
Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 1, 91–103

EVOLUTIONARY ALGORITHMS FOR JOB-SHOP SCHEDULING

KHALED MESGHOUNI∗, SLIM HAMMADI ∗

PIERRE BORNE∗

∗ Ecole Centrale de Lille, LAIL - UMR 8021 BP 48
59651 Villeneuve d’Ascq Cedex, France

e-mail:{khaled.mesghouni, slim.hammadi, p.borne}@ec-lille.fr

This paper explains how to use Evolutionary Algorithms (EA) to deal with a flexible job shop scheduling problem, espe-
cially minimizing the makespan. The Job-shop Scheduling Problem (JSP) is one of the most difficult problems, as it is
classified as an NP-complete one (Carlier and Chretienne, 1988; Garey and Johnson, 1979). In many cases, the combination
of goals and resources exponentially increases the search space, and thus the generation of consistently good scheduling is
particularly difficult because we have a very large combinatorial search space and precedence constraints between opera-
tions. Exact methods such as the branch and bound method and dynamic programming take considerable computing time
if an optimum solution exists. In order to overcome this difficulty, it is more sensible to obtain a good solution near the
optimal one. Stochastic search techniques such as evolutionary algorithms can be used to find a good solution. They have
been successfully used in combinatorial optimization, e.g. in wire routing, transportation problems, scheduling problems,
etc. (Banzhafet al., 1998; Dasgupta and Michalewicz, 1997). Our objective is to establish a practical relationship between
the development in the EA area and the reality of a production JSP by developing, on the one hand, two effective genetic
encodings, such as parallel job and parallel machine representations of the chromosome, and on the other, genetic opera-
tors associated with these representations. In this article we deal with the problem of flexible job-shop scheduling which
presents two difficulties: the first is the assignment of each operation to a machine, and the other is the scheduling of this set
of operations in order to minimize our criterion (e.g. the makespan).

Keywords: job-shop scheduling, evolutionary algorithms, parallel representation

1. Introduction

Several problems in various industrial environments are
combinatorial. This is the case for numerous scheduling
and planning problems. Generally, it is extremely diffi-
cult to solve this type of problems in their general form.
Scheduling can be defined as a problem of finding an op-
timal sequence to execute a finite set of operations sat-
isfying most of the constraints. The problem so formu-
lated is extremely difficult to solve, as it comprises sev-
eral concurrent goals and several resources which must
be allocated to lead to our goals, which are to maximize
the utilization of individuals and/or machines and to min-
imize the time required to complete the entire process
being scheduled. Therefore, the exact methods such as
the branch and bound method, dynamic programming and
constraint logic programming need a lot of time to find
an optimal solution. So, we expect to find not necessarily
an optimal solution, but a good one to solve the problem.
Realistically, we are satisfied by obtaining a good solution
near the optimal one. New search techniques such as ge-
netic algorithms, simulated annealing (Kirkpatricket al.,
1983) or tabu search (Golveret al., 1993) are able to lead

to our objective i.e. to find near-optimal solutions for a
wide range of combinatorial optimization problems.

In this article, we propose improved evolutionary al-
gorithms (EAs) for solving a JSP. EAs are search and op-
timization algorithms inspired by the process of natural
evolution. They employ a probabilistic search for locating
a globally optimal solution. They have many advantages.
They are robust in the sense that they provide a set of so-
lutions near the optimal one on a wide range of problems.
They can be easily modified with respect to the objective
function and constraints. In this article we describe the
incorporation of the scheduling specific knowledge in op-
erators and in the chromosome representation. In this con-
text, parallel representations of the chromosome and some
genetic operators have been created.

This article is organized as follows: Section 2 con-
tains a detailed description and formulation of our flexible
job-shop scheduling. In Section 3, a description of evolu-
tionary algorithms adapted to scheduling problems is pre-
sented. Implementation details of the proposed methodol-
ogy and experimental results are presented in Section 4.
Finally, the discussion and conclusion are presented in
Section 5.

K. Mesghouni et al.92

2. Description of Job-Shop Scheduling

The task of production scheduling consists in the tempo-
ral planning of the processing of a given set of orders. The
processing of an order corresponds to the production of a
particular product. It is accomplished by the execution
of a set of operations in a predefined sequence on cer-
tain resources, subject to several constraints. The result
of scheduling is a schedule showing the temporal assign-
ment of operations of orders to the resources to be used. In
this study, we consider a flexible job shop problem. Each
operation can be preformed by some machines with dif-
ferent processing times, so that the problem is known to
be NP hard. The difficulty is to find a good assignment
of an operation to a machine in order to obtain a schedule
which minimizes the total elapsed time (makespan).

The structure of the scheduling problem can be de-
scribed as follows:

• consider a set ofN jobs {Jj}1≤j≤N ; these jobs are
independent of one another;

• each jobJj has an operating sequence, calledGj ;

• each operating sequenceGj is an ordered series of
xj operations,Oi,j indicating the position of the op-
eration in the technological sequence of the job;

• the realization of each operationOi,j requires a re-
source or a machine selected from a set of machines,
{Mk}1≤k≤M ; M is the total number of machines
existing in the shop, this implying the existence of an
assignment problem;

• there is a predefined set of processing times; for a
given machine, and a given operation, the processing
time is denoted byPi,j,Mk

;

• an operation which has started runs to completion
(non-preemption condition);

• each machine can perform operations one after an-
other (resource constraints);

• the time required to complete the whole job consti-
tutes the makespanCmax.

Our objective is to determine the set of completion
times for each operation{Ci,j,k}1≤i≤Xj , 1≤j≤N, 1≤k≤M

which minimizesCmax.

