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1. Introduction

Bayesian networks (BNs) provide an economical and con-
venient representation of multidimensional joint probabil-
ity distributions (Charniak, 1991; Jensen, 2001; Neapoli-
tan, 2003; Pearl, 2000). The nodes of BNs correspond to
random variables representing measurements or observa-
tions, and directed edges correspond to relations between
these random variables. BNs can be constructed in two
steps. The first step is to define a directed, acyclic graph
(DAG) of causal relations between nodes. The second one
consists in specifying conditional probability distributions
corresponding to causal relations represented by the edges
of the BN.

In the context of various applications of BNs, the fol-
lowing problems are often stated:

(i) Given observations, compute the probabilities of
events, under the assumption of a known topology
and known probability distributions in the BN.

(ii) Given observations and given a BN topology, esti-
mate the parameters of conditional probability distri-
butions.

(iii) Given observations, estimate the topology and prob-
ability distributions describing a BN.

Problems (i) and (ii) can be solved with the help
of appropriate algorithms (Charniak, 1991; Heckerman,
1995; Jensen, 2001; Neapolitan, 2003; Pearl, 2000) and
software (Murphy, 2005). Difficulties may arise for large
numbers of nodes and edges. As for Problem (iii), there is
a lot of interest and research in this direction (Chickering,

2002; Friedman, 1998; Liu and Desmarais, 1997; Pearl
and Verma, 1991), motivated by the broad area of po-
tential applications (Friedman, 2004; Friedman et al.,
2000; Ideker et al., 2002; 2001; Jansen et al., 2003; Se-
gal et al., 2001). However, the problem of estimating
the topology of a BN is difficult, due to the large amount
of uncertainty and serious computational complexity even
for BNs of very moderate sizes.

In this paper we consider another problem, namely,
that of assigning the observed random variables to the
nodes of a Bayesian network model with a given topol-
ogy. We call this problem the Bayesian network node
assignment. It can be applied in the area of the analy-
sis of DNA microarray data. DNA microarrays are often
used to compare gene expression patterns of normal and
cancer cells, cf. (Rhodes et al., 2004), and it is believed
that such comparisons will help in developing knowledge
on the mechanisms of neoplasia. The characteristic prop-
erty of the measurements of gene expressions patterns of
cancer tissues in one experiment is, however, the coex-
istence of genes related to the processes of initiation of
neoplasia (causes), as well as those related to the effects
of neoplastic transformation. Both these classes, causes
and effects, exhibit correlations with the status of the cell
(normal/cancer). So they may be difficult to distinguish
by simple statistics (Gadbury and Schreuder, 2003). In
an effort towards constructing a test for distinguishing be-
tween causes and effects, we hypothesize the topology of
a BN which models both the initiation of neoplastic trans-
formation and its consequences. In the next step we cast
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Fig. 1. Bayesian network model with cooperative causes. The
causal relation XC,1, . . . , XC,K → Y is modeled by
a logistic function, and the influence of the state of Y
on the values of XE,1, . . . , XE,M is modeled as chang-
ing values of expectations and variances of conditional
distributions (see the text). In the case where the above
BN is used to explain DNA microarray data, the contin-
uous nodes represent base 2 logarithms of fluorescence
signals at gene probes in a DNA microarray chip, and
the binary node Y holds information on the status of the
cells used in the experiment (normal “U” or cancer “T ”).

the problem of differentiating between the causes and ef-
fects of the neoplastic process as a BN node assignment.
More results concerning the use of the BN assignment
with DNA microarray data are presented in (Polanski et
al., 2005).

We recover the true assignment by the maximization
of the likelihood over all possible assignments and over
the parameters of a given BN. We estimate confidence
levels for the obtained assignments using a Monte Carlo
method which involves recording the numbers of errors
in repeated reassignments. Studying the confidence of
assigning variables to the nodes of a BN helps in veri-
fying whether the assumed BN topology can satisfactory
explain the observed data. We illustrate the method of es-
timating assignments by likelihood maximization with the
use of two examples of BNs shown in Figs. 1 and 2. These
examples show that the BN node assignment problem de-
pends on the assumed topology of a BN. We also compare
the maximum likelihood approach with other methods of
estimating assignments.

