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Spectral methods constitute a useful tool in the analysis and synthesis of Boolean functions, especially in cases when other
methods reduce to brute-force search procedures. There is renewed interest in the application of spectral methods in this area,
which extends also to the closely connected concept of the autocorrelation function, for which spectral methods provide fast
calculation algorithms. This paper discusses the problem of spectral decomposition of Boolean functions using the Walsh
transform and autocorrelation characteristics.
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1. Introduction

The decomposition of Boolean functions is a basic tech-
nique which has been often used in logic design from the
pioneering work by Ashenhurst (1957) and Curtis (1962),
and now decomposition appears very efficient in FPGA
and Look-up-table (LUT) based synthesis, see, e.g., (Lai
et al., 1993; Nowicka et al., 1999; Sasao and Matsuura,
2004).

Because dealing with functions in large numbers of
variables is nowadays a standard engineering practice, de-
composition methods are important and are becoming a
standard part of many CAD systems in this area. There
are numerous decomposition methods based on various
data structures for the representation of Boolean func-
tions. For example, classical approaches are based on
the application of decomposition charts similar to the Kar-
naugh map with a different ordering for the cell location
(Curtis, 1962), and such methods were efficiently revised
recently by (Mishchenko et al., 2001; Sasao and Butler,
1997). The representations of Boolean functions in terms
of Walsh coefficients were a basis for the decomposition
of functions by spectral methods (Falkowski and Kannu-
rao, 2001; Tokmen, 1980), see also (Hurst et al., 1985).
More recently, Decision Diagrams (DDs) have proven ef-
ficient in the derivation of decomposition methods for
logic functions, see, e.g. (Lai et al., 1993; Stankovi ć and
Falkowski, 2002; Stanković and Astola, 2003; Sasao and
Matsuura, 2004).

Nowadays, in many investigations, decomposition
based on the analysis of autocorrelation coefficients is

still expanded in many areas, such as the optimization of
combinational logic (Tomczuk, 1996) or the estimation
of Boolean function complexity (Karpovsky, 1976; Kar-
povsky et al., 2003).

Some Boolean functions express conveniently auto-
correlation and spectral characteristics (Karpovsky, 1976).
Accordingly, decomposition methods by the analysis of
autocorrelation coefficients have been proposed in many
papers (Karpovsky, 1976; Rice and Muzio, 2003; Tom-
czuk, 1996). These deterministic methods are efficiently
compared with related heuristic methods (Bertacco and
Damiani, 1997; Dubrova, 1999; Rice and Muzio, 2003).
The efficiency of these methods depends on the computa-
tional complexity of the autocorrelation coefficients. For
that reason, a new method for an efficient (in terms of
space and time) calculation of autocorrelation coefficients
was introduced.

A method for the reduction of the number of nodes in
decision diagrams by exploiting the autocorrelation func-
tion was described in (Karpovsky et al., 2003). Addition-
ally, the same approach was used for function partitioning
into linear and non-linear parts, which can be viewed as
a particular case of functional decomposition (Karpovsky,
1976). In many cases, heuristic methods of partitioning
input variables are used, where information measures are
analyzed (Rawski et al., 2001). In other words, it allows
us to analyze what information between inputs and out-
puts of circuit is common, missing, different, etc.
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In this paper, we present a method for a simple dis-
joint decomposition of Boolean functions by the analysis
of their autocorrelation coefficients. The problem of find-
ing a simple disjoint decomposition can be treated as split-
ting a given function into two parts. First, we determine
whether the decomposition is possible by the analysis of
autocorrelation coefficients. In the next step, we search
for related subfunctions by means of a spectral method.
The presented algorithm enables the user to select a sub-
function in the decomposition depending on the designer’s
assumptions, from a class of functions whose autocorrela-
tion characteristic is known, e.g., linear, affine, bent, ma-
jority, minority functions, etc. This property can be con-
sidered as a distinctive feature compared with the existing
methods. It should be stressed that the presented method
can be applied to single-output fully specified functions.

2. Preliminaries

A Boolean function is defined as a mapping f : {0, 1}n →
{0, 1}. To each n-tuple representing an assignment of val-
ues for the variables x = (x0, . . . , xn−1), xi ∈ {0, 1}, an
integer x from the set {0, 1, . . . , 2n − 1} can be assigned

by the mapping x =
∑n−1

i=0 xi2n−1−i. This value for x is
called the decimal index for the given n-tuple.