3. Evolutionary Algorithms

Evolutionary algorithms are general purpose search pro-
cedures based on the mechanisms of natural selection
and population genetics. These algorithms have been

applied by many users in different areas of engineer-
ing, computer science, and operations research. Current
evolutionary approaches include evolutionary program-
ming, evolutionary strategies, genetic algorithms, and ge-
netic programming (Banzhafet al., 1998; Dasgupta and
Michalewicz, 1997; Fonseca and Fleming, 1998; Gold-
berg, 1989; Quagliarellaet al., 1998).

3.1. How Do EAs Work?

Evolutionary algorithms are inspired by genetic algo-
rithms. There are a relatively new contribution to the field
of artificial intelligence. They use various computational
models of evolutionary processes to solve problems on a
computer. They are based on the mechanism of natural
selection in biological systems. Evolutionary algorithms
use a structured but randomized way to utilize genetic in-
formation in finding a new search direction. They work
by defining a goal in the form of a quality criterion and
then use this goal to measure and compare solution candi-
dates in a stepwise refinement of set data structures. If
successful, an EA will return an optimal solution or a
near-optimal one after a number of iterations. The im-
provement process is accomplished using genetic opera-
tors such as crossover and mutation. There are several
variants of evolutionary algorithms, and also many hy-
brid systems which incorporate various features of these
paradigms. However, the structure of any evolutionary
method is very much the same. After defining a genetic
representation, the simple structure of evolutionary algo-
rithms is shown as follows:

1. Selection of the chromosome structure
The problem has to be translated into a chromo-
some representation. Each gene of the chromosome
corresponds to a decision variable of the problem.
According to problem complexity, the chromosome
structure can be either conventional (a binary string)
or not (reals, a series or a sequence of orders, a par-
allel form, etc.).

2. Initialization of the population of chromosomes
The initial population can be generated at random if
the problem structure allows it.

3. Perform genetic operations on chromosomes
Some operators are introduced in genetic algorithms
to produce a solution. Among them there are two
categories of operators: crossover and mutation.

4. Evaluation chromosomes
During evolutionary generation, an evaluating sys-
tem is set up to assess the chromosomes and to select
those chromosomes that are fit enough for the next
generation.

Evolutionary algorithms for job-shop scheduling 93

3.2. Encoding Requirements

Problems of encoding have been observed in the GA liter-
ature (Dasgupta and Michalewicz, 1997), where slightly
different problems require completely different genetic
encodings for a good solution to be found. Choosing a
good representation is a vital component of solving any
search problem. However, choosing a good representa-
tion for a problem is as difficult as choosing a good search
algorithm for a problem. Care must be taken to adopt both
representational schemes and the associated genetic oper-
ators for an effective genetic search. Traditionally, chro-
mosomes are simple binary vectors. This simple represen-
tation is an excellent choice for the problems in which a
point naturally maps into a string of zeros and ones. Un-
fortunately, this approach cannot usually be used for real-
word engineering problems such as combinatorial ones
(Portman, 1996). A modification should be suggested,
such as the permutation of a basic string like that used for
a Travelling Salesman Problem (TSP) (Della Croceet al.,
1995). For instance, consider a TSP withN cities. A per-
mutation of the numbers from 1 toN is a chromosome,
which codes a possible solution. This means that every
symbol has to appear only once so that the chromosome
makes sense. An illegal solution can obviously be ob-
tained by applying traditional genetic operators (crossover
and mutation). Some different encodings are proposed in
the literature (Baghiet al., 1991; Bruns, 1993; Uckunet
al., 1993). These encodings are split into two categories.
The first one is the direct chromosome representation. We
can represent a scheduling problem by using the sched-
ule itself as a chromosome. This method generally re-
quires developing specific genetic operators. The second
is the indirect chromosome representation: the chromo-
some does not directly represent a schedule, and transition
from the chromosome representation to a legal schedule
builder (decoder) is needed prior to evaluation.

In this article, we chose a direct representation to give
viability and legibility to a chromosome and a simplicity
of utilization for a user. We suggest two new direct repre-
sentational chromosomes with their genetic operators.

3.2.1. First Approach

Encoding problem

The first approach is based on the parallel machine en-
coding (PME) (Mesghouni, 1999; Mesghouniet al., 1998)
which represents directly feasible scheduling, gives a user
all the necessary information, and also permits to treat
jointly the assignment and scheduling problems. In the
case of our problem, the chromosome is represented by
a set of machines put in parallel and each machine is a
vector which contains its assignment operations. These
operations are represented by three terms. The first is the
order number of the operation in its operating sequence,

M1 (i, j, ti,j,M1) · · ·
M2 (i′, j′, ti′,j′,M2) · · ·
· · · · · · · · ·
Mm · · · · · ·

Fig. 1. Parallel machine encoding.

the second is the number of the job to which this op-
eration belongs and the third is the starting time of the
operation if its assignment on this machine is definitive.
This starting time is calculated taking into account all the
constraints. Indeed, the parallel machine encoding is pre-
sented in Fig. 1. In a general manner, the line of the chro-
mosome is represented as follows:

Mk : (i, j, ti,j,Mk
), (i′, j′, ti′,j′,Mk

), . . . ,

where i represents the operation to be executed by ma-
chine Mk, j is the job to which this operation (i) belongs
and ti,j,Mk

is the starting time of the operationi of job
j on machineMk. This time is calculated taking into
account the precedence and resources constraints.