2. BN Models

A Bayesian network B is a pair

B = (G, D), (1)

where G is a directed acyclic graph (DAG) and D is a set
of conditional probability distributions that corresponds to
G. The nodes of the graphs of BNs correspond to random
variables, signals, measurements or observations. The
term “signal” or “random variable” is related to the node

Fig. 2. Bayesian network model with two hypothetical (hidden)
alternative causes, ZA and ZB . Again, the circles are
continuous nodes and squares are binary nodes. When
using the BN for DNA microarray data, the continuous
nodes represent base 2 logarithms of fluorescence sig-
nals at gene probes in a DNA microarray chip, and the
binary nodes represent biological processes. Y holds in-
formation on the status of the cells used in the exper-
iment (normal “U” or cancer “T ”). ZA and ZB are
processes coded as “U” (inactive) and “T ” (initiated),
whose alternative leads to triggering the neoplastic trans-
formation. Each of the processes Y , Z1 and Z2 has its
specific effects shown in the diagram.

of the BN, and the names “measurements” or “observa-
tions” are used in the context of repetitive experiments.

In this paper we consider the topologies of BNs pre-
sented in Figs. 1 and 2. When using BNs as models for ex-
plaining DNA microarray measurements (Polanski et al.,
2005), we call the BN of Fig. 1 a scenario with cooperative
causes, and the BN of Fig. 2 a scenario with two alterna-
tive causes. The nodes in BNs in Figs. 1 and 2 can be con-
tinuous, denoted by circles, or binary, marked by squares.
Continuous nodes represent the levels of gene expressions
and binary nodes represents biological processes, which
can be triggered (active) or inactive. Shaded nodes denote
random variables which are not observable and are called
hidden or latent.

2.1. Cooperative Causes. In the BN model of cooper-
ative causes in Fig. 1, the binary process Y is initiated
by an additive combination of many events which equally
contribute to the final level of the risk of triggering the
process Y , and each single cause alone does not change
the risk significantly. When using the BN of Fig. 1 to
model microarray data (Polanski et al., 2005), the binary
node Y represents the state of the biological process of
neoplastic transformation, which is triggered or inactive.

Within the classes, the nodes are exchangeable, and
the assignment of random variables to the nodes of the
Bayesian network is fully defined by deciding to which of
the classes each random variable belongs. The probability
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of initiating the binary process Y is set by a combined
influence of the variables XC,1, . . . , XC,K (causes). The
random variables XC,1, . . . , XC,K are assumed normal.
The states of the binary variable Y are: “U” (inactive) and
“T ” (triggered). The conditional probability of initiating
(triggering) the process Y is assumed to follow the logistic
relation

P [Y = “T ”] = PL(xC,1, . . . , xC,K)

=
exp[β(xC,1 + xC,2 + · · ·+ xC,K)]

1 + exp[β(xC,1 + xC,2 + · · ·+ xC,K)]
, (2)

where the index “L” in PL(·) is for “logistic” and β is a
parameter. The effects XE,1, . . . , XE,M of the process Y
are conditionally normal random variables depending on
the state of Y , y = “U” (inactive) or y = “T ” (triggered)
in the following way:

XE,m | y = “U” ∼ N (μm
U , σm

U ),

XE,m | y = “T ” ∼ N (μm
T , σm

T ),

m = 1, 2, . . . , M. (3)

N (μ, σ) denotes a normal distribution with the mean μ
and standard deviation σ. Repeated measurements of the
signals Y , XE,1, . . . , XE,M are performed and the index
“i” is used to distinguish between different measurements
(realizations of random variables). The related notation
for probability density functions is

p(xE,m
i | yi = “U”) = pN(xE,m

i , μm
U , σm

U )

and (4)

p(xE,m
i | yi = “T ”) = pN (xE,m

i , μm
T , σm

T ),

where m = 1, 2, . . . , M are the labels of continu-
ous signals, i denotes the index of a given observation,
pN (xi, μ, σ) or pN(xi) stand for the probability density
function of a normal distribution. Lower case letters are
used to denote realizations of random variables.

