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In iterative learning control (ILC) and in repetitive control (RC) one is interested in convergence to zero tracking error as the
repetitions of the command or the periods in the command progress. A condition based on steady state frequency response
modeling is often used, but it does not represent the true stability boundary for convergence. In this paper we show how this
useful condition differs from the true stability boundary in ILC and RC, and show that in applications of RC the distinction
between these conditions is of no practical significance. In ILC satisfying this frequency condition is important for good
learning transients, even though the true stability boundary is very different.
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1. Introduction

Iterative learning control (ILC) refers to methods of itera-
tively adjusting the command to a closed loop control sys-
tem, to converge on that command which produces zero
tracking error following a desired trajectory. The system
is restarted from the same initial condition each time a
command is given. The very closely related repetitive
control (RC) applies to systems with a periodic desired
output or with a constant desired output, and there are
periodic disturbances. The command to the closed loop
system is adjusted from one period to the next in order
to converge to zero tracking error. The year 1984 saw
a sudden flurry of activity in these fields, occurring inde-
pendently and simultaneously on four different continents,
motivated by robotics. Robots on assembly lines perform
the same operation many times a day, and it seems natu-
ral to have the robot learn to eliminate its tracking error
by paying attention to its experience executing the trajec-
tory. ILC papers that appeared that year with this motiva-
tion include (Arimotoet al., 1984; Casalinoet al., 1984;
Craig, 1984), and also submitted that year was the RC pa-
per (Middletonet al., 1985). Uchiyama (1978) served as
a precursor with this same motivation; Edwards (1974),
Owens (1977), and Edwards and Owens (1982) are other
precursors, treating multipass processes, and motivated by
problems in coal mining. Early repetitive control publi-

cations include (Inoueet al., 1981; Omataet al., 1984;
Haraet al., 1985a, 1985b; Nakanoet al., 1986, Tomizuka
et al., 1989).

In both ILC and RC it is common to aim to satisfy
a frequency response based stability condition, normally
heuristically derived to suggest convergence based on de-
cay of the steady state frequency response components of
the error. Various papers in the literature address the prob-
lems from a frequency response point of view, e.g. De
Lucaet al. (1992). Elciet al. (1994) and Longman (2000)
show that a condition indicating monotonic decay of the
steady state frequency response components with repeti-
tions is a sufficient condition for asymptotic stability of
ILC, independent of whether any part of the finite time
trajectory can be considered as steady state. However, it
is suggested that the real use of this condition is as a tech-
nique for generating good transients during the learning
process. Huang and Longman (1996) suggest that the dis-
crepancy between this frequency response based condi-
tion and the true stability boundary is very large for ILC,
but for RC the condition will normally be very close to the
true stability boundary. It is the purpose of this paper to
investigate the distinction between the frequency response
based condition and the true stability boundary, for the set
of all first order systems, all second order systems, and all
third order systems with no zero.
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This is done for the most basic form of ILC and RC,
integral control based learning. In the case of ILC this ad-
justs the command at time stepk of repetition j accord-
ing to uj+1(kT ) = uj(kT )+Klej((k+1)T ), whereKl

is the learning gain,T is the time step interval, andej is
the tracking error (desired output minus actual). The one
step time shift in the error accounts for the usual one step
delay between a change in the input to a change in the out-
put in a digital system. In repetitive control the change in
repetition numberj is replaced by a time shift ofp time
steps corresponding to one period. Written in terms of
z-transforms this becomeszpU(z) = U(z) + KlzE(z).
The associated repetitive control system has a very stan-
dard looking block diagram with unity feedback as shown
in Fig. 1. The command input is the desired output as
is usual with feedback control. The controller box con-
tains the repetitive control law with the transfer function
Klz/(zp − 1). What is unusual is that the plant transfer
function block contains theclosedloop feedback control
system, and the repetitive controller is adjusting the com-
mand to this feedback control system. The authors always
consider this formulation, but we comment that some of
the literature has the repetitive control action adjusting the
manipulated variable within the feedback control system,
rather than the simpler adjustment of the command to the
control system.
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Fig. 1. Block diagram of a repetitive controller modifying
the command to a feedback control system.