Example 1.Three jobs and five machines are considered.
The operating sequences of these jobs are as follows (the
data of this example are used in all of the examples pre-
sented in this article):

Job1: O1,1 −O2,1 −O3,1,

Job2: O1,2 −O2,2 −O3,2,

Job3: O1,3 −O2,3,

with O1,1 representing the first operation ofJob1 and
O2,1 the second operation of the same job(Job1), etc.
We have a total flexibility, as any operation can be per-
formed equally well by any machine with different pro-
cessing times. According to the machine used, the pro-
cessing time of operations is different as described Ta-
ble 1. One possible chromosome has the following par-
allel machine representation:

M1 (1, 2, 0) (2, 2, 1)
M2 (2, 3, 2)
M3 (1, 1, 0) (2, 1, 3) (3, 2, 5)
M4 (3, 1, 5)
M5 (1, 3, 0)

This encoding possesses some advantage, as it gives di-
rectly a feasible schedule. The obtained solution contains
all information which a user needs, e.g. which machines
will execute every operations and at what time, which are
loaded machines and which machines are underused. This
allows the user to best manage park machines, and thereby
the production. �

K. Mesghouni et al.94

Table 1. Processing time of the operations on
different machines.

M1 M2 M3 M4 M5

O1,1 1 8 3 7 5

O2,1 3 5 2 6 4

O3,1 6 7 1 4 3

O1,2 1 4 5 3 8

O2,2 2 8 4 9 3

O3,2 9 5 1 2 4

O1,3 1 8 9 3 2

O2,3 5 9 2 5 3

Initial population

The choice of the first population is an important part in
the search for a good solution. Generally, when we deal
with an optimization problem using a binary coding, the
initial population is usually chosen randomly. Such an en-
coding is efficient when our problem does not impose any
order. In this case, the initial population is usually chosen
at random. But in a combinatorial problem such as job-
shop scheduling, some constraints such as precedence and
resources constraints must be satisfied. In this case, the bi-
nary representation is not convenient and another chromo-
some syntax must be found to fit the problem. For these
reasons, we have designed a parallel representation of the
chromosome, and in order to create and to permit our set
of solutions to evolve in a very large domain, we shall use
a combination of some methods. In this article we gener-
ate an initial population using a combination between the
following methods:

1. We use a set of solutions given by Constraint Logic
Programming (CLP) as a first population (Mes-
ghouniet al., 1999).

2. Given a solution to our problem found by other meth-
ods, such as the branch and bound method or the tem-
poral decomposition approach, we then apply genetic
operators, especially the mutation ones, to extend the
population.

3. We use a combination of the following priority rules:
• SPT: a high priority for the operation that has

the Shortest Processing Time,
• LPT: a high priority for the operation that has

the Longest Processing Time,
• LM: a high priority for the operation that per-

mits to balance the load of the machine.

Crossover operator

The predominant operator used is crossover. It involves
combining elements from two parent chromosomes into

one or more child chromosomes. The role of the crossover
is to generate a better solution by exchanging informa-
tion contained in the current good ones (Michalewicz,
1992). The idea is that useful building blocks for the so-
lution of a problem are accumulated in the population and
that crossover allows for the aggregation of good build-
ing blocks into ever better solutions to the problem. For
scheduling problems, different crossover operators have
been designed and presented in the literature (Portman,
1996; Syswerda, 1990). Inspired by them, we propose two
new crossover operators adapted to our encoding. These
operators always generate new legal offspring (a child).

Child 1 is given by the following algorithm (Mes-
ghouni, 1999):

Step 1.Parent 1, Parent 2 and machineMk are randomly
selected.

Step 2. {Oi,j} ∈ Mk of Child 1 ← {Oi,j} ∈ Mk of
Parent 1;I ← 1.

Step 3.(M is the total number of machines)

While (I < M) do
If (I 6= k) then

Copy the non-existing operations ofMI

of Parent 2 into Child 1
I ← I + 1

End If
End while

Step 4. I ← k
We suppose thatOi,j is the missing operation. So we
scan machineMk applying the following rules:

If (I = 1) then
Put Oi,j at the beginning of machineMk

End If

If (I = xj) then
Put Oi,j at the end of machineMk

End If

If (I ∈]1, xj [) then
Find the row ofOi−1,j and the row ofOi+1,j

in Child 1
Put Oi,j between the row ofOi−1,j and that
of Oi+1,j on machineMk

End If

To obtain Child 2, go to Step 2 and invert the roles of
Parents 1 and 2.

However, it is necessary to be very careful as for the
problem which admits a total flexibility (any operation can
be performed by any machine) the sequence of operations
defined by a chromosome may be incompatible with the

Evolutionary algorithms for job-shop scheduling 95

precedence constraints of the operations. We create a cy-
cle in the precedence constraint graph (Croceet al., 1995)
and some of the generated chromosomes define infeasi-
ble schedules. This problem is illustrated in the following
example: Consider two jobs and two machines. The oper-
ating sequences of these jobs are presented as follows:

Job1: O1,1 −O2,1,

Job2: O1,2 −O2,2.

Suppose that the chromosome is

M1 (2, 2, ?) (1, 1, ?)
M2 (2, 1, ?) (1, 2, ?)

Machine M1 should first execute Operation 2 of Job 2,
but it cannot do this until Operation 1 of Job 2 has been
completed. Likewise,M2 should first execute Opera-
tion 2 of Job 1, but it cannot do so until Operation 1 of
Job 1 has been completed. A deadlock situation arises and
therefore the chromosome does not define any feasible so-
lution (the starting time is represented by the symbol ‘?’).
This case of an illegal schedule is produced by a violation
of the precedence constraints.

There are two possible ways of solving this problem:

1. By modifying genetic operators so that they can al-
ways produce (through suitable manipulations) chro-
mosomes to which feasible schedules correspond
(such as our crossover operators).