Based on the structure in Fig. 1 and Assumptions (1)
and (2), one can write the following expression for the
likelihood of the Bayesian network:

L =
∏
k∈C
i

pN (xC,k
i )

∏
i∈T

PL(xC,1
i , . . . , xC,K

i )

×
∏
i∈U

[
1− PL(xC,1

i , . . . , xC,K
i )

]

×
∏

m∈E
i∈U

pN (xE,m
i , μm

U , σm
U )

×
∏

m∈E
i∈T

pN (xE,m
i , μm

T , σm
T ). (5)

The classes of continuous nodes (variables) are “C” –
causes and “E” – effects, and the states of the binary
process Y are “U” – inactive and “T ” – triggered.

2.2. Alternative Causes. In Fig. 2 we present a BN
with alternative causes ZA and ZB , each having the abil-
ity to trigger the binary process Y . Again, in the case of
microarray data, the binary node Y represents the state
of the biological process of neoplastic transformation.
ZA and ZB are (hypothetical) processes coded, as pre-
viously, as “U” – inactive and “T ” – initiated, whose al-
ternative leads to triggering the neoplastic transformation
Y . Each of the processes Y , ZA and ZB has its spe-
cific effects. These are, respectively, X E,1, . . . , XE,M ,
XA,1, . . . , XA,K and XB,1, . . . , XB,L. The binary nodes
ZA and ZB are assumed hidden, and these processes are
not observed.

Let us consider composite states defined by the
triples Y , ZA and ZB. We assume that ZA and ZB can-
not be active simultaneously (as alternative causes). Con-
sequently, possible composite states of Y , ZA and ZB

are U , U , U or T , T , U or T , U , T , respectively. The
first one is observable since the state of Y is known and
Y = “U” implies ZA = U and ZB = U . The remaining
composite states T , T , U and T , U , T are hidden since
by Y = “T ” one cannot know which of the processes Z A

and ZB caused the triggering of Y .
The mechanism of changes in the expressions for

XE,1, . . . , XE,M secondarily to the ongoing neoplas-
tic transformation is changing the conditional expecta-
tion and variance, described by the conditional distrib-
utions (3)–(4), as has already been explained. Analo-
gous mechanisms are assumed for the altering expressions
XA,1, . . . , XA,K and XB,1, . . . , XB,L secondarily to ZA

and ZB:

p(xA,k | zA = U) = pN (xA,k, μk
U , σk

U ),

p(xA,k | zA = T ) = pN(xA,k, μk
T , σk

T ), (6)

where k = 1, 2, . . . , K , and

p(xB,l | zB = U) = pN (xB,l, μl
U , σl

U ),

p(xB,l | zB = T ) = pN (xB,l, μl
T , σl

T ), (7)

where l = 1, 2, . . . , L. The notation is analogous to that
employed in (3) and (4).

Treating the composite states Y , ZA and ZB as a
parameter which can assume three categories, U, U, U or
T, T, U or T, U, T , we can write the following expression
for the likelihood of the BN from Fig. 2:

L = LUUULTTULTUT , (8)
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where

LUUU =
∏

m∈E
i∈U

pN(xE,m
i , μm

U , σm
U )

∏
k∈A
i∈U

pN(xA,k
i , μk

U , σk
U )

×
∏
l∈B
i∈U

pN (xB,l
i , μl

U , σl
U ), (9)

LTTU =
∏

m∈E
i∈T

pN(xE,m
i , μm

T , σm
T )

∏
k∈A
i∈T

pN(xA,k
i , μk

T , σk
T )

×
∏
l∈B
i∈U

pN (xB,l
i , μl

U , σl
U ), (10)

LTUT =
∏

m∈E
i∈T

pN (xE,m
i , μm

T , σm
T )

∏
k∈A
i∈U

pN (xA,k
i , μk

U , σk
U )

×
∏
l∈B
i∈T

pN (xB,l
i , μl

T , σl
T ). (11)

The classes of continuous nodes (variables) are “A”, “B”
and “E”, and the states of the binary processes Y , Z A and
ZB are “U” – inactive and “T ” – triggered.

