I∇2 = I [rcDt −Dxx] . (33)

Inserting (33) into (29) results in a pair of decoupled equa-
tions for the heat fluxi(x, t) and the temperatureu(x, t),
respectively,

rcDti(x, t)−Dxxi(x, t) = 0, (34)

rcDtu(x, t)−Dxxu(x, t) = 0. (35)

Equation (35) is known as theheat flow equation.

Example 2 (continued). ForL̃ given by the matrices
from (11),

L̃ =

[
r −Dx

−Dx g

]
, (36)

from (27) it follows that

B[CDt + L̃]B[CDt + L]

= I
[
lcDtt + (rc + gl) Dt + rg −Dxx

]
. (37)

Thus (29) results in the well-knowntelegraph equationfor
either the currenti(x, t) or the voltageu(x, t):

lcDtt i + (rc + gl) Dt i + rg i−Dxx i = 0, (38)

lcDtt u + (rc + gl) Dt u + rg u−Dxx u = 0. (39)

Example 3 (continued). The operator̃L associated with
L from (12) is given byL̃ = −B∇. From (27) it follows
that

B[CDt + L̃]B[CDt + L] = I
[

1
c2

Dtt −∇2

]
. (40)

Thus (29) is reduced to two separate PDEs for the velocity
i(x, t) and the pressureu(x, t):

1
c2

Dtt i(x, t)− grad divi(x, t) = 0, (41)

1
c2

Dtt u(x, t)− div gradu(x, t) = 0. (42)

Equation (42) is theacoustic wave equationfor the sound
pressureu.

5. Discrete Multidimensional Models

So far, we have considered representations of the continu-
ous physical models of Section 2. They were vector PDEs
in the potential-flux or normalized form, and the more fa-
miliar scalar PDEs. Each of these representations is the
starting point for a different discretization method in cur-
rent use.

The most widespread approach is the finite-
difference discretization, which is suitable for the scalar
PDE model from Section 4. Another discretization
method based on transfer function models for MD systems
(Rabenstein and Trautmann, 1999) is obtained for the ma-
trix operatorL̃ introduced in (25) for the diagonalization
of the vector model. Finally, the normalized vector mod-
els lead directly to an MD network model used in the MD
wave digital principle (Fettweis, 1994). The connections
of the different matrix operator representations with these
discretization schemes are presented in this section.

5.1. Finite-Difference Models

The derivation of discrete finite-difference models starts
from PDEs in their simplest form, such as (34), (35), or
(38), (39), or (41), (42). The discrete models are de-
rived through the replacement of the differential operators
with respect to time and space by suitable difference op-
erators. The choice of these operators, their application,
and the properties and problems of the resulting finite-
difference models are described in standard texts (Tveito
and Winther, 1998). As an example, we consider here only
the acoustic wave equation from Example 3.

Example 3 (continued). Writing the acoustic wave equa-
tion from (42) in Cartesian coordinates gives (arguments
x and t are omitted):

1
c2

Dtt u−
(
Dxx u + Dyy u + Dzz u

)
= 0. (43)
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The sound pressureu(x, t) is represented at the equidis-
tant pointst = kT in time and at the spatial gridx = lh,
y = mh, z = nh. T and h are the temporal and spatial
step sizes, andk and l, m, n are the discrete time and
space coordinates, respectively.

The simplest approximation for the second-order
time derivative on this grid is the three-point difference
operator

Dtt u≈ 1
T 2

[
u(lh, mh, nh, k(T − 1))

− 2u(lh, mh, nh, kT )

+ u(lh, mh, nh, k(T + 1))
]
. (44)

With a similar approximation for the spatial deriva-
tives, we arrive at a fully discrete approximation of the
acoustic wave equation. Again, we note only its simplest
form, which is achieved for a special relation between the
temporal and spatial step sizesh =

√
3 cT . Using the

abbreviated notationu(l,m, n, k) = u(lh, mh, nh, kT ),
we obtain

u(l,m, n, k + 1) = −u(l,m, n, k − 1)

+
1
3

[
u(l + 1,m, n, k) + u(l − 1,m, n, k)

+ u(l, m + 1, n, k) + u(l,m− 1, n, k)

+ u(l, m, n + 1, k) + u(l, m, n− 1, k)
]
. (45)

A simpler notation results from usingu(k) =
u(l,m, n, k):

u(k + 1) =
1
3

∑
ν

uν(k)− u(k − 1). (46)

Here uν(k) denotes the six-neighbour points (black) of
the centre point (grey) shown in Fig. 1. The evaluation of
this model computesu(l,m, n, k+1) for all points l, m,
n of the spatial grid and all points in timek.

