
Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 1, 13–18

NEWTON’S ITERATION WITH A CONJUGATE GRADIENT BASED
DECOMPOSITION METHOD FOR AN ELLIPTIC PDE WITH

A NONLINEAR BOUNDARY CONDITION

JONAS KOKO∗

∗ LIMOS, Université Blaise Pascal, CNRS UMR 6158
ISIMA, Campus des Cézeaux – BP 10125, F–63173 Aubière cedex, France

e-mail:koko@sp.isima.fr

Newton’s iteration is studied for the numerical solution of an elliptic PDE with nonlinear boundary conditions. At each
iteration of Newton’s method, a conjugate gradient based decomposition method is applied to the matrix of the linearized
system. The decomposition is such that all the remaining linear systems have the same constant matrix. Numerical results
confirm the savings with respect to the computational cost, compared with the classical Newton method with factorization
at each step.

Keywords: Newton’s method, conjugate gradient method, nonlinear PDE

1. Introduction

Newton’s method is a standard tool for numerical solu-
tion of nonlinear equations (Dennis and Schnabel, 1996;
Hugheset al., 1987; Ortega and Rhainboldt, 1970; Son-
nenveldet al., 1985), replacing the original problem with
a sequence of linearized problems. The matrix of the lin-
earized problem changes at each iteration, and using direct
linear solvers results in too many matrix factorizations.
Except for very special cases (see, e.g., (Golub and Van
Loan, 1989, §12.6; Golubet al., 1974)), a factorization
(LU , LDLT , RRT , etc.) cannot be updated even though
only few entries of the matrix have changed.

In this paper we propose a Newton/Conjugate Gra-
dient (NCG) method for an elliptic PDE with a nonlinear
boundary condition. The nonlinear boundary condition
implies that only a small number of matrix entries change
at Newton’s iteration. To avoid matrix factorizations at
each iteration, we apply a conjugate gradient based de-
composition to treat the varying part of the matrix for the
linearized problem. Then the remaining linear systems
have the same constant matrix. If a Cholesky factoriza-
tion is performed at the initialization step, the solutions
to all the linear systems during the iterative process then
reduce to backward-forward substitutions.

The paper is organized as follows: In Section 2 we
recall Newton’s method using a model problem. The con-
jugate gradient decomposition method is presented in Sec-
tion 3, followed by its application to the model problem in
Section 4. Finally, some numerical experiments are pre-
sented in Section 5.

2. Newton’s Method for a Model Problem

Let Ω be a bounded open set inR2 with boundaryΓ.
We assume thatΓ = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅,
meas(ΓD) > 0 and meas(ΓN) > 0. Consider the model
problem

−∆u = f in Ω, (1)

u = 0 on ΓD, (2)

∂u

∂n
= −ϕ(u) on ΓN , (3)

whereϕ(u) = |u|αu, for α ≥ 2.

Let H1(Ω) denote the standard Hilbert space with
respect to the domainΩ. To write down the variational
formulation of (1)–(3), we define the subspace

V =
{
v ∈ H1(Ω), v = 0 onΓD

}
and introduce the following notation:

a(u, v) =
∫

Ω

∇u · ∇v dx,

(f, v) =
∫

Ω

fv dx,

(u, v)ΓN
=

∫
ΓN

uv dΓ.

The weak formulation of (1)–(3) is then given by the
nonlinear variational problem: Findu ∈ V such that

a(u, v) +
(
ϕ(u), v

)
ΓN

= (f, v), ∀v ∈ V. (4)

J. Koko14

We can introduce the functionalJ defined by

J(u) =
1
2
a(u, u) +

1
α+ 2

∫
ΓN

|u|α+2 dΓ− (f, u). (5)

Then the variational equation (4) characterizes stationary
points of (5), i.e., solving the nonlinear variational equa-
tion (4) is equivalent to findingu ∈ V such that

J(u) ≤ J(v), ∀v ∈ V. (6)

Since the functionalJ is convex and Gâteaux differen-
tiable, the minimization problem (6) (and therefore the
variational equation (4)) has a unique solution.