3. Maximizing Likelihood Functions

First we describe in detail the methods we used for max-
imizing the likelihood (5) of the BN from Fig. 1. Further
we also describe the approach for the maximization of the
likelihood (9) of the BN from Fig. 2. To avoid repetitions
and for the sake of brevity, the description for the BN from
Fig. 2 is less detailed.

Maximizing the likelihood function (5) of the BN
from Fig. 1 over the assignments of continuous signals to
the nodes of the BN is a combinatorial optimization prob-
lem in which, theoretically, the structure with the max-
imal likelihood can be found by going through all as-
signments. However, going through all assignments can
be prohibitive due to a large number of possible vari-
ants. For example, if 50 continuous random variables
are to be assigned to nodes of two types, “cause” or
“effect”, then there are 250 possible assignments. For
that reason, when maximizing the likelihoods of BNs
we used the Metropolis-Hastings algorithm (Gilks et al.,
1996; Metropolis et al., 1953), where different assign-
ments were sampled with frequencies depending on their
likelihoods.

The use of the Metropolis-Hastings algorithm
(Metropolis et al., 1953) for maximizing the likelihood
function (4) with switching between assignments in-
volves assuming an initial assignment of the BN, setting
“current assignment” ← “initial assignment”, and then

repeating the following steps:

1. Obtain a “modified assignment” by introducing a
random change in the “current assignment”.

2. Make the substitution, “current assignment” ←
“modified assignment”, with the probability

P = min
(

1,
L(“modified assignment”)
L(“current assignment”)

)
. (12)

By L(“assignment”) we mean the likelihood function
computed as in (5), which relies on a hypothesis concern-
ing assigning a random variable to the nodes in the BN.

3.1. Coding and Random Modification of Assign-
ments. In computer memory, the structure of a BN can
be stored as an N -dimensional vector STRUC with en-
tries coding the types of nodes. N is the number of ran-
dom variables and the codes can be as follows: Nodes are
coded as 1 (cause) and 2 (effect). For example, STRUC =
[2 2 2 1 1 1 1] means that the BN in Fig. 1 has 7 con-
tinuous nodes and the random variables numbered from 1
to 3 are assigned to three effects of the process Y , while
the random variables numbered from 4 to 7 are assigned
to four causes. In other words, the node classes are causes
C = [4 5 6 7] and effects E = [1 2 3]. Since STRUC de-
fines an assignment, for the likelihood in (4) we also use
the notation

L = L(STRUC). (13)

Using the notation (6) in the Metropolis-Hastings algo-
rithm, in (5), the assignments can be defined by their vec-
tors STRUC,

L(“current assignment′′) = L(current STRUC),

L(“modified assignment′′) = L(modified STRUC).

Since we assume a fixed topology of the BN, we keep
fixed proportions between the types of nodes, causes and
effects. Changing assignments in the algorithm of likeli-
hood maximization involves a random choice of two in-
dices of STRUC elements and then swapping the entries
of STRUC corresponding to these indices.

3.2. Parameter Fitting. After an assignment (the
STRUC vector) has been defined, the probabilities in (5)
are computed using (4). However, the values of the like-
lihoods of BNs depend on parameter values, means and
variances of normal and conditionally normal distribu-
tions, as well as on one parameter, β, of the logistic
curve (2).

Optimizing the location and scale parameters of
(conditionally) normal distributions is done by the stan-
dard expressions

μ̂ =
1
I

I∑
i=1

xi, σ̂ =
1

I − 1

I∑
i=1

(xi − μ̂)2, (14)
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where xi, i = 1, 2, . . . , I stand for repeated measure-
ments. Fitting the parameter β in the logistic relation can,
in principle, be done with the use of the maximum like-
lihood method by Newton-Raphson iterations. However,
for the repetitions of observations which we used in our
computations (30–100), the estimators of β have rather
large variations and, therefore, we work with models with
β = 1.