2. A Frequency Response Based Stability
Condition—An Approximate
Monotonic Decay Condition

The above-mentioned frequency response condition for
both iterative learning control and repetitive control asks
that ∣∣1−Kle

iωT Gc(eiωT )
∣∣ < 1 (1)

for all frequenciesω up to Nyquist, whereT is the sam-
ple time interval, andGc(z) is the z-transfer function
of the associated closed loop control system. Longman
(2000), Elciet al. (1994), Huang and Longman (1996)
prove that this condition is a sufficient condition for con-
vergence to zero tracking error for both ILC and RC. But
it is suggested that the real importance of the condition (1)
is as an approximate condition for assuring monotonic de-
cay of the tracking error with repetitions or periods. To

see this for ILC, suppose that the output of the closed
loop control system isY (z) = Gc(z)U(z)+W (z) where
W represents any disturbance that appears every time the
command is given. Write this for repetitionsj + 1 and
j, and take the difference. Express the result in terms
of a difference of errors, and use the learning control
law described in the previous section to produce the in-
put in terms of the error. The result can be written as
Ej+1(z) = [1 − KlzGc(z)]Ej(z) (note that the initial
condition on E is zero for ILC). By satisfying (1), it is
guaranteed that the steady state frequency response com-
ponents of the error will decay monotonically with repe-
titions. However, since the trajectory is a finite time tra-
jectory, technically it is never in steady state. Neverthe-
less, when the trajectory is significantly longer than a few
time constants of the system, this condition makes a good
condition to satisfy in order to ensure good learning tran-
sients, by creating monotonic decay of the error for a sub-
stantial part of the finite time trajectory.

To see this for RC, find the transfer function from
the periodic desired trajectoryYd(z) to the associated
error, for the block diagram described in the previous
section. This produces[zp − 1 + KlzGc(z)]E(z) =
(zp − 1)[Yd(z) − W (z)]. The right-hand side is zero
due to the periodicity with periodp of the desired tra-
jectory and the disturbance. This makes a homogeneous
difference equation whose transients determine the con-
vergence of the error. Rewrite this equation aszpE(z) =
[1 − KlzGc(z)]E(z) and note that the multiplication by
zp is a shift one period forward in time. This suggests
that if (1) is satisfied, there will again be monotonic de-
cay of each frequency component of the error from one
period to the next. This time there is a quasi-static as-
sumption made, in order to have steady state frequency
response thinking apply.

If one chooses to satisfy (1) in order to obtain good
transients of the learning process, it is of interest to know
how much more restrictive satisfying (1) is, than sim-
ply satisfying the if and only if condition for stability.
In this paper we show how these differ for ILC and
RC for first, second, and third order systems. We also
show how to find the true stability boundary, and see that
in the case of RC it is much more difficult than using con-
dition (1).

3. True Stability Boundary for ILC
and RC

In ILC the true stability boundary when using integral
control based learning with learning gainKl, is given by

0 < (CB)Kl < 2, (2)

where B and C are from the discrete-time state-space
model x((k + 1)T ) = Ax(kT ) + Bu(kT ), y(kT ) =
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Cx(kT ) of the closed-loop single-input, single-output
(SISO) system (see, e.g., Phan and Longman, 1988).