A successfull application of finite-difference meth-
ods requires considering of the consistency of the discrete
approximations and a careful choice of the step sizes in
time and space for the stability of the discrete time-space
algorithm in order to achieve convergence to the solution
of the continuous model (Lax-Richtmyer theory).

5.2. Transfer Function Models

Transfer function models are standard tools for one-
dimensional systems. They allow a system description
in the frequency domain and provide a sound basis for
time discretization. The extension of this idea to MD sys-
tems requires a suitable functional transformation for each

1 l

  

l+ 
m -1

m

1
n- 1

n

n+1

m+1

l-

Fig. 1. 3-D finite difference model for the acoustic wave equa-
tion: centre point (grey) and neighbour points (black).

independent variable, e.g. time and space. A careful de-
sign of the transformation for the space variable allows
us to treat boundary-value problems in the same way as
the Laplace transformation treats the initial-value prob-
lem. The application to PDE models such as (7) requires
a two-step procedure. First the Laplace transformation
L{y(x, t)} = Y(x, s) converts (7) into the boundary-
value problem

[sC + L]Y(x, s) = Cyi(x), (47)

where yi(x) is the initial value ofy(x, t) for t = 0.
Second, the spatial transformation converts (47) into an
algebraic equation from which the transfer function model
is derived. This procedure is described in (Rabenstein
and Trautmann, 1999) for general boundary conditions.
A short account regarding homogeneous boundary condi-
tions is given here. Since the matrix operatorsL and L̃
play a key role, their properties are briefly investigated.

5.2.1. Properties of the Matrix Operators L and L̃

At first, we consider the definitions ofL and L̃ accord-
ing to (8), and (25) and two arbitrary vectorsy1(x) and
y2(x) compatible withL and L̃. By applying of stan-
dard rules for differentiation, it is shown thatL and L̃
satisfy the Lagrange identity

yH
1 [Ly2]− [L̃y1]Hy2 = ∇[yH

1 By2]. (48)

Next, we introduce the scalar product〈
y1(x),y2(x)

〉
=

∫
V

yH
1 (x)y2(x) dV (49)

by integration over the volumeV . From the Lagrange
identity (48) and the application of the Gauss integral the-
orem for the right-hand side Green’s formula follows:〈

y1,Ly2

〉
−

〈
L̃y1,y2

〉
=

∫
∂V

y1(x)By2(x) dS. (50)
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It states that the difference of the two scalar products on
the left-hand side can be expressed by a surface integra-
tion over the boundary∂V of the volume V with the
surface elementsdS. Operator pairs with this property
are called adjoint operators (Churchill, 1972; Courant and
Hilbert, 1968). Thus̃L is the the adjoint operator toL.

The surface integral in (50) is expressed by the
boundary conditions of the PDE (7) as described in
(Rabenstein and Trautmann, 1999). For homogenous
boundary conditions, the property of the adjoint operator
takes the familiar form〈

y1,Ly2

〉
=

〈
L̃y1,y2

〉
. (51)

Next, we investigate the properties of the eigenfunctions
of these operators and consider the eigenvalue problems
for L and L̃:

LK(x, β) = βCK(x, β), (52)[
L̃K̃(x, β̃)

]H

= β̃K̃H(x, β̃)C. (53)

Here β and β̃ are the eigenvalues ofL and L̃, respec-
tively, and K(x, β) and K̃(x, β) are the correspond-
ing eigenfunctions. Since the eigenvaluesβ and β̃
are closely related, we writẽK(x, β) in terms of the
eigenvaluesβ of K(x, β). These eigenvalue problems
are a generalization of the Sturm-Liouville-type problems
(Churchill, 1972; Körner, 1988). Their eigenvalues and
eigenfunctions have the following properties:

• The eigenvaluesβ and β̃ are discrete. They are de-
noted byβµ and β̃µ, respectively, with integerµ.