3.3. Maximizing the Likelihood of the BN with Alter-
native Causes. If for all observations we know the cat-
egory U, U, U or T, T, U or T, U, T to which they belong,
the likelihood (9) can readily be optimized by deciding,
for all nodes, to which of the classes A, B or E they
should be assigned. The parameters of conditionally nor-
mal distributions are again estimated by the standard for-
mulas (14), and the decision is made based on maximiz-
ing the likelihood over three possible assignments (A, B
or E). Maximizing over the hidden categories T, T, U or
T, U, T becomes again a combinatorial optimization prob-
lem which can be solved by Metropolis-Hastings recur-
sions. Let us note that the maximization of the likelihood
method allows estimating K , L and M , i.e., the numbers
of nodes in the classes A, B and E.

3.4. Identifiability. Reconstructing the roles of the
nodes of BNs raises the question of identifiability, which
is related to the theory of observational equivalence of
BNs. Two DAGs, G and G′, are observationally equiv-
alent if for every Bayesian network B = (G, D) there
exists a Bayesian network B ′ = (G′, D′) such that B and
B′ define the same probability distribution, and vice versa.
The well-known theorem (e.g., (Pearl and Verma, 1991),
p. 19, Th. 1.2.8) states that two DAGs are observation-
ally equivalent iff they have the same skeletons and the
same v-structures. Graphical explanations of the notions
of the skeleton and v-structure are shown in Fig. 3. Ob-
servational equivalence concerns general, non-parametric
conditional probability distributions describing the edges
of BNs. When probability distributions are restricted to
parametric classes, theorems on observational equivalence
may not be true. However, identifying BN structures by
detecting parametric classes of the edges is rather an artifi-
cial idea. In contrast, observational equivalence is a basic
property of BN structures and has rather important conse-
quences in inference based on models of BNs (Chickering,
2002).

Using the concept of observational equivalence, we
call a DAG G identifiable if every DAG, G′, obtained from
G by reversing arrows is not observationally equivalent to
G. In other words, a DAG is identifiable if its arrows can-
not be reversed without changing the probability distrib-
utions of random variables corresponding to the nodes of
the related BN. In the case where the number of causes is

 

(a) (b)

 

(c)

Fig. 3. Definitions related to the concept of observational equiv-
alence of DAGs: (a) an exemplary DAG, (b) its skeleton
obtained by the ignoring directions of the arrows in the
DAG, (c) the v-structure, X → Z ← Y , being a frag-
ment of the DAG. In the definition of the v-structure it is
required that there are no direct edges between X and Y .

greater than or equal to 2, the DAG in Fig. 1 is identifi-
able. Since we understand the cooperative mechanism as
many causes contributing to the final risk, the condition
that their number is greater than 2 is always satisfied.

The Bayesian network from Fig. 2 is not identifiable
in the sense specified above. Based on the relation of
observational equivalence, the scenario which we study
can be represented by a partially directed graph (PDAG),
(David and Nagaraja, 2003; Pearl and Verma, 1991; Pe’er
et al., 2001), where only some of the causal dependencies
can be inferred. This is seen in Fig. 2, where directed
edges represent causal relations which can be inferred
from data, and undirected edges represent relations whose
directions can be reversed within equivalence classes. In
the BN in Fig. 2 the processes ZA and ZB are causes
of Y . The causal dependence between X A,1, . . . , XA,K ,
XB,1, . . . , XB,L and Y is not resolved.

4. Confidence Intervals for Assignments

The assignment with the highest likelihood is chosen as
closest to the truth. However, for some BNs the obtained
assignment may be very reliable while for others it may
be distorted by large errors. Therefore, an important is-
sue is estimating the probabilities of true or false assign-
ments, as we show in this section. We discuss the case
where we know the true assignment and we want to esti-
mate the probabilities of its correct or erroneous recovery
by an algorithm of likelihood maximization. We measure
how close a given assignment is to the true assignment by
counting misassignments defined by how many nodes are
swapped between their true classes. The most straight-
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Table 1. Results of 100 runs of 2500 steps of the
Metropolis-Hastings algorithm for the maximiza-
tion of the likelihoods of the Bayesian networks
BNC1 and BNC2 described in the text.