In repetitive control, the most natural way to ex-
press the true stability boundary is in terms of the Nyquist
stability criterion. The repetitive control loop contains
the closed-loop feedback control systemGc(z) and the
repetitive control lawKlz/(zp − 1) together with unity
feedback, so that the characteristic polynomial can be
written in the form 1 + KlGr(z) = 0 with Gr(z) =
zGc(z)/(zp − 1). It will be convenient for us to sepa-
rate the DC gainKc of the feedback control system from
the rest of its transfer function according toGc(z) =
KcG(z), define the product of the DC gain with the
learning gain asK = KcKl, and then this serves as
our gain parameter. The characteristic equation becomes
1 + KG(z) = 0. The direct application of the discrete
time Nyquist criterion is inconvenient because of thep
roots on the unit circle. With a sample rate of 1000 Hz
and a one-second trajectory there are 1000 roots on the
unit circle, and the Nyquist contour must go around each
of them. Following Huang and Longman (1996), we ap-
ply the method of Pierre (1989) to handle this difficulty.
Rewrite the characteristic polynomial in the form

−K + Q(z) = 0, Q(z) = −1/G(z). (3)

The troublesome poles on the unit circle become zeros
of Q, simplifying the plotting. PlotQ(eiθ) for θ go-
ing from 0 to 180 deg, deleting any points for whichQ
is singular (one does not have to go around these points).
For any gainK as a point on the real axis of theQ plane,
where Im Q(eiθ) 6= 0, we have

Z = (−W/180◦) + P + (n′/2), (4)

where W is the angle swept by the vector pointing from
point (K, 0) to the moving pointQ(eiθ) for θ going
from 0 to 180 deg with singularities deleted (clockwise is
counted as positive),P is the total number of poles ofQ
outside the unit circle, finite poles plus poles at infinity,
Z is the number of zeros of−K + Q(z) = 0 that are
outside the unit circle, andn′ is the number of poles of
Q on the unit circle.

In using (4), one normally knows the values forP
and n′, W is determined from the plot, and henceZ is
known. The system is stable for allK that produceZ
equal zero. Note that this stability condition, which repre-
sents the true stability boundary, depends on the number
of time stepsp in a period, whereas the previous approx-
imate monotonic decay condition (1) does not.

4. Stability of First Order Systems

Stability Conditions: Now let us examine the distinc-
tion between stability condition (1) and the true stability

boundary (Eqn. (2) for ILC and (4) for RC) for all possible
first order systems. Start with a continuous time transfer
function Gs(s) = Kca/(s + a) where Kc is the DC
gain. When fed by a zero order hold, this converts ac-
cording to the ruleGc(z) = (1− z−1)Z[Gs(s)/s] where
the Z indicates taking thez-transform of the function
represented in the square bracket. Then theGc(z) for
equation (1) is

Gc(z) = Kc

(
1− e−aT

)
/
(
z − e−aT

)
. (5)

The G(z) for Eqns. (3) and (4) is given by

G(z) =
(
1− e−aT

)
z/

[(
z − e−aT

)(
zp − 1

)]
(6)

and condition (2) becomes

0 < KlKc

(
1− e−aT

)
< 2. (7)

There are three parameters whose values may affect these
stability conditions: the gainK = KlKc, which is the
product of the learning gain with the DC gain of the sys-
tem, the value ofaT related to the time constant of the
system and the sample time, and the number of time steps
p in the desired trajectory or period.

Concerning Limits on the Parameters:In order for a
discrete time control system to function well, one should
have the sample rate such that there are several time steps
in a time constant of the system. In this case the time
constant is1/a, so a generous upper limit on the value
of aT is unity. When we get to second order systems
s2 + 2ζω0s + ω2

0 , we need at least one sample per time
constant when the roots are real, and when the roots are
complex we again ask for one sample per time constant
for the real part of the root, and at least two sample times
per period for the oscillatory part of the root (this limits
the values ofω0T to a maximum ofπ/

√
1− ζ2).

Approximate Monotonic Decay Condition:The range of
gain K satisfying condition (1) can be found by plotting
Kle

iθGc(eiθ) for θ going from 0 to 180 deg, and see-
ing how largeK can be before the curve goes outside the
unit circle centered at+1. This happens first whenθ = 0,
and produces the inequality0 < K < 2. Condition (1)
is always independent ofp, but in this case it is also inde-
pendent of parameteraT as well. As stated above, this is
a sufficient condition for stability for both ILC and RC.