2. By defining a different encoding where all chromo-
somes produce feasible schedules (this method will
be presented in the second approach).

We shall illustrate the crossover with the following
example.

Example 2.
Step 1.Suppose that Parent 1, Parent 2 and machineM4

are randomly selected.

Parent 1

M1 (1, 2, 0) (2, 2, 1)
M2 (2, 3, 2)
M3 (1, 1, 0) (2, 1, 3) (3, 2, 5)
M4 (3, 1, 5)
M5 (1, 3, 0)

Parent 2

M1 (1, 1, 0)
M2 (3, 2, 6)
M3 (2, 3, 2)
M4 (1, 2, 0) (2, 1, 3) (3, 1, 9)
M5 (1, 3, 0) (2, 2, 3)

Step 2. Copy the operations assigned toM4 of Parent 1
(respectively Parent 2) in Child 1 (resp. Child 2) on the
same machine(M4).

Child 1 in construction

M1

M2

M3

M4 (3, 1, ?)
M5

Child 2 in construction

M1

M2

M3

M4 (1, 2, ?) (2, 1, ?) (3, 1, ?)
M5

Step 3. Copy the non-existing operations ofM1, M2,
M3 and M5 of Parent 2 (resp. Parent 1) into Child 1
(resp. Child 2).

Child 1 in construction

M1 (1, 1, ?)
M2 (3, 2, ?)
M3 (2, 3, ?)
M4 (3, 1, ?)
M5 (1, 3, ?) (2, 2, ?)

Child 2 in construction

M1 (2, 2, ?)
M2 (2, 3, ?)
M3 (1, 1, ?) (3, 2, ?)
M4 (1, 2, ?) (2, 1, ?) (3, 1, ?)
M5 (1, 3, ?)

Step 4.Is any operation missing?

The answer is ‘no’ for Child 2. Then we have a new chro-
mosome. But for Child 1, two operations are missing: Op-
eration 1 of Job 2 and Operation 2 of Job 1. We put these
operations following Step 4 of the crossover algorithm and
we calculate the starting time of each operation respecting
the precedence and resource constraints according to the
formula indicated in Section 3.4. Finally, we obtain:

K. Mesghouni et al.96

Child 1

M1 (1, 1, 0)
M2 (3, 2, 6)
M3 (2, 3, 2)
M4 (1, 2, 0) (2, 1, 3) (3, 1, 9)
M5 (1, 3, 0) (2, 2, 3)

Child 2

M1 (2, 2, 3)
M2 (2, 3, 2)
M3 (1, 1, 0) (3, 2, 5)
M4 (1, 2, 0) (2, 1, 3) (3, 1, 9)
M5 (1, 3, 0)

�

Mutation operators

Mutation is the other of the two main transformation op-
erators in an evolutionary algorithm. It is the principal
source of variability in evolution and it provides and main-
tains diversity in a population. Normally, after crossover,
each child produced by the crossover undergoes mutation
with a low probability. We consider here two operators
of mutation: the assigned mutation and the swap mutation
(Mesghouni, 1999).

A. Assigned mutation:In this case, we use the flexibility
of our problem, as the operation can be performed by one
or more machines. The algorithm of the assigned mutation
is as follows:

Step 1.One chromosome and one operation are randomly
selected.

Step 2. Re-assign this selected operation to another ma-
chine in the same position if possible, respecting the
precedence and resource constraints.

Example 3.

Step 1.Suppose that the following chromosome and Op-
eration 2 of Job 1 are randomly selected (this operation is
assigned to machineM3 in the second position):

M1 (1, 2, 0) (2, 2, 1)
M2 (2, 3, 2)
M3 (1, 1, 0) (2, 1, 3) (3, 2, 5)
M4 (3, 1, 5)
M5 (1, 3, 0)

Step 2. We re-assignO3,1 to machineM5, and obtain
the following chromosome:

M1 (1, 2, 0) (2, 2, 1)
M2 (2, 3, 2)
M3 (1, 1, 0) (3, 2, 3)
M4 (3, 1, 7)
M5 (1, 3, 0) (2, 1, 3)

�

B. Swap mutation:The algorithm of the swap mutation is
as follows:

Step 1. We randomly select one chromosome, one posi-
tion, one direction and two machines.

Step 2.If (direction= false) then
make a left swap.

Else If (direction= true) then
make a right swap.

End if

Example 4.

Step 1. Assume that the following chromosome is ran-
domly selected and machinesM1 and M3, and the sec-
ond position are randomly selected.

Position 1 2 3

M1 (1, 2, 0) (2, 2, 1)
M2 (2, 3, 2)
M3 (1, 1, 0) (2, 1, 3) (3, 2, 5)
M4 (3, 1, 5)
M5 (1, 3, 0)

Step 2. The first case: direction= false→ Make a left
swap, we obtain the following chromosome:

M1 (1, 1, 0) (2, 2, 1)
M2 (2, 3, 2)
M3 (1, 2, 0) (2, 1, 5) (3, 2, 7)
M4 (3, 1, 7)
M5 (1, 3, 0)

The second case: direction= true→ Make a right swap,
we obtain the following chromosome:

M1 (1, 2, 0) (2, 2, 1) (3, 2, 3)
M2 (2, 3, 2)
M3 (1, 1, 0) (2, 1, 3)
M4 (3, 1, 5)
M5 (1, 3, 0)