Number of misassignments 0 1 2 3 4

Times encountered (BNC1) 6 43 32 15 4

Times encountered (BNC2) 90 10 0 0 0

forward approach to estimating the probabilities of true
versus false assignments is by repeated simulations. We
generate randomly observations according to the assumed
BN model and, using the generated observations, we esti-
mate the assignment, as described previously. In the case
where we only have an estimate of an assignment at our
disposal, a reasonable choice is to treat the estimate as the
true assignment and to use Monte Carlo reassignments un-
der this hypothesis.

Approaching the problem of predicting the probabil-
ities of misassignments analytically is rather not feasible.
It is possible to derive approximate methods. We devel-
oped a method of the analysis of assignment errors based
on additive approximations which will be presented else-
where.

Using the method of repeated simulations, we an-
alyzed two examples of BNs, from Fig. 1. We de-
note them by BNC1 and BNC2. Both BNC1 and
BNC2 contain 10 causes XC,1, . . . , XC,10 and 20 ef-
fects XE,1, . . . , XE,20. In both BNC1 and BNC2, the
random variables XC,1, . . . , XC,10 are normally distrib-
uted with μ = 0 and σ = 1, and the random variables
XE,1, . . . , XE,20 are conditionally normally distributed,
as described in (2), with σm

U = σm
T = 1. BNC1 and

BNC2 differ in the values μU and μT . For BNC1 we
assumed μm

U = −0.8, μm
T = 0.8, m = 1, 2, . . . , 20,

and for BNC2 we have taken μm
U = −1.5, μm

T = 1.5,
m = 1, 2, . . . , 20. This assumption means that triggering
the process Y changes the expectation of the conditional
distribution of XE,m from μm

U = −0.8 to μm
T = 0.8 in

BNC1 and from μm
U = −1.5 to μm

T = 1.5 in BNC2.
The number of repeated measurements, in both BNs, was
taken as 30. We repeated the likelihood optimization pro-
cedure 100 times of 2500 steps of the Metropolis-Hastings
algorithm described in Section 3, and the obtained the re-
sults are presented in Table 1.

We also analyzed, by the method of repeated simu-
lations, two instances of BNs, from Fig. 2. We denote
them by BNA1 and BNA2. For both BNA1 and BNA2,
we assumed that the classes A, B and E contain K = 10,
L = 10 and M = 20 nodes, respectively. In both BNA1
and BNA2 the true distributions of X A,1, . . . , XA,K ,
XB,1, . . . , XB,L and XE,1, . . . , XE,20 are conditionally
normally distributed, as described in the expressions (4),

Table 2. Results of 100 runs of 2500 steps of the
Metropolis-Hastings algorithm for the maximiza-
tion of the likelihoods of the Bayesian networks
BNC1 and BNC2 described in the text.

Number of misassignments 0 1 2 3 4 5 6 7

Times encountered (BNA1) 0 0 0 20 13 27 27 13

Times encountered (BNA2) 92 8 0 0 0 0 0 0

(6) and (7). For BNA1 we assumed μm
U = −0.8, μm

T =
0.8, k = 1, 2, . . . , 10, l = 1, 2, . . . , 10, m = 1, 2, . . . , 20
in (4), (6) and (7), and for BNA2 we set μm

U = −1.5,
μm

T = 1.5, k = 1, 2, . . . , 10, l = 1, 2, . . . , 10, m =
1, 2, . . . , 20. The number of repeated observations in both
BNs was taken as 30. For each observation we chose ran-
domly the categories U, U, U or T, T, U or T, U, T with
the probabilities P (U, U, U) = 0.5, P (T, T, U) = 0.25
and P (T, U, T ) = 0.25. We repeated the likelihood
optimization procedure 100 times of 2500 steps of the
Metropolis-Hastings algorithm, over the assignments of
observations to the hidden categories T, T, U and T, U, T ,
and we present the obtained results in Table 2.