An n-variable Boolean function f can be specified
by enumerating its values at all decimal indices, which
can be conveniently represented by a vector of function
values Y = [y0, y1, . . . , y2n−1]T , called the truth vector
for f .

Alternatively, a Boolean function can be represented
as a Sum-of-Products expression defined as follows:

Definition 1. An n-variable Boolean function
f(x0, x1, . . . , xn−1) can be represented as∑2n−1

j=0 yjx
c0
0 xc1

1 · · ·xcn−1
n−1 , where yj is the value of

f for the decimal index j, and c0, c1, . . . , cn−1 ∈ {0, 1}
are coordinates in the binary representation for j and
xci=0

i = xi, xci=1
i = xi for i = 0, 1, . . . , n − 1.

Example 1. The truth vector of the three-variable
Boolean function f(x0, x1, x2) = x0x1x2 + x0x1x2 +
x0x1x2 + x0x1x2 + x0x1x2 is Y = [1, 1, 0, 1, 0, 1, 0, 1].

�

Definition 2. The Hamming weight w(Y) of a Boolean
vector Y is equal to the number of nonzero elements in
Y.

3. Spectral Description of Boolean Functions

Spectral data are used in many applications in digital logic
design. A Boolean function f(x0, x1, . . . , xn−1) given by
the truth vector Y = [y0, y1, . . . , y2n−1]T can be trans-
formed from the Boolean domain {0, 1} into the spectral

domain by a linear transformation H ·Y = S, where H is
a 2n ×2n transform matrix, and S = [s0, s1, . . . , s2n−1]T

is the vector of spectral coefficients called the spectrum
for f (Ahmed, 1975; Falkowski and Porwik, 1999; Kar-
povsky, 1976; Porwik, 2004b; Yanushkevich, 1998).

In particular, we get the Walsh transform when H is
the Walsh matrix defined as

W(n) =
n⊗

i=1

W(1), (1)

where

W(1) =

[
1 1
1 −1

]

is the basic Walsh matrix and ‘⊗’ denotes the Kronecker
product.

In a Walsh matrix, the Walsh functions wal(i, x),
which are the rows of the Walsh matrix, are in the so-
called Hadamard order. Thus, the spectrum calculated
by the application of this transform matrix is a Walsh-
Hadamard spectrum. In a study of the decomposability
of Boolean functions it may be convenient to use also the
Walsh transform defined in terms of Walsh functions in
the Paley ordering. In this case, we talk about the Walsh-
Paley spectrum. Recall that between these orderings there
is the relation walH(i, x) = walP (b(i), x), where b(i) is
obtained by the bit-reversal of i, and H and P denote the
Hadamard and Paley orderings, respectively. The spectral
coefficients si ∈ S in the Paley ordering will be used, be-
cause the matrix equations described in the next parts of
the paper have a convenient structure for such an ordering.

In this paper, we exploit also another important con-
cept, namely, that of the autocorrelation function for func-
tions on {0, 1}n.

Definition 3. The autocorrelation function of a given
function f(x) is defined as follows (Stanković and Astola,
2003):

bτ =
2n−1∑
x=0

f(x)f(x ⊕ τ) =
2n−1∑
x=0

(−1)f(x)⊕f(x⊕τ), (2)

where τ ∈ {0, 1, . . . , 2n−1}, τ =
∑n−1

k=0 τk2n−1−k, τk ∈
{0, 1}. The autocorrelation coefficients are conveniently
represented as a vector B = [b0, b1, . . . , b2n−1].

It can be shown that due to the Wiener-Khinchin the-
orem, the autocorrelation function can be calculated as
(Karpovsky et al., 2003):

bτ = 2−n
2n−1∑
x=0

(sx)2(−1)〈x,τ〉, (3)

where 〈x, τ〉 is the scalar product of the vectors
x = [x0, x1, . . . , xn−1] and τ = [τ0, τ1, . . . , τn−1]
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through their binary representations, i.e., 〈x, τ〉 =
[x0, x1, . . . , xn−1] · [τ0, τ1, . . . , τn−1]T = x0τ0 ⊕ x1τ1 ⊕
· · · ⊕ xn−1τn−1.