�

Evolutionary algorithms for job-shop scheduling 97

3.2.2. Second Approach

Encoding problem

The second approach is based on the second chromosome
representation. It is a direct encoding which permits to
solve some of the problems met in the first encoding such
as illegal solutions (schedule) after a crossover operation
and the creation of the first population. Indeed, this encod-
ing integrates the precedence constraints. Consequently,
we can create randomly the first population, and the ge-
netic operators are very simple and produce a feasible
schedule. The second encoding is called the Parallel Jobs
Encoding (PJE). It also enables us to treat together assign-
ment and scheduling problems. The parallel job encoding
is given as follows: The chromosome is represented by
a matrix where each row is an ordered series of the op-
erating sequences of this job, each element of this row
containing two terms. The first is the machine which per-
forms the operation considered, the second is the starting
time of this operation if its assignment to this machine is
definitive. This starting time is calculated taking into ac-
count the resource constraints. The general configuration
of this encoding is shown in Fig. 2. Each row of this ma-

Jobj Operation 1 Operation 2 Operationxj

Job1 (M1, tM1) (M2, tM2) · · ·
Job2 (M3, tM3) (M1, tM1)
· · · · · ·

Jobn (M2, tM2) (M5, tM5) · · ·

Fig. 2. Parallel job encoding.

trix (chromosome) is presented as follows:

Jobj : (Ma, tMa
), (Mb, tMb

), . . . ,

where each column (operation) of this job contains the
machine which performs this operation and the starting
time of this operation performed on this machine. For
Jobj , the first operation is performed on machineMa at
time tMa

, and Operation 2 is performed on machineMb

at time tMb
.

For the example presented in Section 3.2.1, one pos-
sible chromosome has the following parallel job encoding:

Job1 (M3, 0) (M3, 3) (M4, 5)
Job2 (M1, 0) (M1, 1) (M3, 5)
Job3 (M5, 0) (M2, 2)

Crossover operators

In this section we present two new crossover operators
adapted to our parallel job encoding. These operators al-
ways generate a new legal offspring.

A. Row crossover:the algorithm of this crossover is pre-
sented as follows:

Step 1.Choose randomly two parents (chromosomes) and
one job (a row of the matrix). We suppose that Parents 1
and 2 andJobJ are randomly selected.

Step 2. The operations ofJobJ in Child 1 received the
same machines as assigned to the sameJobJ of Parent 1.

Step 3.Browse all of the jobs (the row)R← 1
While ((R < N) and (R 6= J)) do

Copy the remainder of the machines
assigned to the operations ofJobR
of Parent 2 in the same job (R) of Child 1
R← R + 1

End

To obtain Child 2, go to Step 2 and interchange the
roles of Parent 1 and Parent 2.

Example 5.

Step 1.Assume that two chromosomes, Parent 1 and Par-
ent 2, andJob2 (the second row in the chromosome) are
randomly selected.

Parent 1

Job1 (M3, 0) (M3, 3) (M4, 5)
Job2 (M1, 0) (M1, 1) (M3, 5)
Job3 (M5, 0) (M2, 2)

Parent 2

Job1 (M1, 0) (M4, 3) (M4, 9)
Job2 (M4, 0) (M5, 3) (M2, 6)
Job3 (M5, 0) (M3, 2)

Step 2.The operation ofJob2 in Child 1 (resp. Child 2)
received the same machines as those assigned toJob2 of
Parent 1 (resp. Parent 2).

Child 1 in construction

Job1

Job2 (M1, ?) (M1, ?) (M3, ?)
Job3

Child 2 in construction

Job1

Job2 (M4, ?) (M5, ?) (M2, ?)
Job3

K. Mesghouni et al.98

Step 3. Copy the remainder of the machines assigned
to the operation of the other jobs (in this example it was
about Job1 and Job3) of Parent 1 (resp. Parent 2) in the
same jobs of Child 2 (resp. Child 1).

Child 1 in construction

Job1 (M1, ?) (M4, ?) (M4, ?)
Job2 (M1, ?) (M1, ?) (M3, ?)
Job3 (M5, ?) (M3, ?)

Child 2 in construction

Job1 (M3, ?) (M3, ?) (M4, ?)
Job2 (M4, ?) (M5, ?) (M2, ?)
Job3 (M5, ?) (M2, ?)

We can remark that the two offspring (Child 1 and Child 2)
are legal, all of the precedence constraints are respected,
and the starting time of each operation can be calculated
while satisfying resource constraints. The following solu-
tions, representing feasible schedules, are obtained:

Child 1

Job1 (M1, 0) (M4, 1) (M4, 7)
Job2 (M1, 1) (M1, 2) (M3, 4)
Job3 (M5, 0) (M3, 2)

Child 2

Job1 (M3, 0) (M3, 3) (M4, 5)
Job2 (M4, 0) (M5, 3) (M2, 11)
Job3 (M5, 0) (M2, 2)

�

B. Column crossover:we illustrate this operator by the
following algorithm.

Step 1.Choose randomly two parents (chromosomes) and
one operation (a column of the matrix). We suppose that
Parent 1, Parent 2 and Operationi are randomly selected.

Step 2. Operation i of all jobs in Child 1 received the
same machines as those assigned to Operationi of all
jobs of Parent 1.

Step 3.Browse all the other operations (columns)C ← 1
While ((C < I) and (C 6= i)) do (I is the total
number of operations in the shop)

Copy the remainder of the machines assigned
to the other operations of all the jobs Parent 2
in the same operations(i) of Child 1.
C ← C + 1

End while.

To obtain Child 2, go to Step 2 and inverse the roles
of Parent 1 and Parent 2.

The following example explains the use of this oper-
ator.

Example 6.

Step 1. It is assumed that the parents of the previous ex-
ample and Operation 2 are randomly selected.