• βµ and β̃µ are related by complex conjugation
β̃µ = β∗µ. Since each eigenvaluẽβµ has its con-
jugate counterpart, we can write the transformation
kernel of the forward transformation in terms of the
eigenvaluesβµ.

• K(x, βµ) and K̃(x, βµ) are biorthogonal functions
with respect to the weighting matrixC (Nµ is a nor-
malization factor andδµν is the Kronecker symbol):

〈
K̃(x, βµ),CK(x, etaν)

〉
= Nµδµν . (54)

5.2.2. Definition of the Spatial Transformation

The spatial transformation is given by a scalar product of
Y(x, s) with the eigenfunctions̃K(x, βµ) of L̃ with re-
spect to the weighting matrixC:

T {Y(x, s)} = Ȳ (βµ, s) =
〈
K̃(x, βµ),CY(x, s)

〉
. (55)

The application ofT to (47) results in

sȲ (βµ, s) +
〈
K̃(x, βµ),LY(x, s)

〉
= ȳi(βµ). (56)

To express
〈
K̃(x, βµ),LY(x, s)

〉
by Ȳ (βµ, s), we use

Green’s formula with homogeneous boundary condi-
tions (51) fory1 = K̃ and y2 = Y, the eigenvalue prob-
lem (53), and the definition of the scalar product (49), and
obtain (some arguments are omitted);〈
K̃,LY

〉
=

〈
L̃K̃,Y

〉
= β̃µ

〈
K̃,CY

〉
= β̃µȲ (βµ, s).

(57)

The result 〈
K̃,LY

〉
= β̃µȲ (βµ, s) (58)

formally agrees with the differentiation theorem of the
Laplace transformation, since the differentiation operator
L on the left-hand side is expressed by the transform of
Y(x). Thus the relation (58) is the key property of the
transformationT , since it allows the replacement of the
spatial differentiation in (47) by an algebraic expression.

The inverse spatial transformation is given by

Y(x, s) = T −1
{
Ȳ (βµ, s)

}
=

∞∑
µ=−∞

1
Nµ

Ȳ (βµ, s)K(x, βµ). (59)

Since we have discrete eigenvaluesβµ, we do not have to
integrate over the spatial frequency domain, but we only
have to sum up the discrete spatial frequencies.Nµ can
be evaluated by (54).

5.2.3. Transfer Function

The application of the Laplace transformation and the spa-
tial transformation (55) with the spatial differentiation the-
orem (58) on the initial-boundary value problem (7) leads
to the algebraic expresssion

sȲ (βµ, s) + β̃µȲ (β, s) = ȳi(βµ). (60)

Solving (60) for Ȳ (βµ, s) results in the transfer function
model

Ȳ (βµ, s) = Ḡ(βµ, s) ȳi(βµ) (61)

with the multidimensional transfer function

Ḡ(βµ, s) =
1

s + β̃µ

. (62)

It can be seen in (62) that we obtain a scalar transfer func-
tion, Ḡ(βµ, s), of two independent frequency variables,
s and βµ. The corresponding vector PDE (7) depends
on two independent coordinates, i.e. time and space. The
obvious reduction from two or more outputs iny(x, t)
(e.g. a potential and a flux quantity) in the vector PDE (7)
to only one scalar output̄Y (β̃µ, s) in the transfer func-
tion (61) can be explained by the fact that the outputs in
y(x, t) depend on each other. They are connected by the
relation described in the vector PDE (7). This relation
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is used for the construction of the spatial transformation.
The information about the dependencies between the out-
puts can be found in the vectors of the transformation ker-
nels, K̃ and K.

The matrix operator̃L, initially introduced for the di-
agonalization of the vector PDE model, now serves as the
key element for the development of an MD transfer func-
tion model. For the treatment of inhomogeneous bound-
ary conditions, see, e.g. (Rabenstein, 1998; Rabenstein
and Trautmann, 1999).