It is easy to see that the complexity of compu-
tations of autocorrelation coefficients is O(n2n) (Kar-
povsky, 1976; Tomczuk, 1996). In this paper, the auto-
correlation coefficients will be calculated by (3).

4. Spectral Linearization of a Boolean
Function

A useful property of Walsh functions is that they take
only two values ±1, and in that respect they are compat-
ible with two-valued switching functions. If the values
of the truth vector of a Boolean function f will be en-
coded according to the formula {0, 1} → {1,−1}, then
such a vector will be denoted as Yf . For a given vec-
tor Yf = [y0, y1, . . . , y2n−1], the scalar product si =
〈Yf ,wal(i, t)〉 =

∑
tytwal (i, t) determines the correla-

tion between the Boolean function f and the appropriate
i-th Walsh function. In this paper, the set of spectral coef-
ficients {s0, s1, . . . , s2n−1} ∈ S is determined on the ba-
sis of the encoding of elements of the vector Yf according
to the formula yi → 1 − 2yi.

Definition 4. A Boolean function f(x0, x1, . . . , xn−1)
of n-variables is called affine if it can be represented
as f(x) = a0x0 ⊕ a1x1 · · · ⊕ an−1xn−1 ⊕ c, where
aj , c ∈ {0, 1} and k = c +

∑n−1
i=0 ai2i. In particular,

if c = 0, then f is called a linear function.

Theorem 1. (Porwik, 2004a) Any affine Boolean function
f , encoded according to {0, 1} → {1,−1}, is character-
ized by the following unique Walsh-Hadamard spectrum
distribution:

sx =

⎧⎨
⎩(−1)c × 2n for x =

1
2
(k − c),

0 otherwise,
(4)

where k and c have the same meaning as in Definition 4,
and x = 0, 1, . . . , 2n − 1.

Thus, in order to decide whether a Boolean function
is affine, it is sufficient to calculate its spectrum. The spec-
trum contains only one nonzero value: sx = +2n, if f is
a linear, or sx = −2n, if f has complement form.

It can be noticed that the spectrum can also be per-
formed by means of the so-called R-type coefficients,
where the values of a Boolean function are not encoded
(Hurst et al., 1985). Between the coefficients of differ-
ent types, a simple correlation can be observed: r0 =
(2n − s0)/2 and ri = −si/2 (Hurst et al., 1985). Tak-
ing into account the above discussion, Theorem 1 can be
formulated in another form.

Theorem 2. Any affine Boolean function f , encoded ac-
cording to the formula {0, 1} → {0, 1}, is characterized
by the following unique Walsh-Hadamard spectrum distri-
bution:

rx =

⎧⎪⎪⎨
⎪⎪⎩

+2n−1 for x = 0,

(−1)1−c × 2n−1 for x =
1
2
(k − c),

0 otherwise.

(5)

Spectral coefficients of the S-type are more practical.
For example, an affine function can be described by one
spectral coefficient si �= 0, whereas the description by
means of the R-type spectrum requires two coefficients
r0 �= 0 and ri �= 0. For this reason, only the S-type
spectrum will be used.

In many practical problems, Boolean functions are
given in an incomplete form. In such cases, the vector Y
includes values {0, 1,−}, where the symbol ‘−’ denotes
‘do not care’ minterms. In this case, the values {0, 1,−}
of the vector Y are replaced by {1,−1, 0}, respectively.
If it is possible, incompletely defined Boolean functions
can be satisfactorily completed to affine forms (Porwik,
2003), but functions with ‘do not care’ elements will not
be considered in this paper.

It is obvious that many functions cannot be realized
as affine functions. In such cases, the linearization of a
given function can be carried out, i.e., a given function can
be split into a linear and a nonlinear part while attempt-
ing to minimize the nonlinear part (Karpovsky, 1976; Kar-
povsky et al., 2003).

Remark 1. Consider an n-variable Boolean func-
tion f with the autocorrelation coefficients bx, x =
0, 1, . . . , 2n − 1. The set of all x, such that bx = b0, is
an Abelian group G(f) mod 2. Additionally, from (2) it
can be stated that for a given function f(x),

b0 =
2n−1∑
x=0

(f(x))2.

If the function f is a Boolean function, then f(x) ∈
{0, 1}, so the autocorrelation coefficient b0 can be easily
computed from the formula b0 =

∑2n−1
x=0 f(x).

This remark follows from the property that the set of
all binary sequences of the length n with the operation of
componentwise addition mod 2 is an Abelian group.