To solve the nonlinear equation (4), we can use New-
ton’s iterative method. Starting from an initial guessu0,
Newton’s method applied to (4) results in the following
iteration for n ≥ 0:

wn ∈ V,

a(wn, v) +
(
ϕ′(un)wn, v

)
ΓN

= b(un, v),

∀v ∈ V, (7)

un+1 = un + wn, (8)

where(
ϕ′(un)wn, v

)
ΓN

=
∫

ΓN

(α+ 1)|un|αwnv dΓ,

b(un, v) = (f, v)− a(un, v)−
(
ϕ(un), v

)
ΓN
.

Consider a discretization of (4) overΩ, assuming
that Vh ⊂ H1(Ω) is a linear finite element space. The
finite element approximation of (4) is

uh ∈ Vh; a(uh, vh) +
(
ϕ(uh), vh

)
Γn

= (f, vh),

∀vh ∈ Vh. (9)

Newton’s iteration (7)–(8) becomes

wn
h ∈ Vh,

a(wn
h , vh) +

(
ϕ′(un

h)wn
h , vh

)
ΓN

= b(un
h, vh),

∀vh ∈ Vh, (10)

un+1
h = un

h + wn
h , (11)

and Newton’s iteration (10)–(11) is equivalent to the fol-
lowing sequence of algebraic problems forn ≥ 0:

Awn +D(un)wn = b(un), (12)

un+1 = un + wn, (13)

where A is a symmetric positive definite matrix and
D(un) is a diagonal matrix with a small number of

nonzero entries (corresponding to the nodes ofΓN).
Since the matrix of the linear system (12) changes from it-
eration to iteration, using a direct linear solver may make
Newton’s method prohibitively expensive to use. More-
over, classical solvers do not take into account the fact
that only a small number of entries of the matrix in (12)
change at each iteration due to the structure ofD(un).

3. Decomposition Method

Let A be anN × N nonsingular matrix,D an N ×
N diagonal matrix andb ∈ RN . We first consider the
following linear system:

Ax+Dx = b. (14)

The main idea of our method is to solve (14) using only
the factorization ofA. Now, consider the linear system

Ax = b−Dy, (15)

keeping in mind that in (12), only the matrixD varies
from iteration to iteration. For an arbitraryy in RN , the
solution of (15) is not that of (14). However, we know that
for y = x, the solutions of (15) and (14) coincide.

Let P be a symmetric, positive definite matrix. With
P we can define the energy norm

|x|P =
√

(Px, x)RN , (16)

where (·, ·)RN denotes the canonical Euclidean inner
product in RN . In our decomposition method we choose
y in (15) as a minimizer of the real-valued function

Fε(y) =
1
2
|y − x|2P +

ε

2
|y|2P , (17)

with ε ∈]0, 1[as the penalty parameter. The functionFε

above is quadratic and coercive since

Fε(y) ≥
ε

2
|y|2P .

Instead of the original problem (14), we solve the follow-
ing minimization problem: Findy∗ ∈ RN such that

Fε(y∗) ≤ Fε(y), ∀y ∈ RN . (18)

Note that the solution of (18) is only an approximate
solution of the original problem (14). Then it remains to
show that the solution of (18) converges to that of (14) as
ε→ 0.

Theorem 1. (Convergence with vanishing penalty param-
eter) Let yε be the solution of (18) andxε the corre-
sponding solution of (15) for a penalty parameterε ∈
]0, 1[. Let x be the solution of (14). Thenyε → x and
xε → x as ε→ 0.

Newton’s iteration with a conjugate gradient based decomposition method for an elliptic PDE. . . 15

Proof. Since yε is a minimizer ofFε, for all ε > 0 we
haveFε(yε) ≤ Fε(x), i.e.,

|yε − xε|2P + ε|yε|2P ≤ ε|x|2P < |x|2P . (19)

Then the sequence(yε, xε) is uniformly bounded in
RN × RN . Thus there exists a subsequence, also de-
noted by(yε, xε), which converges to an element(ȳ, x̄)
in RN × RN as ε → 0. From (19) we deduce that
ȳ = x̄. By passing to the limit in (14), it follows that
x̄ solves (14), and thus̄x = x by the uniqueness.

The mappingy 7→ x = x(y) is linear and continu-
ous, so we have

x(y + td) = x+ tw,

wherew is the solution of the sensitivity system

Aw = −Dd. (20)

The first directional derivative ofFε is then given by

∂

∂y
Fε(y) · d =

(
P (y − x), d− w

)
RN + ε(Py, d)RN ,

∀y, d ∈ RN . (21)

In order to construct descent directions forFε, we
need the gradient vectorg := ∇Fε(y) defined by

∂

∂y
Fε(y) · d =

(
∇Fε(y), d

)
RN .