True Stability Boundary for Learning Control:The dis-
crete time state variable representation of (5) has ma-
trices A, B and C given by e−aT , Kc(1 − e−aT )
and 1, respectively. Then the stability boundary is given
by 0 < K < 2/(1 − e−aT ). This is independent ofp,
and the stable range onK tends to infinity as the sample
time tends to zero. The boundary is shown in Fig. 2. It
is always larger than the sufficient condition (1) as it must
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Fig. 2. The stability boundary of learning control applied
to the first order system.

be, and it becomes arbitrarily larger as the sample time
approaches zero.

True Stability Boundary for Repetitive Control:For con-
ciseness, denote sine bys and cosine byc. Then the
Q(eiθ) from (6) can be written as

Q
(
eiθ

)
=

(
1− e−aT

)−1 [1− c(pθ)

+ e−aT
(
c
(
(p− 1)θ

)
− cθ

)
+ i

(
e−aT

)(
s
(
(p−1)θ

)
+sθ

)
−is(pθ)

]
. (8)

A typical plot of Q(eiθ) is given in Fig. 3,p = 10 and
aT = 0.88. Applying the modified Nyquist plot rules
above to any point(K, 0) between 0 and the first time
the plot crosses the positive real axis produces,W =
5 × 360◦, P = 10, n′ = 0 with Z = 0. Hence, all
gains K between zero and this first crossing of the posi-
tive real axis correspond to stability. For this first order
system, it happens that the first loop is always the one
determining stability, but for the second and third order
systems discussed below, this is not necessarily the case.
Then, the procedure for determining the maximum sta-
ble gain Kmax as the parameters of the system are run
through their range of values is as follows:

(i) Set the imaginary part ofQ(eiθ) equal to zero. For
the case of Eqn. (8) this can be rewritten as

e−aT c
(
(p− 2)θ/2

)
− c(pθ/2) = 0. (9)

Then solve this numerically to get thep solutions
for θ.

(ii) Substitute each solution forθ into Q(eiθ) to find
the associated value ofK according to (3). The

minimum of these values is the gain for the stabil-
ity boundary,Kmax.
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Fig. 3. Plot of Q(eiθ), with θ from 0 to 180◦, of the first
order system whenp = 10 and aT = 0.88.

Figure 4 shows the results of this procedure for the
first order system, givingKmax for aT in the range of
reasonable values from 0 to 1, and for various values of the
number of time steps in a period,p. As must be the case,
the stability boundary is always above the valueK = 2
given by the monotonic decay condition (1). However,
this difference is only substantial when the number of time
steps in a period is quite small, e.g., for ap of 10. In typ-
ical digital control systems with sample rates like 100 or
1000 Hz, any reasonable length period for the desired mo-
tion will have a p sufficiently large that the distinction
between the true stability boundary in repetitive control,
Eqn. (4), and the approximate monotonic decay condi-
tion (1) becomes insignificant. Hence, in most practical
situations, satisfying the condition (1) is close to the re-
quirement, even though it does not correspond to the true
stability boundary. The difference between (1) and (4)
is insignificant for typical length trajectories. And use
of (1) in designing repetitive controllers is much easier
than using (4).

5. Stability of Second Order Systems

Now consider the set of all stable strictly proper second
order systems. The transfer function in continuous time
is Gs(s) = Kcω

2
0(ds + 1)/(s2 + 2ζω0s + ω2

0), and we
consider that it is fed by a zero order hold, and then con-
verted to the associatedz-transfer function. This time the
parameters that can influence stability areK, ω0T , ζ,
d/T , and p.
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Fig. 4. True stability boundary of repetitive control
applied to the first order system.