Theorem 3. (Karpovsky, 1976) An n-variable Boolean
function f can be decomposed as follows:

f(x0, x1, . . . , xn−1)

= ϕ(λ(x0, . . . , xn−1−b), xn−b, . . . , xn−1) (6)

if and only if b = af +1, where af = log2 |G(f)|, |G(f)|
is the order of the group G(f), and λ is a linear function.
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The linearization of Boolean functions on the basis
of Theorem 3 was discussed in (Karpovsky, 1976; Kar-
povsky et al., 2003; Stanković and Astola, 2003).

5. Spectral Decomposition of Boolean
Functions

From Theorem 3 it follows that a given Boolean func-
tion f can be described by linear and nonlinear parts,
λ(x0, . . . , xn−1−b) and fnl(xn−b, . . . , xn−1), respec-
tively. Generally, this idea can be expanded (subfunctions
do not have any restrictions) and used for a simple dis-
joint decomposition of Boolean functions by autocorrela-
tion functions.

In many cases, the spectral and autocorrelation char-
acteristics of Boolean functions are known in an analytical
form (for instance, linear, affine, bent, majority, minority
functions) (Karpovsky, 1976; MacWilliams and Sloane,
1977). Therefore, the method proposed below can be
changed and the function f can be decomposed by se-
lecting a subfunction ϕ or λ from the set of functions
with known autocorrelations according to the designer’s
assumptions. This can be considered as a unique feature
of the method when compared with other related meth-
ods where the subfunctions are determined automatically
by a decomposition procedure or are restricted to a set of
elementary logic functions, such as AND, OR and XOR.

Theorem 3 can be expanded and stated in another
form. Let the set X = {x0, x1, . . . , xn−1} of the ar-
guments of a Boolean function f(x0, x1, . . . , xn−1) be
partitioned into two disjoint subsets X1 and X2 , i.e.,
X1 ∩ X2 = ∅ and X1 ∪ X2 = X . With these assump-
tions, the function f(x) : {0, 1}|X1|+|X2| → {1,−1} can
be described (decomposed) in terms of subfunctions λ :
{0, 1}|X1| → {1,−1} and ϕ : {0, 1}|X2|+1 → {1,−1}
such that f(x) = ϕ(λ(X1), X2).

If an appropriate partition of the set of arguments can
be found, then the decomposition (6) will be more flexible,
because the partition of the set of input variables can be
different and as the subfunctions ϕ and λ, many another
functions can be used.

Theorem 4. A simple disjoint decomposition of a given
Boolean function f can be found if, on the basis of its au-
tocorrelation characteristic, the arguments of the function
f can be partitioned into two disjoint sets in the follow-
ing way: Let x =

∑n−1
i=0 xi2n−1−i. If the autocorrelation

coefficients of f fulfil the condition

∃
x �=0

x : bx = 0 ∧ w(x0, . . . , xn−1) = 1, (7)

then the arguments x0, x1, . . . , xn−1 for which w(x) = 1
are connected with the function ϕ and form the set X2. In
other words, x refers to a value whose binary expansion

contains a logic 1 in the i-th bit, while the remaining n−1
bits are 0.

If the autocorrelation coefficients of f fulfil the con-
dition

∃
x �=0

x : bx = max bx ∧ w(x0, . . . , xn−1) > 1, (8)

then the arguments x0, x1, . . . , xn−1 for which w(x) > 1
are connected with the function λ and form the set X1. In
other words, the index x refers to a value whose binary
expansion contains a logic 1 in the k ∈ {2, . . . , n} bits,
while the remaining n − k bits are equal to 0.

The conditions (7) and (8) are sufficient to determine
the partition of the arguments of f .

Proof. Note that for any Boolean function the condition
bx ≤ b0 follows from Definition 3 and Theorem 3, es-
pecially for the balanced Boolean functions b0 = 2n−1.
The criterion (8) determines the elements β of the group
G(f) and hence, if β ∈ G(f), then f(x) = f(x ⊕ β)
(Karpovsky et al., 2003). It is equivalent to the partition
of arguments of f . If the criterion (8) is not fulfilled, then
it is necessary to find other, independent variables. Such
conditions fulfil the criterion (7).