To this end, we can, e.g., computew explicitly in (20) by
inverting A, i.e.,

w = −A−1Dd. (22)

Substituting (22) into (21), we get

∂

∂y
Fε(y) ·d =

(
P (y−x), d+A−1Dd

)
RN +ε(Py, d)RN .

After elementary algebraic calculations, we get

∂

∂y
Fε(y) · d =

(
(I +DA−1)P (y − x), d

)
RN

+ ε(Py, d)RN ,

where I is the identity matrix. Therefore we deduce that

g = ∇Fε(y) = (I +DA−1)P (y − x) + εPy. (23)

In practice, to avoid the computation ofA−1, the gradient
g = ∇Fε(y) is obtained in two steps as follows:

Az = P (y − x), (24)

g = Dz + P (ε1y − x), (25)

whereε1 = 1 + ε.

To solve (18), we now consider methods of the gen-
eral type, fory0 arbitrarily given,

yk+1 = yk + tkd
k, k = 0, 1, 2, (26)

The descent directiondk will, in general, be con-
structed using the gradient obtained with (24) and (25).
If at each stepk, setting dk = −gk = −∇Fε(yk), we
obtain a gradient based algorithm. AsFε is a quadratic
function, a conjugate gradient algorithm is the best op-
timization algorithm in terms of computational efforts
and storage requirements because (theoretically) it con-
verges in a finite number of iterations. For detailed stud-
ies of conjugate gradient methods, see, e.g., (Luenberger,
1989; Polak, 1971). At each stepk, the conjugate gradient
direction (in the Fletcher-Reeves version) is given by

dk = −gk + βkd
k−1,

βk =
|gk|2

|gk−1|2
,

with | · | being the Euclidean norm.

For a given descent directiondk, the step sizetk is
computed in such a way so as to minimize the real-valued
function

ψ(t) = Fε(yk + tdk), t > 0.

SinceFε is a quadratic function,tk is the unique solution
of the linear equation

ψ′(t) =
∂

∂y
Fε(yk + tdk) · dk

=
(
∇Fε(yk + tdk), dk

)
RN = 0.

Using (23), after a straightforward calculation, we obtain

tk = − (gk, dk)RN

|dk − wk|2P + ε|dk|2P
, (27)

wherewk is the solution of

Awk = −Ddk.

We can now present our conjugate gradient based de-
composition algorithm:

Algorithm CG:

Step 0. Initialization: y0 arbitrarily given.
Ax0 = b−Dy0,

Az0 = P (y0 − x0),
g0 = Dz0 + P (ε1y0 − x0),
d0 = −g0.

J. Koko16

Step k≥0. Assume thatyk, xk and dk are known.
Descent:
Awk = −Ddk.

Computetk with (27):

yk+1 = yk + tkd
k,

xk+1 = xk + tkw
k.

New direction:
Azk+1 = P (yk+1 − xk+1),
gk+1 = Dzk+1 + P (ε1yk+1 − xk+1),
βk = |gk+1|2/|gk|2,

dk+1 = −gk+1 + βkd
k.

We stop iterating as soon as|gk|/|g0| is sufficiently
small. At each step of Algorithm CG, we solve two linear
systems (20) and (24). Noting that the two linear systems
have the same matrix which does not change during the it-
erative process, a Cholesky factorization can be performed
only once. The solution to (20) and (24) during the iter-
ative process then reduces to backward-forward substitu-
tions.

An important point that remains to be dealt with is
the choice of the matrixP used to define the energy
norm (16). The matrixP is a preconditioner. A suitable
choice forP guarantees a fast and numerically scalable1

conjugate gradient algorithm. Our choice for numerical
experiments of Section 5 isP = diag(P11, . . . , PNN)
with

Pii = 1 +Dii/Aii, i = 1, . . . , N,

derived from (23) since the conjugate gradient algorithm
solves∇Fε(y) = 0.

4. Application to Newton’s Iteration

Applying the conjugate gradient decomposition algorithm
of the previous section to Newton’s iteration (12)–(13) is
quite straightforward. It suffices to solve (12) with Algo-
rithm CG.

Algorithm NCG:

Step 0. Guessu0.