5. Remarks on Methods of Estimating Node
Assignments

From the results of Tables 1 and 2, one can see that re-
covering assignments for BNC2 and BNA2 can be done
more reliably than for BNC1 and BNA1. This results from
the fact that differences between the distributions of the
classes of nodes, causes and effects are larger in BNC2
and BNA2 and smaller in BNC1 and BNA1. So, intu-
itively, confusing the classes of nodes is more probable in
BNC1 and BNA1 and less probable in BNC2 and BNA2.

The entries in Tables 1 and 2 corresponding to BNC1
and BNA1 reveal the remarkable fact that recovering a
true assignment can be less probable than recovering an
erroneous one. This fact follows from the effect of the
maximization of the likelihood over many assignments.
Define q as the number of misassignments. For exam-
ple, q = 0 means a true assignment and q = 1 repre-
sents one cause switched with one effect. When com-
paring q = 0 with q = 1 in BNC1, the true assignment
q = 0 is “competing” not with one assignment q = 1
but rather with all K M possible different assignments,
all leading to q = 1, resulting from swapping X C,1 with
XE,1, XC,1 with XE,2 . . . and so forth. The likelihood of
the true assignment is compared with the maximum over
all of above combinations of distributions (David and Na-
garaja, 2003). The maximization of the likelihood over
even more structures takes place when comparing the true
assignment q = 0 to assignments leading to q = 2, etc.
An analogous mechanism acts in BNA1.
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The above mechanism of a systematic error result-
ing from maximizing the likelihood over assignments sug-
gests that care must be taken when approaching various
problems of node assignment and indicates a need for
comparing the maximum likelihood method with other
methods of estimating assignments. A method often used
in estimating the topologies of BNs is computing and
comparing correlations between nodes. For the BN with
cooperative causes from Fig. 1, the assignment of the ran-
dom variable X to the classes “cause” and “effect” could
be done by computing the correlation coefficient between
X and Y and assigning X as a “cause” when the correla-
tion coefficient is low and as an “effect” when it is high.
Following the suggestion of an anonymous reviewer of
the first version of the manuscript, we have compared the
correlation approach to the maximum likelihood method.
The conclusion is that, for the BN with cooperative causes
from Fig. 1, the assignment by the values of the corre-
lation coefficient is generally more efficient than that by
maximizing the likelihood over assignments, in the sense
that, on the average, it leads to assignments closer to the
true one. However, for the BN with alternative causes
from Fig. 2, the situation is opposite. By using correla-
tions between X and Y , it is rather hopeless to stratify
nodes into three classes A, B and E. Even when differ-
entiating between two classes A ∪ B and E, correlations
are, on the average, less efficient than the maximum like-
lihood. These observations suggest that more research is
needed to establish more reliable and robust methods for
the node assignment in BNs.

6. Conclusions

Estimating the topology of a BN based on the observa-
tion of realizations of random variables is a difficult prob-
lem, and the results reported in the literature (Chickering,
2002; Friedman, 1998; Liu and Desmarais, 1997; Pearl
and Verma, 1991) concern mostly BNs of rather small
sizes. Also very little is known about the probability dis-
tributions of errors in estimating BN topologies.

We presented some results related to the problem
where the topology of a BN is known and uncertainty is
in an unknown assignment of the observed random vari-
ables to the BN nodes. We based our approach on esti-
mating the assignment via likelihood maximization. Sim-
ulation results show that node assignments can be quite
reliably recovered based on a very moderate number of
repeated observations (about 30). Estimation quality in-
creases with increasing differences between the distribu-
tions of the classes of nodes. Estimating the probabilities
of errors in node assignments allows evaluating the relia-
bility of conclusions drawn based on the analyzed data.

Our research leads to understanding the probability
distribution of the error committed when estimating the

assignments of the observed random variables to the nodes
of BNs by using the maximum likelihood approach. The
results of simulations illustrate the mechanisms leading to
misassignments in problems of the reconstruction of BNs,
related to maximizing the likelihood over many assign-
ments.

The development of biological knowledge, e.g., of
mechanisms leading to neoplasia can involve construct-
ing hypothetical cause-effect dependencies where the sce-
nario is known but the roles of actors (genes) remain to
be identified. Such problems can be formalized with the
use of the concept of Bayesian networks and examined by
using the methods presented in this paper.
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