Theorem 4 can be used as a simple test to determine
whether a given Boolean function f has a simple disjoint
decomposition. To find such a decomposition, we have to
check all

(
n1+n2

n1

)
partitions of n = n1 + n2, where ni is

the number of variables in the subsets Xi (i = 1, 2). The
criterion presented above permits us to check immediately
whether such a decomposition is possible.

If the conditions of Theorem 3 are not satisfied, then
f has bidecomposition topologies (Nowicka et al., 1999;
Sasao and Butler, 1997).

As the first step, the criterion (7) is used. If no par-
tition of arguments can be found, then the criterion (8) is
applied.

Example 2. Table 1 shows a Boolean function f , its
Walsh-Hadamard spectrum and autocorrelation coeffi-
cients. From an analysis of the autocorrelation coeffi-
cients, the arguments of the function f can be partitioned
into two subsets. Table 1 presents spectral coefficients in
the Walsh-Hadamard ordering because the spectrum has
been determined using (1). The spectral coefficients of
the function f can be easily ordered in the Walsh-Paley
ordering, which will be used in further deliberations. 1

From the criterion (7), for the coefficient b1 = 0 the
Hamming weight of the input vector is equal to w(x =
1) = 1 and hence, for this case, x = [0, 0, 0, 1]. For the

1 In this paper, for the simplicity of programming implementations,
the Walsh-Hadamard spectrum is calculated, and then converted
into the Walsh-Paley spectrum for subsequent applications. Notice
that there are FFT-like algorithms for a direct calculation of the
Walsh-Paley spectrum, see, e.g., (Yaroslavsky, 2003).
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Table 1. Boolean function and its spectral and
autocorrelation coefficients.

x0, x1, x2, x3 x =
n−1�

i=0

xi2
n−1−i f(x) sx bx

0000 0 0 0 8

0001 1 1 0 0

0010 2 0 0 4

0011 3 1 8 4

0100 4 0 0 4

0101 5 1 8 4

0110 6 1 0 4

0111 7 0 0 4

1000 8 0 0 4

1001 9 1 8 4

1010 10 1 0 4

1011 11 0 0 4

1100 12 1 0 4

1101 13 0 0 4

1110 14 1 0 0

1111 15 0 −8 8

coefficient b14, the criterion (7) is not satisfied because
w(x = 14) �= 1, and x = [1, 1, 1, 0]. Hence the set of the
arguments of the subfunction ϕ contains only the variable
x3. The other variables x0, x1, x2 are arguments of the
subfunction λ. �

Example 3. Reasoning similar to that followed in the pre-
vious example can be applied to a five-variable Boolean
function f which has the autocorrelation characteristic

Bf = [16, 8, 8, 8, 8, 8, 8, 0, 8, 8, 8, 0, 16, 8, 8, 8, 8, 8,

8, 0, 16, 8, 8, 8, 16, 8, 8, 8, 8, 8, 8, 0]T.

For this function, the condition (7) is not satisfied because
for any x such that w(x) = 1 we have bx �= 0. Therefore,
we have to use the criterion (8), from which we observe
that bx = b0 = b12 = b20 = b24. According to the as-
sumption of Theorem 4, the coefficient b0 is not analyzed.
In this case, the sets of arguments for the subfunctions λ
and ϕ consist of the variables x0, x1, x2 and x3, x4, re-
spectively. �

If, given a function f , a partition of the set of vari-
ables can be found, then the Walsh-Paley spectra of the
corresponding subfunctions ϕ and λ satisfy the matrix
equation.

Suppose that decomposition has the form

f(x0, x1, . . . , xn−1)
= ϕ(λ(x0, . . . , xk), xk+1, . . . , xn−1), k > 0.

Then

1
2

⎡
⎢⎢⎣

[
Sλ

]
0

. . .

0
[
Sλ

]
⎤
⎥⎥⎦ ×

⎡
⎢⎣Sϕ

⎤
⎥⎦

2n−k×1

=

⎡
⎢⎣Sf

⎤
⎥⎦

2n×1

,

(9)
where

[Sλ] =

⎡
⎢⎢⎢⎢⎣

2k+1

0
0 Sλ

...

⎤
⎥⎥⎥⎥⎦

2k+1×2

, (10)

Sf , Sϕ, and Sλ are Walsh-Paley spectra of the functions
f , ϕ and λ, respectively.