Stepn≥0. ComputeDn := D(un) and bn := b(un).
Solve the system

Awn +Dnwn = bn

using Algorithm CG.
Update the approximate solution:un+1 = un+wn.

1 An iterative method is said to benumerically scalableif its conver-
gence properties, e.g., the number of iterations needed for conver-
gence are asymptotically independent of the size of the problem to
be solved.

It is now clear that one factorization (at the initial-
ization step) of the matrixA suffices to solve all linear
systems of Algorithm NCG.

Note that sinceDn has a small number of nonzero
entries, operations involvingDn in Algorithm CG must
be adapted to reduce the computational cost.

5. Numerical Results

Algorithm NCG outlined in the previous sections was im-
plemented in Fortran 90, in double precision arithmetic,
on an SGI Origin200 Server. In this section we report
some numerical results. The stopping criterion of New-
ton’s iterations is

|wn|
|un|

< 10−6. (28)

Note that we do not need high accuracy in solving (12)
with the conjugate gradient decomposition algorithm.
Then, for the conjugate gradient decomposition algorithm,
we use the following stopping criterion:

|gk|
|g0|

< εn = max
{
0.1εn−1, 10−4

}
,

where the subscriptn indicates the index of Newton’s it-
eration, withε0 = 0.1.

We choose the domainΩ = (0, 1) × (0, 1) and the
right-hand side

f(x, y) =
2c′′(y)

c(y) + x√
2

− 2c′(y)(
c(y) + x√

2

)2

− e−1

(
c(y) +

x√
2

)2

,

c(y) = e−y

taken from (Abbasian and Carey, 1998).

The domain was first discretized by a nonuniform
mesh consisting of 177 nodes, 312 triangles and 11 nodes
on ΓN . This initial mesh was successively refined to pro-
duce meshes with 665, 2577, 10145 and 40257 nodes,
respectively. Performances of the classical Newton-
Raphson method (NR method in what follows), with a
factorization at each step, are reported in Tables 1–3. Per-
formances of Algorithm NCG are reported in Tables 4–6.
The CPU times reported in all tables were obtained by the
Fortran 90 intrinsic subroutinecpu_time , called just be-
fore and after Newton’s loop.

First, we notice that, in Algorithm NCG, the conju-
gate gradient decomposition algorithm does not alter the
number of Newton’s iterations. We also notice that the

Newton’s iteration with a conjugate gradient based decomposition method for an elliptic PDE. . . 17

Table 1. Performances of the Newton-Raphson
algorithm forα = 2.

Number ofΓN nodes 11 21 41 81 161

Number of iterations 4 4 4 4 4

CPU time (in sec.) 0.01 0.057 0.378 4.371 53.209

Table 2. Performances of the Newton-Raphson
algorithm forα = 3.

Number ofΓN nodes 11 21 41 81 161

Number of iterations 4 4 4 4 4

CPU time (in sec.) 0.01 0.055 0.379 4.404 53.121

Table 3. Performances of the Newton-Raphson
algorithm for α = 5.

Number ofΓN nodes 11 21 41 81 161

Number of iterations 4 4 4 4 4

CPU time (in sec.) 0.01 0.058 0.379 4.369 53.141

Table 4. Performances of Algorithm NCG forα = 2.

Number ofΓN nodes 11 21 41 81 161

Newton iterations 4 4 4 4 4

CG iterations 10 10 10 10 10

Speed up 1.42 1.5 1.58 1.52 1.72

Table 5. Performances of Algorithm NCG forα = 3.

Number ofΓN nodes 11 21 41 81 161

Newton iterations 4 4 4 4 4

CG iterations 6 6 6 6 6

Speed up 2 1.96 2.08 2.02 2.18

Table 6. Performances of Algorithm NCG forα = 5.

Number ofΓN nodes 11 21 41 81 161

Newton iterations 4 4 4 4 4

CG iterations 6 6 6 6 6

Speed up 2 2.07 2.07 2.02 2.18

number of Newton’s and conjugate gradient iterations re-
quired to satisfy (28) was virtually independent of the
mesh size for a fixedα. Therefore the number of solutions
to the linear systems was independent of the mesh size.
The speed up reported in Tables 4–6 show that the savings
in the computational cost, obtained with Algorithm NCG,

were significant. Even for small size problems, our algo-
rithm is faster than the classical Newton algorithm.