For underdamped systems(0 < ζ < 1):

Gc(z) = Kc(A1z + B1)/
(
z2 − 2e−α1cβ1z + e−2α1

)
,

A1 = 1− e−α1cβ1 − (α1/β1)e−α1sβ1

+
(
γ2δ/β1

)
sβ1,

B1 = e−2α1 + (α1/β1)e−α1sβ1 − e−α1cβ1 (10)

−
(
γ2δ/β1

)
sβ1,

α1 = ζω0T, β1 = ω0T
√

1− ζ2,

γ = ω0T, δ = d/T.

For overdamped systems(ζ > 1):

Gc(z) = Kc(A2z + B2)/
[
(α2 − β2)

(
eα2+β2z2

−
(
eα2 + eβ2

)
z + 1

)]
,

A2 = (β2δ − 1)α2e
α2 + (1− α2δ)β2e

β2

+ (α2 − β2)eα2+β2 ,

B2 = (β2δ − 1)α2e
β2 + (1− α2δ)β2e

α2 + α2 − β2,

α2 = ω0T
(
ζ +

√
ζ2 − 1

)
, (11)

β2 = ω0T
(
ζ −

√
ζ2 − 1

)
.

For critically damped systems(ζ = 1):

Gc(z) = Kc(A3z + B3)/
(
e2γz2 − 2eγz + 1

)
,

A3 =
(
γ2δ − γ − 1

)
eγ + e2γ , (12)

B3 = 1 +
(
γ − γ2δ − 1

)
eγ .

These Gc(z) are used in (1) for the approximate
monotonic decay condition. The conversion ofGc(z) to
G(z) for use in (4) is analogous to Eqns. (5) and (6).

True Stability Boundary for Learning Control:For the
Gc(z) above for the underdamped, overdamped and criti-
cally damped cases, we can convert the associated second
order scalar difference equation into a state variable form,
and substitute into the ILC stability condition (2) to ob-
tain, respectively,

0 < K < 2/A1,

0 < K < 2(α2 − β2)eα2+β2/A2, (13)

0 < K < 2
/(

A3e
−2ω0T

)
. (14)

The results are shown in Fig. 5 for the cased = 0, where
again the range onK goes to infinity as the sample time
T goes to zero. As a result, a figure is inserted to show
the curves away from the zero singularity.
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Fig. 5. Stability boundary of learning control applied to
the second order system whend/T = 0 and
ζ = 0.2, 0.5, 0.7, 1, and 2 from left to right.

Approximate Monotonic Decay Condition:It is not pos-
sible to obtain for second order systems a simple analyti-
cal expression for the range ofK as was done for the first
order case. Figures 6 and 7 give the results for the cases
of d/T = 0 and d/T = 1, respectively. AgainK is
limited by 2, the diameter of the unit circle that the plot of
KlzGc(z) should stay within. But this time it is not only
along the real axis that one might start leaving this circle
when the gain is too large, but when there is a resonant
peak it can easily leave at some frequency other than zero.
Hence, asζ decreases, the range ofK is made smaller
and smaller. All results are, of course, independent ofp ,
and the monotonic decay condition is vastly different than
the true stability boundary in the case of ILC. In Figs. 6
and 7 as well as the figures that follow, the rectangle, trian-
gle, circle, triangle on its point, and diamond correspond
to damping rationsζ of 2, 1, 0.7, 0.5, and 0.2, respec-
tively.

True Stability Boundary for Repetitive Control:Fig-
ures 8 and 9 give the true stability boundary using
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Fig. 6. Monotonic decay boundary of repetitive control ap-
plied to the second order system whend/T = 0.
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Fig. 7. Monotonic decay boundary of repetitive control ap-
plied to the second order system whend/T = 1.

Eqn. (4). In these figures as well as Figs. 12 and 13 below,
there are three lines plotted for each, forp = 10, p = 50,
and p = 200. On the left side of the plots and also on the
top of the plots one can often distinguish these different
curves, and then the curve forp = 10 is the left most
curve or the top most curve, andp = 50 and p = 200
progress to the right or downward.