5.2.4. Discretization

The continuous solution (61) of the initial-boundary value
problem can be discretized by standard discretization
schemes. This process is shown here for the impulse in-
variant transformation for the temporal frequency domain.
With t = kT , containing the discretization intervalT
and the integer variablek, the impulse invariant transfor-
mation of (61), (62) results with the discrete temporal fre-
quency variablez in

Ȳ d(βµ, z) = ȳi(βµ)Ḡd(βµ, z) (63)

with
Ḡd(βµ, z) =

z

z − e−β̃µT
. (64)

For the spatial frequency domain there is no need to ap-
ply any discretization scheme since the spatial frequency
variableβµ is already discrete withµ ∈ Z.

To obtain a solution in the time and space domain,
we have to apply the corresponding inverse transforma-
tions. They include the inversez-transformation for the
temporal frequency domain and the inverse spatial trans-
formation (59) for the spatial frequency domain. The
application of the shifting theorem for the inversez-
transformation results in a recursive system of first order
for each spatial frequencyβµ:

ȳd(βµ, k) = ȳi(βµ) + e−β̃µT ȳd(βµ, k − 1) (65)

This solution in the discrete time and discrete spatial fre-
quency domain can be transformed back into the space do-
main by applying the inverse spatial transformation (59)
on (65) and evaluating the sum at arbitrary spatial points
xa ∈ V . It results in parallel recursive systems of the first
order, weighted at the outputs with the normalized trans-
formation kernels 1

Nµ
K(xa, βµ). These weighted outputs

are then summed up to the output vector at the given spa-
tial point xa and the time stepst = kT . The infinite
sum given in (59), for the continuous-time variable must
be truncated in the discrete-time domain to a finite length
N to avoid aliasing.

The resulting system can be implemented directly us-
ing a computer. The output of this discretized model at the

sampled time steps is exactly the same as the output of the
continuous model described by the PDE and initial and
boundary conditions. The only assumption that must be
made is that the inputs of the continuous model can be
modelled by weighted impulses due to the impulse invari-
ant transformation.

Example 2(continued). The transformation kernels of the
forward and inverse spatial transformation with homoge-
neous boundary conditions and the lengthd = x1 − x0

of the electrical transmission line result in

K̃(x, βµ) =

 (r − β̃µl)d
sin(µπx/d)

µπ
cos(µπx/d)

 K̃2(x0), (66)

K(x, βµ) =

−(r − βµl)d
sin(µπx/d)

µπ
cos(µπx/d)

K2(x0). (67)

The discrete values of the spatial frequency variableβµ

are solutions of the quadratic equation

(r − βµl)(g − βµc) +
(µπ

d

)2

= 0. (68)

The norm factorNµ follows from (54) with K̃2(x0) =
K2(x0) = 1 as

Nµ =
2βµlc− rc− gl

2βµc− 2g
d. (69)

5.3. MD Wave Digital Models

The third familiy of discrete MD models considered here
are MD wave digital models. They follow from the nor-
malized vector models introduced in Section 3.2. We dis-
cuss this approach for the acoustic wave equation of Ex-
ample 3.

Performing the normalization process according
to (20)–(24) for an inhomogeneous model (not considered
in (5)–(6)) results in

Znin(x, t) = en(x, t), (70)

whereZn = CnDt + Ln is the matrix operator in (24)
and in(x, t) = yn(x, t) is the vector of unkowns with all
variables normalized to the dimension of flux quantities.
It is a four-dimensional vector containing the three spatial
components ofi(x, t) as well as the normalized potential
u(x, t)/r0 from (20). Hereen(x, t) is a vector of source
functions with all variables normalized to the dimension
of potentials. Note thaten(x, t) = 0 for the homoge-
neous case in (24).
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The normalized representation of the MD system
in (70) can be converted into a discrete-time discrete-
space model by two related approaches. The first one is
the classical MD wave digital approach, which is based on
the theory of wave digital filters for one-dimensional sys-
tems (Fettweis, 1986). It was extended to the multidimen-
sional case in (Fettweis, 1994;1999; Fettweis and Nitsche,
1991) and related publications. A detailed description
of the modelling and discretization process according to
the wave digital principle requires in-depth knowledge of
classical analog circuit theory and its formal extension to
MD systems.