A method for the decomposition of Boolean func-
tions by using a matrix in the Walsh-Hadamard spectral
domain was proposed in (Hurst et al., 1985), see also
(Tokmen, 1980). Notice that if there exists a disjoint de-
composition of f , then there exists a valid relationship
between the spectra of the Boolean functions f , λ and
ϕ. However, a drawback of this spectral characteriza-
tion of the decomposability is that if the decomposition
of a given Boolean function f is possible, it may not be
immediately apparent how the set of input variables x i,
(i = 0, . . . , n − 1) should be partitioned to achieve such
a decomposition. In (Hurst et al., 1985), the subfunction
λ is selected randomly. The partition of disjoint subsets is
also selected arbitrarily. Furthermore, for some choices,
Eqn. (9) has no solutions. If the subfunction λ was se-
lected correctly, then it is necessary to find the unknown
partition of variables into two subsets. For n-input vari-
ables, we have n! of its permutations and only one of them
is correct. The correctness of the solution can be checked
using (9). If a solution exists, then the decomposition is
possible. Therefore, given Sf and λ(ϕ), n! examinations
are needed to ensure whether the disjoint decomposition
exists. Each permutation of input variables can be treated
as a reordering of the spectrum of Sf .

In our method, Theorem 4 permits us to immediately
partition the set of input variables by the analysis of the
autcorrelation coefficients. Therefore, we propose the fol-
lowing, two-stage decomposition method:

1. From the analysis of the autocorrelation coefficients,
deduce whether a given function f is decomposable
and determine the corresponding partition of the set
of input variables.

2. From the matrix relations in the Walsh-Paley spectral
domain, determine the corresponding subfunctions ϕ
and λ.

Taking into account the above discussion, the method
of decomposing Boolean functions proceeds as follows:



P. Porwik and R.S. Stanković276

1. Compute the autocorrelation vector Bf = [b0, b1,
. . . , b2n−1] of a given Boolean function f from the
spectral coefficients Sf = [s0, s1, . . . , s2n−1] and
check whether decomposition exists. In this case, de-
termine the corresponding partition of the set of input
variables X into subsets X1 and X2.

2. Reorder the Walsh-Hadamard spectrum Sf into the
Walsh-Paley spectrum Sf of f .

3. Select arbitrarily a Boolean function λ depending on
variables in X1 and construct the truth vector Yλ

f .

4. Compute the Walsh-Paley spectrum Sλ for Yλ
f .

5. Try to solve the matrix relation (9) in Sϕ and deter-
mine the Walsh-Paley spectrum for ϕ.

6. If for selected λ, Sϕcannot be determined from (9),
then select another function λ and repeat Steps 3 to 5.

Notice that the application of Theorem 4 in Step 3
of the above algorithm is simplified if λ is selected from
the class of functions whose autocorrelation functions are
known (Karpovsky, 1976).

Example 4. In Example 2, from Theorem 4 we deter-
mined a partition of the set of variables for the function f
given in Table 1. All coefficients in (11) are ordered in the
Walsh-Paley order, but Table 1 includes the spectrum in
the Wash-Hadamard order obtained directly from (1). We
select the majority function as a possible function λ and
determine its Walsh-Paley spectrum. For this reason we
prepare the truth vector Yλ

f = [1, 1, 1,−1, 1,−1,−1,−1]
encoded according to the rule {0, 1} → {1,−1}, and from
the Walsh-Hadamard transform we obtain the appropriate
S-type spectrum Sλ = [0, 4, 4, 0, 4, 0, 0,−4] of the func-
tion λ. In the next stage we solve the matrix equation (11).

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 0
0 4
0 4
0 0
0 4
0 0
0 0
0 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 0
0 4
0 4
0 0
0 4
0 0
0 0
0 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

s1

s2

s3

s4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
8
8
0
8
0
0

−8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Fig. 1. Decomposition of the Boolean
function f from Example 4.

After calculations, we obtain the spectral coefficients
s0 = 0, s1 = 0, s2 = 0, s3 = 4. Hence the function ϕ
is a linear one. Finally, after decomposition procedures
we obtain two boolean functions: λ(x0, x1, x2) = x1x2 +
x0x2 + x0x1, and ϕ(λ, x3) = λ(x0, x1, x2) ⊕ x3. The
functions λ and ϕ form the function f . Figure 1 shows
the corresponding realization of the decomposition of the
function f . �
Example 5. Consider a Boolean function f given by the
truth vector Y = [0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]T .
For this function, the autocorrelation coefficients are

Bf = [4, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0]T.