Step 2. Operation 2 of all the jobs (Job1, Job2 and
Job3) in Child 1 (resp. Child 2) received the same ma-
chines assigned to Operation 2 of all the jobs of Parent 1
(resp. Parent 2) indicated in boldface in Fig. 2.

Step 3. Copy the remainder of the machines assigned to
the other operations (Operations 1 and 3 ofJob1, Job2

and Operation 1 ofJob3) of Parent 2 (resp. Parent 1) in
the same operations of Child 1 (resp. Child 2) indicated in
italic in Fig. 2.

Child 1

Job1 (M1, 0) (M3, 1) (M4, 3)
Job2 (M4, 0) (M1, 3) (M2, 11)
Job3 (M5, 0) (M2, 2)

Child 2

Job1 (M1, 0) (M4, 1) (M4, 7)
Job2 (M1, 0) (M5, 2) (M3, 5)
Job3 (M5, 0) (M3, 2)

Fig. 3. Two new correct children after a column crossover.

�

Operator of mutation

In this part, we present a new mutation operator, called
the controlled mutation operator, designed especially for
our parallel jobs encoding, as it can balance the machine
loads. The algorithm of this operator is presented as fol-
lows:

Step 1. Choose randomly one chromosome and one op-
eration from the set of operations assigned to a machine
with a high load.

Step 2. Assign this operation to another machine with a
small load, if possible.

Example 7.

Step 1. It is assumed that the chromosome of Fig. 4 is
randomly selected. The working times of the machines
are calculated, representing their hourly loads expressed
in time units, cf. Fig. 5.

Evolutionary algorithms for job-shop scheduling 99

Job1 (M1, 0) (M4, 3) (M4, 9)
Job2 (M4, 0) (M5, 3) (M2, 6)
Job3 (M5, 0) (M3, 2)

Fig. 4. Selected chromosome for the mutation.

Machine M1 M2 M3 M4 M5

Hourly load 1 5 2 13 5

Fig. 5. Hourly load of the machine before mutation.

It can be observed that machineM4 has a high load
and then that machineM1 has a small load. Operations 2
and 3 of Job1 and Operation 1 ofJob2 are performed
by machineM4. One operation is randomly chosen from
this set. In this case Operation 2 ofJob1 is assumed to
be randomly selected (in boldface in Fig. 4).

Step 2.Re-assign the operation previously selected to ma-
chine M1.

After calculating the new starting time of all oper-
ations satisfying the resource constraints, we obtain the
chromosome of Fig. 6.

Job1 (M1, 0) (M1, 1) (M4, 4)
Job2 (M4, 0) (M5, 3) (M2, 6)
Job3 (M5, 0) (M3, 2)

Fig. 6. Our chromosome after mutation.

The hourly load for this new solution is calculated,
giving the results shown in Fig. 7.

Machine M1 M2 M3 M4 M5

Hourly load 4 5 2 7 5

Fig. 7. Hourly load of the machine after mutation.

�

3.3. Fitness Function

Fitness is a measure of how well an algorithm has learnt
to predict the outputs from the inputs. The goal of hav-
ing a fitness evaluation is to give feedback to the learn-
ing algorithm regarding which individuals should have a
higher probability of being allowed to multiply and repro-
duce and which of them should have a higher probability
of being removed from the population.

Evaluation functions play the same role in EAs as the
environment in natural evolution. It must indicate the as-
pects of schedules which make them seem right or wrong

to the users. In this article, the objective is the minimiza-
tion of a makespan. The fitness function can be expressed
in two different manners:

1) corresponding to the time moment at which the be-
lated machine finish executing its last operation, and

2) corresponding to the time moment at which the be-
lated job ends.

The makespan(Cmax) is calculated, according to
the following flow chart:

Step 1.Begin l← 1

Step 2.If (first approach (PME) is used) then
While (l < M) do

CalculateCmaxl ← Ci,j,k (time of comple-
tion of the last scheduling operation onMl)
l← l + 1

End While
Cmaxch = Max(Cmax1, Cmax2, . . . , CmaxM)

End If

If (second approach (PJE) is used) then
While (l < N) do

CalculateCmaxl ← Cxj,j,k (time of comple-
tion of the last scheduling operation of jobJ)
l← l + 1

End While
Cmaxch = Max(Cmax1, Cmax2, . . . , CmaxN)

End If

For each chromosome the fitness function aims to
find the minimum Cmax, and is represented as follows:

Fitness = Min (Cmaxch1, Cmaxch2, . . . , Cmaxchpopsize),

where the subscripts represent the chromosomes.

3.4. Computation of the Starting Time

For efficient use of evolutionary algorithms in such a com-
binatorial problem, we should choose efficiently a repre-
sentation of the solution, the encoding should be simple,
robust, and give the user the necessary information. Thus
when designing our two-chromosome representation, to
know the starting time of each operation on each chromo-
some is a piece of information. In order to calculate the
starting time of each operation, we must define the follow-
ing vectors:

TF : Contains the deadline of the last operation scheduled
on Jobj (size(TF) = N).

DMk
: Contains the deadline of the last operation sched-

uled on machineMk (size(DMk
) = M).

K. Mesghouni et al.100

Table 2. Operating sequences of the jobs and their processing times on all machines.