The second approach is closely related to the wave
digital principle. However, in contrast to the literature
cited above, only basic knowledge of numerical mathe-
matics, linear algebra, and multidimensional system the-
ory is required. This approach converts the PDE (70)
directly into a state-space description of the resulting
discrete-time discrete-space model.

5.3.1. Classical MD Wave Digital Approach

The classical approach according to the MD wave dig-
ital principle considers (70) as a matrix formulation of
Ohm’s law. It states that potential and flux quantities are
linked by an impedance matrixZn. Taking the symmet-
ric form of Zn into account according to (24), the matrix
equation (70) formally agrees with the mesh current de-
scription of an MD network. Thus the normalized PDE
model (14) can be mapped onto an MD network which
can serve as the starting point of a discrete model accord-
ing to the MD wave digital principle. This process ensures
that the physical structure of the problem is preserved in
the discrete model.

As an illustration, the MD network model for the
acoustic wave equation according to (24) is shown in
Fig. 2. The Laplace transformation with respect to time

Fig. 2. Network description of the acoustic wave equation.

and space variables represents the differentiation opera-
tors Dn by the frequency variablessn, n = x, y, z, t.
Boundary conditions are neglected at this point. The first
three rows in (24) correspond to the three meshes on
the left-hand side in Fig. 2. They are connected by the
mesh on the right-hand side, which represents the con-
tinuity equation. In, n = x, y, z and U/r0 are the
complex amplitudes of the three spatial components of
in, n = x, y, z and of u/r0 in (24), respectively.

The transition from the complex potential and flux
quantitiesIn, n = x, y, z, and U to the wave quantities
An and Bn according to[

An

Bn

]
=

[
1 R0

1 −R0

] [
U

In

]
(71)

introduces a causal relationship between incident and re-
flected wavesAn and Bn. R0 is the so-called port re-
sistance. After some changes in the network structure, a
discrete-time, discrete-space model is introduced by ans-
to-z mapping according to the bilinear transformation. A
suitable choice of the port resistanceR0 adjusts the pa-
rameters of the bilinear transformation to the required spa-
tial and temporal step sizes. The resulting structure of the
discrete system is shown in Fig. 3.

5.3.2. MD State-Space Approach

The derivation of the discrete system according to the
state-space approach starts again from the normalized
model (70). After a series of intermediate steps, the state-
space representation of a discrete-time and discrete-space
algorithm is obtained. These steps are:

• Separation into spatial components

The PDE description (70) is separated into three dif-
ferent spatial components. Each component contains
derivatives with respect to time and only one of the
spatial directionsx, y or z.

• Numerical solution for each component

A numerical integration is carried out for each of the
spatial components. The discretization is performed
by the trapezoidal rule in two dimensions (one time
dimension and one space dimension).

• Combination of the spatial components

The discrete-time, discrete-space approximations for
each of the three spatial components are combined
into a full four-dimensional representation (one time
dimension and three space dimensions) of the PDE
description (70).

• State-space formulation

A suitable choice of internal states allows us to for-
mulate the discrete model in the state-space context.
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Fig. 3. Multidimensional wave digital model for the acoustic
wave equation. Parameters: spatial shiftshx, hx, hx,
time delay T , discrete wave quantitiesan, bn, state
variables xn, port resistanceR0. See (Schetelig and
Rabenstein, 1998) for details.

The following subsections cover these steps in detail.

Separation into spatial components. An inspection
of (24) shows that this PDE for three spatial components
can be reduced to three PDEs with only one spatial com-
ponent each. For example, the PDE for thex-component
has the form

Z̄1 ī1 = ū1 (72)

with

Z̄1 =

[
ρ0Dt r0Dx

r0Dx ρ0Dt

]
, ī1 =

[
i1

i4

]
,

ū1 =

[
u11

u14

]
. (73)

The matrix Z̄1 is obtained fromZ by eliminating of the
second and the third row and column, which contain only
y and z components. Furthermore, the element3ρ0Dt

in Z contributes equally to all spatial components and is
represented in̄Z1 by one third of its value. Similarly, the
first element inū1 is equal to the first element ine. The
sum of u14 and the corresponding elements for the other
spatial components is equal to the fourth element ine.