6. Stability of Third Order Systems

The same procedure is applied to third order systems of
the form

Gs(s) = Kc

(
d

s + d

) (
ω2

0

s2 + 2ζω0s + ω2
0

)
, (15)

which represents a general third order system except that
it is restricted to having no zero in continuous time. After
discretizing, the parameters areK, ω0T , dT , ζ, and p.
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Fig. 8. True stability boundary of repetitive control applied
to the second order system whend/T = 0.
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Fig. 9. True stability boundary of repetitive control applied
to the second order system whend/T = 1.

The equations involved are much more complicated than
those of the second order system. The discrete time ver-
sion of this transfer function fed by a zero order hold takes
the form

Gc3(z) = Kc
Az2 + Bz + D

Ez3 + Fz2 + Gz + H
, (16)

where the coefficients are given as follows, depending on
whether the second order term is underdamped, critically
damped, or overdamped (the case of three repeated real
roots is not considered).

For underdamped systems(0 < ζ < 1):

A =
(
2γ111e

α+δ − γ012e
α+δ

)
cβ

+
(
γ201e

α+δ − γ102e
α+δ − γ021e

α+δ
)
sβ

− (γ030 + γ210)e2α + (γ030 + γ012−γ111)e2α+δ,
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B =
(
(2γ030 + 2γ210 − 2γ111 + γ012)eα

− (2γ030 + 2γ210 + 2γ111 − γ012)eα+δ
)
cβ

+
(
(γ102 + γ021 − γ201)eα

+ (γ102 + γ021 − γ201)eα+δ
)
sβ

+ (2γ111 − γ012)e2α + (γ012 − 2γ111)eδ, (17)

D = (γ012 − 2γ111)eαcβ + (γ201 − γ102 − γ021)eαsβ

+ (γ030 + γ012)eδ + (2γ111−γ030−γ210−γ012),

E = β
(
(α− δ)2 + β2

)
e2α+δ,

F = − βe2α
(
(α− δ)2 + β2

)
− 2β

(
(α− β)2 + δ2

)
eα+δcβ,

G = β
(
(α− δ)2 + β2

)
eα + 2β

(
(α− δ)2 + β2

)
cβ,

H = −β
(
(α− δ)2 + β2

)
,

α = ζω0T, β = ω0T
√

1− ζ2,

δ = dT and γijk = αiβjδk.

For overdamped systems(ζ > 1):

A = (γ210 − γ120)eα+β + (γ102 − γ201)eα+δ

+ (γ021 − γ012)eβ+δ − (α− β)

× (α− δ)(β − δ)eα+β+δ,

B = (γ210 − γ120)
(
eδ − 1

)(
eα + eβ

)
+ (γ102 − γ201)

(
eβ − 1

)(
eα + eδ

)
+ (γ021 − γ012)

(
eα − 1

)(
eβ + eδ

)
,

D = (γ012 − γ021)
(
eα − 1

)
+ (γ201 − γ102) (18)

×
(
eβ − 1

)
+ (γ120 − γ210)

(
eδ − 1

)
,

E = (α− β)(α− δ)(β − δ)eα+β+δ,

F = (α− β)(α− δ)(β − δ)

×
(
eα+β + eα+δ + eβ+δ

)
,

G = −(α− β)(α− δ)(β − δ)
(
eα + eβ + eδ

)
,

H = (α− β)(α− δ)(β − δ),

α = ω0T
(
ζ +

√
ζ2 − 1

)
,

β = ω0T
(
ζ −

√
ζ2 − 1

)
,

δ = dT and γijk = αiβjδk.