Ops Order M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

O1,1 1 4 6 9 3 5 2 8 9 5
Job1 O2,1 1,3,2 3 2 5 1 5 6 9 5 10 3

O3,1 4 1 1 3 4 8 10 4 11 4
O1,2 4 8 7 1 9 6 1 10 7 1

Job2 O2,2 2,1,3 2 10 4 5 9 8 4 15 8 4
O3,2 6 11 2 7 5 3 5 14 9 2
O1,3 8 5 8 9 4 3 5 3 8 1

Job3 O2,3 1,2,3 9 3 6 1 2 6 4 1 7 2
O3,3 7 1 8 5 4 9 1 2 3 4
O1,4 5 10 6 4 9 5 1 7 1 6

Job4 O2,4 1,2,3 4 2 3 8 7 4 6 9 8 4
O3,4 7 3 12 1 6 5 8 3 5 2
O1,5 6 1 4 1 10 4 3 11 13 9

Job5 O2,5 2,3,1 7 10 4 5 6 3 5 15 2 6
O3,5 5 6 3 9 8 2 8 6 1 7
O1,6 8 9 10 8 4 2 7 8 3 10

Job6 O2,6 1,2,3 7 3 12 5 4 3 6 9 2 15
O3,6 4 7 3 6 3 4 1 5 1 11
O1,7 5 4 2 1 2 1 8 14 5 7

Job7 O2,7 3,2,1 3 8 1 2 3 6 11 2 13 3
O3,7 1 7 8 3 4 9 4 13 10 7
O1,8 8 3 10 7 5 13 4 6 8 4

Job8 O2,8 3,1,2 6 2 13 5 4 3 5 7 9 5
O3,8 5 7 11 3 2 9 8 5 12 8
O1,9 3 9 1 3 8 1 6 7 5 4

Job9 O2,9 1,2,3 4 6 2 5 7 3 1 9 6 7
O3,9 8 5 4 8 6 1 2 3 10 12
O1,10 9 2 4 2 3 5 2 4 10 23

Job10 O2,10 3,2,1 3 1 8 1 9 4 1 4 17 15
O3,10 4 3 1 6 7 1 2 6 20 6

Begin
i← 1
While (i < I) do

J ← 1
While (Jobj < N) do

Calculate(ti,j,Mk
)

Update(TF [j], DMk
[i])

End while
End while

End.

Procedure Calculate(ti,j,Mk
)

Begin
If (TF [j] < DMk

[i]) then
ti,j,Mk

← DMk
[i]

Else
ti,j,Mk

← TF [j]
End

Procedure Update(TF [j], DMk
[i])

Begin
TF [j]← ti,j,Mk

+ Pi,j,Mk

DMk
[i]← ti,j,Mk

+ Pi,j,Mk

End

4. Simulation Results

Computer simulations were performed to evaluate the ef-
fectiveness of the parallel machine and parallel job encod-
ing. For this purpose, we analysed the following exam-
ple: We consider 10 jobs and 10 machines. This prob-
lem presents a total flexibility (any machine can perform
any operation). The makespan is known and equal to 16
units of time. Each job has 3 operations in its operating
sequence. The processing times of these operations are
presented in Table 2.

Evolutionary algorithms for job-shop scheduling 101

A) Using the first approach (parallel machine
encoding)

The initial population has been created by taking the
known solution as the first chromosome. We applied vari-
ous mutations to extend it and to obtain 50 chromosomes.
We used then genetic operators to improve this set of so-
lutions towards an optimal one. Ten test runs were per-
formed with the following rates of genetic operators:

Crossover rate= 75%,
Mutation rate= 5%,
Number of generations= 5000.

Table 3 shows the generation number giving the best
makespan. The best result is presented in Fig. 8.

Table 3. Generation number giving the best makespan.

Run number Generation number Makespan

1 2265 7

2 2136 7

3 1965 7

4 1936 7

5 2035 7

6 1853 7

7 1896 7

8 1906 7

9 1885 7

10 1869 7

0

5

10

15

20

0 1000 2000 3000 4000 5000

Generations

M
ak

es
pa

n

Fig. 8. Decrease in the schedule cost.

We can remark that an improvement inCmax was
over 56% of time. The best makespan is equal to 7 time
units and was obtained in the best case compared with our
ten test runs after 1853 generations.

B) Using the second approach (parallel job encoding)

In this case, the initial population was created randomly
and is shown in Fig. 9. We use ten simulations with
our evolutionary algorithms to improve the solution to-
wards an optimal one, with different crossover and mu-
tation rates. Figure 10 represents the solutions obtained

0

15

30

45

60

0 5 10 15 20 25 30 35 40 45 50

Chromosomes

M
ak

es
pa

n

Fig. 9. Makespan of the first randomly generated population.

after ten executions with different genetic parameters. The
crossover and mutation rates (Pc and Pm) were varying
and the population size was fixed to 50 chromosomes. The
makespan obtained in all the cases is equal to 7 time units.
We run it for 5000 generations.

The best solution is obtained after 970 generations
with Pc equal to 0.75,Pm equal to 0.1 and it presented
in Fig. 10(a). We can remark that we obtained rapid con-
vergence when the mutation rate varied between 0.1 and
0.2. The parallel machines encoding and the parallel jobs
encoding give very good results. Therefore, the PJE takes
lower time regarding the PME.

5. Conclusion

The application of evolutionary algorithms to a flexible
job-shop scheduling problem with real-world constraints
has been defined. We demonstrated that choosing a suit-
able representation of chromosomes (parallel encoding) is
an important step to get better results.

We have developed genetic operators adapted for
each representation (swap and assigned mutation for the
PME, and row and column crossover and controlled mu-
tation for the PJE), and an efficient method to create an
initial population (a combination of some methods for the
PME, and a random approach for the PJE because all of
the constraints are integrated on the chromosome syntax).