Numerical solution for each component. The numer-
ical solution of the separate spatial components is de-
rived through a series of steps which are shown in Fig. 4.
The procedure is explained for the spatial directionx.
The starting point is the partial differential operatorZ̄1

from (73). Since it involves both time and space differ-
entiation, it is not very suitable for direct numerical in-
tegration. A decoupled form with simple differentiation
operators would be more desirable. This is achieved by
two measures: First, a variable transformation, which de-
couples the differentiation operators or, in other words,
a diagonalization of the operator matrix̄Z1. Second, a
coordinate transformation, such that each entry in the di-
agonal operator matrix contains only differentiation with
respect to a single coordinate.

partial differential equation

Z̄1 ī1 = ū1

transformation of
coordinates and variables

numerical integration trans-
formation to wave quantities

inverse transformation of
coordinates and variables

D̄1 ā1 = b̄1

state-space formulation

Fig. 4. Transformation of the partial differential operator for
one spatial component into a state-space formulation.

The resulting decoupled form allows numerical in-
tegration by the trapezoidal rule. Care has to be taken
to avoid delay-free loops, which would call for an it-
erative solution. This problem is circumvented by an-
other transformation of the variables. It leads to the
so-called wave quantities̄a1 and b̄1 (Fettweis, 1994).
Now, the spatial components can be integrated numeri-
cally, though in transformed coordinates and variables.
Therefore, the decoupling steps have to be reversed, to
arrive at a discrete-time, discrete-space wave quantity for-
mulation of the original problem. A more detailed de-
scription of the coordinate and variable transformations
shown in Fig. 4 is given in (Rabenstein and Zayati, 2000).



Towards a framework for continuous and discrete multidimensional systems 83

The matrix D̄1 in Fig. 4 contains shift operators in the
x-direction and delay operators in the time direction. As a
difference operator matrix it corresponds to the differen-
tial operator matrix,̄Z1.

State-space formulation.The final form of the algorithm
can be formulated in terms of a state-space description.
The statez is associated with one of the wave quantities
(see (Rabenstein and Zayati, 2000) for details). The state-
space model consists of the state equation and the output
equation:

z = D [Az + Be] , (74)

i = Cz + Fe. (75)

The state equation (74) results from condensing the pro-
cedure outlined in Fig. 4 into one matrix equation. The
output equation (75) represents the conversion of the wave
quantities back to acoustic variables: pressure and veloc-
ity. The concise matrix formulation of the discrete model
as a state-space description allows a direct implementation
of (74), (75) in a computer code.

Boundary conditions. The operator matrixD in the state
equation (74) contains shifts in both directions of each
spatial dimension. This requires the knowledge of the pre-
vious states at all adjacent points. However, if a point lies
on the boundary of the spatial domain, e.g. on the wall of
an enclosure, then one or more of the adjacent points are
beyond the boundary, where the PDE is no more valid. In
this case, the state of these points has to be determined
from boundary conditions rather than from the PDE (5),
(6), see also (Krauß, 1996). A detailed presentation of the
incorporation of various types of boundary conditions is
beyond the scope of this paper. Only a short outline of the
general approach is given here.

The idea is to split the state vectorz into two com-
ponents: the interior stateszi and the boundary states
zb. The interior states follow from a state equation similar
to (74). The boundary states follow from the interior states
and the boundary conditions. The state-space representa-
tion has to consider both types of states appropriately. Its
general form is given by

zi =
(
TT

i D
)
[Az + Be] , (76)

zb = Abzi + Bbe, (77)

z = Tizi + Tbzb, (78)

i = Cz + Fe. (79)

The matricesTi and Tb contain only ones and zeros.
They depend on the geometry and describe whether a state

is an interior statezi or a boundary statezb. Equa-
tion (76) is very similar to the state equation (74), ex-
cept that it delivers only the interior states. The boundary
states are computed in (77) from the interior states and the
boundary conditions which determineAb and Bb. Both
interior and boundary states are merged into the complete
state vectorz in (78). It is used to provide the output
quantities in (79) and to update the interior states in (76).