To complete the study of the numerical behaviour of
our algorithm, we examined the case when the Cholesky
solver was replaced by the Preconditioned Conjugate Gra-
dient (PCG) solver. Since iterative solvers are particularly
useful for large sparse linear systems, we restricted our
study to the problem with 40257 mesh nodes.

The preconditioner matrix was obtained by incom-
plete Cholesky factorization with drop tolerance (see, e.g.,
(Meurant, 1999, §8.5; Saad, 1990)). The Preconditioned
Conjugate Gradient algorithm stopped with a relative pre-
cision of 10−5 in both the NR and NCG methods. Ta-
bles 7–9 summarize the performances of the two algo-
rithms for drop tolerances10−2, 10−4 and 10−6. The
classical Newton algorithm stopped after 4 iterations in all
tests presented whereas Algorithm NCG required 5 itera-
tions for α ∈ {2, 3} and 4 iterations forα = 5. We no-
tice that for small drop tolerances, our algorithm is faster
than the classical NR algorithm. This property can be use-
ful for general elliptic problems since dropping small ele-
ments can more likely produce better preconditioners than
dropping large elements.

Table 7. Performances of the Newton-Raphson (NR)
and NCG algorithms with a preconditioned
conjugate gradient solver forα = 2.

Drop tolerance 10−2 10−4 10−6

NR CPU time (in sec.) 221.140 289.722 2184.271

Speed-up with NCG 0.50 1.53 3.42

Table 8. Performances of the Newton-Raphson (NR)
and NCG algorithms with a preconditioned
conjugate gradient solver forα = 3.

Drop tolerance 10−2 10−4 10−6

NR CPU time (in sec.) 219.562 289.990 2185.254

Speed-up with NCG 0.50 1.55 3.43

Table 9. Performances of the Newton-Raphson (NR)
and NCG algorithms with a preconditioned
conjugate gradient solver forα = 5.

Drop tolerance 10−2 10−4 10−6

NR CPU time (in sec.) 219.122 289.987 2191.885

Speed-up with NCG 0.64 1.82 3.55

J. Koko18

6. Conclusion

We have shown that our Newton/Conjugate Gradient
method is more efficient, in terms of speed, than the clas-
sical Newton method with factorization at each step. The
implementation of the method is straightforward. Even
with an iterative solver, the savings in the computational
time can be significant with our method, if the precon-
ditioner is obtained by an incomplete factorization with
small drop tolerance.

References

Dennis J.E. and Schnabel R.B. (1996):Numerical Methods for
Unconstrained Optimization and Nonlinear Equations. —
Philadelphia: SIAM.

Golub G.H. and Van Loan C.F. (1989):Matrix Computations.
— Baltimore: The John Hopkins University Press.

Luenberger D. (1989):Linear and Nonlinear Programming. —
Reading, MA: Addison Wesley.

Meurant G. (1999): Computer Solution of Large Systems. —
Amsterdam: Elsevier.

Ortega J.M. and Rhainboldt W.C. (1970):Iterative Solution of
Nonlinear Equations in Several Variables. — New York:
Academic Press.

Polak E. (1971): Computational Methods in Optimization. —
New York: Academic Press.

Abbasian R.O. and Carey G.F. (1998):Hybrid MPE-iterative
schemes for linear and nonlinear systems. — Appl. Math.
Comput., Vol. 26, pp. 277–291.

Golub G.H., Murray W. and Saunders M.A. (1974):Methods for
modifying matrix factorizations. — Math. Comp., Vol. 28,
No. 126, pp. 505–535.

Hughes J.T., Ferency R.M. and Halquist J.O. (1987):Large-
scale vectorized implicit calculations in solid mechanics on
a Cray X-MP/48 utilizing EBE preconditioned conjugate
gradient. — Comput. Meth. Appl. Mech. Eng., Vol. 61,
pp. 215–248.

Saad Y. (1990): SPARSKIT: A basic tool kit for sparse matrix
computation. — Tech. Rep. CSRD TR 1029, University of
Illinois, Urbana, IL.

Sonnenveld P., Wesseling P. and De Zeeuw P.M. (1985):Multi-
grid and conjugate gradient methods as convergence ac-
celeration technique, In: Multigrid Meth. Integr. Diff. —
pp. 117–167, Clarendon Press.

Received: 15 May 2003
Revised: 29 December 2003