A proper selection of genetic parameters for an ap-
plication of EAs is still an open issue. These parameters
(crossover rate, mutation rate, population size, etc.) are
usually selected heuristically. There are no guidelines as
to the exact strategies to be adopted for different prob-
lems. In this work, we applied a fixed population size
with different values of crossover and mutation rates. The
controlled mutation reduces the blind aspect of genetic
algorithms. Investigations are therefore necessary to de-
termine these controlling parameters properly, in order to
improve the performance of the proposed method. Sim-
ulation results show that the proposed parallel represen-
tations are suitable to the job-shop scheduling problem,
confirming the effectiveness of the proposed approach.

K. Mesghouni et al.102

0
5

10
15
20
25
30

0 1000 2000 3000 4000 5000

Generations

M
ak

es
pa

n

(a)Pc = 0.75 andPm = 0.1.

0
5

10
15
20
25
30

0 1000 2000 3000 4000 5000

Generations

M
ak

es
pa

n

(b) Pc = 0.75 andPm = 0.2.

0
5

10
15
20
25
30

0 1000 2000 3000 4000 5000

Generations

M
ak

es
pa

n

(c) Pc = 0.75 andPm = 0.3.

0

5
10

15
20

25

0 1000 2000 3000 4000 5000

Generations

M
ak

es
pa

n

(d) Pc = 0.95 andPm = 0.1.

0
5

10
15
20
25
30

0 1000 2000 3000 4000 5000

Generations

M
ak

es
pa

n

(e)Pc = 0.95 andPm = 0.2.

0
5

10
15
20
25
30

0 1000 2000 3000 4000 5000

Generations

M
ak

es
pa

n

(f) Pc = 0.95 andPm = 0.3.

Fig. 10. Solutions obtained after ten exucutions.

References

Baghi S., Uckun S., Miyab Y. and Kawamura K. (1991):Explor-
ing problem-specific recombination operators for job shop
scheduling. — Proc. 4-th Int. Conf.Genetic Algorithms,
University of California, San Diego, pp. 10–17, July 13–
16.

Banzhaf W., Nordin P., Keller R.E. and Francone F.D. (1998):
Genetic Programming: An Introduction on the Automatic
Evolution of Computer Programs and Its Application. —
San Francisco: Morgan Kaufmann.

Bruns R. (1993):Direct chromosome representation and ad-
vanced genetic operators for production scheduling. —
Proc. 5-th Int. Conf.Genetic Algorithms, University of Illi-
nois at Urbana-Champaign, pp. 352–359.

Carlier J. and Chretienne P. (1988): Problèmes
d’ordonnancement: Modélisation / complexité / algo-
rithmes. — Paris: Masson.

Croce F., Tadei R. and Volta G. (1995):A genetic algorithm
for the job shop problem. — Comp. Opers. Res., Vol. 22,
No. 1, pp. 15–24.

Dasgupta D. and Michalewicz Z. (1997):Evolutionary Algo-
rithms in Engineering Applications. — Berlin: Springer-
Verlag.

Della Croce F., Tadei R. and Volta G. (1995):A Genetic Al-
gorithm for Job Shop Problem. — Comput. Ops. Res.,
Vol. 22, No. 1, pp. 15–24.

Fonseca C.M. and Fleming P.J. (1998):Multiobjective op-
timization and multiple constraint handling with evolu-
tionary algorithms, Part I: Unified formulation. — IEEE
Trans/SMC, Part A: Syst. Hum., Vol. 28, No. 1, pp. 26–37.

Garey M.R. and Johnson D.S. (1979):Computers and In-
tractability: A Guide to Theory of NP-Completeness. —
New York: W.H. Freeman and Co.

Goldberg D.E. (1989):Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. — Massachusetts: Addison
Wesley.

Golver F., Taillard E., De Werra D. (1993):A user’s guide to
tabu search. — Ann. Opers. Res., Vol. 41, No. 1, pp. 3–28.

Kirkpatrick S., Gelatt C.D. and Vecchi M.P. (1983):Opti-
mization by simulated annealing. — Science, Vol. 220,
No. 4598, pp. 671–680.

Mesghouni K., Hammadi S. and Borne P. (1998):On modeling
genetic algorithm for flexible job-shop scheduling problem.
— Stud. Inform. Contr. J., Vol. 7, No. 1, pp. 37–47.

Mesghouni K. (1999):Application des algorithmes évolution-
nistes dans les problemes d’optimisation en ordonnance-
ment de la production. — Ph.D. Thesis, Lille 1 University,
France.

Mesghouni K., Pesin P., Trentesaux D., Hammadi S., Tahon C.
and Borne P. (1999):Hybrid approach to decision making
for job-shop scheduling. — Prod. Plann. Contr. J., Vol. 10,
No. 7, pp. 690–706.

Michalewicz Z. (1992):Genetic Algorithms + Data Structures
= Evolution Programs. — Berlin: Springer.

Evolutionary algorithms for job-shop scheduling 103

Portman C.M. (1996):Genetic algorithms and scheduling: A
state of the art and some proposition. — Proc. Workshop
Production Planning and Control, Mons, Belgium, pp. i-
xxiv.

Quagliarella D., Périaux J., Poloni C. and Winter G. (1998):Ge-
netic Algorithms and Evolution Strategies in Engineering
and Computer Sciences. — England: John Whiley.

Syswerda G. (1990):Schedule optimization using genetic algo-
rithm, In: Handbook of Genetic Algorithm. — pp. 323–
349, New York: Van Nostrand Reinhold.

Uckun S., Baghi S. and Kawamura K. (1993):Managing genetic
search in job-shop scheduling. — IEEE Expert, Vol. 8,
No. 5, pp. 15–24.

Received: 12 February 2001
Revised: 23 July 2001
Re-revised: 2 July 2003