From Theorem 4, we obtain the following partition of ar-
guments:

f(x0, x1, x2, x3) = ϕ(λ(x0, x1, x2), x3).

Suppose that ϕ is a bent function. A Boolean function ϕ
is called bent if ϕ has the maximum possible value of non-
linearity equal to (2n ± 2n/2)/2, where n is even. Hence
all spectral coefficients of a bent function have the values
si = ±2n/2, i = 0, 1, . . . , 2n − 1. The spectrum of a bent
function ϕ is Sϕ = [2, 2, 2,−2].

The function λ can be determined from the matrix
equation

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 s0

0 s1

0 s2

0 s3

0 s4

0 s5

0 s6

0 s7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 s0

0 s1

0 s2

0 s3

0 s4

0 s5

0 s6

0 s7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

2
2
2

−2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
−4
−4

0
4
0
0

−4
8
4
4
0

−4
0
0
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)
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In consequence, we obtain the Walsh-Paley spectrum
of the unknown function λ: s0 = 0, s1 = −4, s2 = −4,
s3 = 0, s4 = 4, s5 = 0, s6 = 0, s7 = −4, and deter-
mine its truth vector as Yf = [−1,−1, 1,−1, 1,−1, 1, 1].
Hence, λ(x0, x1, x2) = x0x2 + x1x0 + x1x2, ϕ(λ, x3) =
λ(x0, x1, x2)x3. �

6. Experimental Results

We performed a series of experiments over a set of stan-
dard benchmark functions to estimate the features of the
proposed method for a simple disjoint decomposition of
Boolean functions. Table 2 shows a sample of these re-
sults. The symbol ‘x’ means that the obtained subfunc-
tions have spectral characteristics different from those
mentioned in this table, i.e., different from linear, bent,
majority and self-dual functions. The correctness of the
presented results was verified by a comparison with the
results produced by the DEMAIN algorithm (Nowicka et
al., 1999). DEMAIN implements a balanced serial and
parallel functional decomposition and, in many cases, it
decomposes a larger number of benchmarks than other
methods do (Nowicka et al., 1999). The set of bench-
marks is restricted to functions in up to 12 variables due
to the restrictions of DEMAIN programming realization.
The circuits from Table 2 were compared with both meth-
ods presented in this paper, and DEMAIN/serial/disjoint
decomposition. Both methods give the same decomposi-
tion results and, therefore, in Table 2 only possibilities of
functions decomposition are shown.

Table 2. Results of decomposition for benchmark functions.

Benchmark In. Sub-
function λ

Sub-
function ϕ

Serial
decomp.

sqr6_1 6 x self-dual yes

a2_3 4 x linear yes

xor5 5 linear linear yes

check0 4 linear x yes

max1024_6 10 no

apex4 (2nd) 9 no

sao2 (1st) 10 x x yes

z5xp1_3 7 no

Example 4 4 majority linear yes

Example 5 4 self-dual bent yes

We also applied the algorithm proposed in this pa-
per to 80 benchmark functions in various numbers of vari-
ables. In the case of multi-output functions, each output
was considered as a separate function. Additionally, ex-
periments were carried out where functions up to 20 input
variables were tested.

For approximately 60% of the examined functions,
the simple disjoint decomposition was possible with one
of the subfunctions selected as an affine, self-dual, ma-
jority, minority or bent function. The proposed synthe-
sis method can be used for Boolean functions which have
n ≤ 30 variables because for larger functions memory
complexity is disadvantageous. It should be noticed, how-
ever, that similar problems can be observed even if the fast
Fourier transform family is used (Stanković and Astola,
2003; Yanushkevich, 1998).

7. Conclusions

We presented an algorithm for a simple disjoint decompo-
sition of logic functions starting from an autocorrelation
characteristic of a function and its spectral description.
The analysis of the autocorrelation coefficients allow us
to partition the set of input variables into appropriate dis-
joint subsets. Given a Boolean function, if a partition of
the set of variables can be found, then Walsh-Paley spectra
of the corresponding subfunctions can be derived. Exper-
imental results show that even if the decomposition form
is restricted, many practical functions can be effectively
by decomposed. The described method is especially effi-
cient when one of subfunctions has well-known spectral
characteristics.
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