For critically damped systems(ζ = 1):

A =
(
eδ

(
(α− δ)2eα − δ(δ + α(δ − α− 2))

)
− α2eα

)
eα,

B = −eα
(
δ − 2 + (δ + 2)eδ

)
α2

−
(
eα − 1

)(
eα + eδ

)
δ2

+ α
(
2
(
eα−1

)(
eα+eδ

)
+δeα

(
eδ+1

))
δ,

D = eδα2−(α−δ)2+δeα
(
(α−δ)α−2α+δ

)
, (19)

E = e2α+δ(α− δ)2,

F = −
(
e2α + 2eα+δ)(α− δ

)2
,

G =
(
2eα + eδ

)
(α− δ)2,

H = −(α− δ)2,

α = ω0T and δ = dT.

Figures 10 and 11 give the monotonic decay condi-
tion (1) results, and Figs. 12 and 13 give the true stabil-
ity boundary. The implications of these plots is similar
to the second order case. All points plotted in Figs. 12
and 13 have both of the zeros that are introduced by the
discretization within the unit circle. Going beyond the
plotted points on the left causes one of the zeros to go
outside the unit circle, andKmax goes to zero. Such a
zero corresponds to a pole inQ, and going outside the
unit circle changesP in Eqn. (4) without changing any-
thing else, and hence the system becomes unstable. The
values of these variables in applications will normally be
off the lower end of the plot in this manner. An example
is the third order model of the command to response for
each link of a Robotics Research Corporation robot as dis-
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Fig. 10. Monotonic decay boundary of repetitive control ap-
plied to the third order system whendT = 0.5.
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cussed in Elciet al. (1994). For this robot the sample rate
was 400 Hz for the feedback control loops and substan-
tially slower when considering the inverse kinematics up-
dates from the upper level controller, andd = 8.8 so that
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Fig. 11. Monotonic decay boundary of repetitive control ap-
plied to the third order system whendT = 1.
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Fig. 12. True stability boundary of repetitive control ap-
plied to the third order system whendT = 0.5.

the product can be near 1 as in Fig. 13, andω0T = 0.37.
This is far off the left side of the plot after the maxi-
mum learning gain for stability has become zero. To han-
dle such situations, one can employ a compensator and a
zero phase low pass filter as is done in (Elciet al., 1994;
Longman, 2000).

7. Conclusions

This paper has shown that the approximate monotonic de-
cay condition (1), a sufficient condition for stability, is suf-
ficiently close to the stability boundary for repetitive con-
trol that in practical applications one should aim to satisfy
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Fig. 13. True stability boundary of repetitive control ap-
plied to the third order system whendT = 1.

it and ignore the true stability boundary condition. This
approximate condition is a sufficient condition for stabil-
ity, and differs from the true stability boundary substan-
tially only for very small p, and for first order systems.
Otherwise the difference becomes negligible. Determin-
ing the true stability boundary is difficult in repetitive con-
trol because of the large number of roots in the character-
istic equation, equal to the order of the system plusp,
the number of time steps in a period, and this can easily
give thousands of roots. Hence, methods such as the Jury
test and the Routh stability criterion with a bilinear trans-
formation are useless. The standard application of the
Nyquist criterion would require using extra small contour
arcs going around thep poles on the unit circle, and again
this is normally unmanageable. Here we make use of the
method of Pierre (1989) to get around this problem, but it
can still be somewhat difficult. On the other hand, the ap-
proximate stability boundary is independent of the num-
ber of time stepsp in a period, and this makes the testing
of this condition quite easy. It is also a desirable prop-
erty to have guaranteed stability regardless of the period of
the desired trajectory, or of the periodic disturbance being
cancelled.

For ILC there is a very big difference between the
approximate monotonic decay condition (1) and the true
stability boundary. It is easy to satisfy the true stabil-
ity boundary condition that is almost independent of the
system dynamics. The range of stabilizing learning gains
tends to infinity as the sample time tends to zero. But it
is hard to satisfy the approximate monotonic decay con-
dition (1), which depends heavily on the system dynam-
ics. Nevertheless, it is very important in ILC to ensure
good learning transients, and as suggested in Elciet al.
(1994), satisfying (1) is perhaps the simplest approach for
doing this.
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