Example 4. An example of the application of the MD
state-space model is given in Fig. 5. It shows the dynami-
cal sound field produced by a horn loudspeaker. The plot
was obtained from a simulation of the acoustic wave equa-
tion in one time and three space coordinates. It shows the
sound pressure in a horizontal plane at a fixed point in
time.
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Fig. 5. Wave propagation from a horn loud-
speaker built into a reflecting wall (top).

6. Conclusions

As a contribution to a unifying framework for continu-
ous and discrete MD models, we investigated MD systems
based on physical models. Three different physical phe-
nomena served as examples for the formulation of math-
ematical models from the first principles of physics: heat
flow in one spatial dimension, voltage and current distri-
bution on an electrical transmission line, and the propaga-
tion of sound waves in the air in three spatial dimensions.
All approaches share the formulation of the mathematical
description in terms of potential and flux quantities. These
are temperature and heat flux for the heat flow example,
voltage and electrical current for the transmission line, and
pressure and particle velocity for the propagation of sound
waves. The resulting physical models follow from con-
servation laws and material characterizations according to
the special physical phenomenon under consideration.
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To abstract from the physical effect and to formu-
late a more general model of a multidimensional system,
conversions of these physical models into different stan-
dardized forms are required. As a starting point the flux
and potential quantities are combined to a single vector of
unknowns. This approach leads immediately to potential-
flux models. They have the advantage that their variables
are directly related to the quantities of the physical model.
On the other hand, potential-flux models require a careful
observation of the physical dimensions of their variables.
This can be avoided by normalizing the model equations
to the same physical dimension or by making the variables
totally dimensionless. This results in normalized vector
models. Their differential operators have a more uni-
form structure but less physical meaning than potential-
flux models. Another form of abstraction is obtained by
converting the vector model into a scalar form. The ad-
vantage is a much simpler, i.e. scalar, form of the model.
The price to pay is the elimination of one of the initial
variables, usually the flux variable. As a result, the for-
mulation of boundary or interface conditions in terms of
impedance laws is no longer possible or has to be circum-
vented by the introduction of additional derivative terms.
It is interesting to note that this elimination process can be
formulated concisely as diagonalization. It is performed
by multiplication with the adjoint matrix differential op-
erator of the differential operator from the vector model.

In conclusion, we derived three different continuous
models from the initial physical description: two vector
representations, the potential-flux model and the normal-
ized vector model, and one scalar representation. These
three models are closely connected by matrix operations,
performing either normalization or diagonalization.

Furthermore, we showed that each of these continu-
ous representations results in a different family of discrete
models in current use: finite-difference models, transfer
functions models and MD wave digital models. Finite-
difference models are easily obtained from scalar repre-
sentations by standard methods of the discretization of
differential operators. From the potential-flux model, the
corresponding transfer function model can be derived by
suitable transformations with respect to the time and space
variables. The transformation for the time variable is the
well-known Laplace transformation. The transformation
for the space variable has to be adapted to the spatial do-
main and the given boundary conditions. It follows from
the spatial differential operator of the physical model and
its adjoint operator. The latter was shown to be identi-
cal to the matrix differential operator already used in the
above diagonalization process. Finally, discrete multidi-
mensional systems based on the wave digital principle are
directly based on the normalized vector model. Two dif-
ferent approaches were considered: the classical deriva-
tion by means of a multidimensional network description

and the multidimensional state-space approach.

All the discrete multidimensional models just con-
sidered have appeared before in the literature. However,
little has been known about the relations between them
and how to transform one discrete representation into an-
other. Here it was shown that they are linked together by
the close connections between their corresponding con-
tinuous models. However, the framework is not com-
plete. Topics for future research are a unifying treatment
of initial and boundary conditions and the inclusion of the
finite-element method through a variational formulation
of the physical model.
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