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While using automated learning methods, the lack of accuracy and poor knowledge generalization are both typical problems
for a rule-based system obtained on a given data set. This paper introduces a new method capable of generating an accurate
rule-based fuzzy inference system with parameterized consequences using an automated, off-line learning process based on
multi-phase evolutionary computing and a training data covering algorithm. The presented method consists of the following
steps: obtaining an initial set of rules with parameterized consequences using the Michigan approach combined with an
evolutionary strategy and a covering algorithm for the training data set; reducing the obtained rule base using a simple
genetic algorithm; multi-phase tuning of the fuzzy inference system with parameterized consequences using the Pittsburgh
approach and an evolutionary strategy. The paper presents experimental results using popular benchmark data sets regarding
system identification and time series prediction, providing a reliable comparison to other learning methods, particularly
those based on neuro-fuzzy, clustering and ε-insensitive methods. An examplary fuzzy inference system with parameterized
consequences using the Reichenbach implication and the minimum t-norm was implemented to obtain numerical results.
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1. Introduction

The complexity of real-world problems, the absence of ex-
plaining theories and the lack of knowledge on analyzed
phenomena as well as high expenses of human experts
require sophisticated methods of preparing accurate in-
telligent systems capable of reflecting reality and able to
generalize their knowledge in unforeseen cases. A rule-
based Fuzzy Inference System (FIS) introduced by Zadeh
(1971) became fundamental for further work and lead to
the Mamdani-Assilian (Mamdani and Assilian, 1975) lin-
guistic FIS, which is perhaps the most popular one. The
disadvantages of Mamdani’s FIS (particularly, high com-
plexity due to the aggregation operation) lead to simplifi-
cations, i.e., Larsen’s and Sugeno-Yakusawa’s FISs. Tak-
agi, Sugeno and Kang (TSK) presented a low-complexity,
computationally effective model without fuzzy sets within
rule consequences (Sugeno and Kang, 1988; Takagi and
Sugeno, 1985). The synthesis of Mamdani and TSK mod-
els was done by Czogała and Łęski, cf. a fuzzy infer-
ence system with parameterized conclusion (Czogała and
Łęski, 1996; 1999).

Even a most advanced rule-based FIS is unable to
provide correct results without a proper Rule Base (RB).
Obtaining an optimal set of rules is a state-of-the art piece
of work. Whenever there is a lack of knowledge on the
problem considered or it is impossible to achieve a model
RB from a human expert, automated learning methods are

set to work. Various on-line and off-line learning methods
have been developed since the beginnings of soft com-
puting. Some pertaining methods are neural networks
(Tadeusiewicz, 1998), neuro-fuzzy (Czogała and Łęski,
1999; Fuller, 1999) and evolving-fuzzy systems (Cordón
et al., 2004). Pure neural network based methods and
hybrid neural methods are considered to be imperfect as
there are known problems related to global optimization
results. Genetic algorithms and evolution strategies are
considered as powerful global optimization tools, and are
thus interesting components for the construction of hy-
brid systems (Angelov, 2002; Cordón et al., 2001; Her-
rera and Verdegay, 1996; Pedrycz, 1997). The next sec-
tion presents an overview of multi-phase off-line learning
methods and a proposal of a rival solution. The follow-
ing sections describe the components and processes of the
presented method. The subsequent one discusses practical
experiments and results on system identification, training
data approximation and chaotic time series prediction, as
well as further research directions.

2. Fuzzy Inference System with
Parameterized Consequences

A linguistic fuzzy inference system with fuzzy sets in con-
sequences, whose locations are described as linear combi-
nations of input singletons, was introduced and presented
in depth by Czogała and Łęski (1996; 1999). Compared
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with the Mamdani FIS and the TSK FIS, a parameterized
consequent provides an extra degree of freedom for every
single rule, thus making such a system potentially more
accurate than the above-mentioned ones, but still able to
represent its knowledge base in a form acceptable by the
human. We assume the following: a multiple input sin-
gle output (MISO) model with n inputs where every i-th
fuzzy if-then rule R(i) is specified by a set of fuzzy input
sets A

(i)
n , an output fuzzy set B (i) and a set of parameters

θ(i) that can be represented using the following notation
(Czogała and Łęski, 1999):

R(i) : IF
N

and
n=1

Xn is A(i)
n THEN Y is B(i)(θ, x0), (1)

where Xn and Y denotes linguistic variables (inputs and
the output, respectively) and B (i)(θ, x0) represents a para-
meterized linguistic value of the output linguistic variable
Y . Assuming the logical interpretation of if-then rules, the
output fuzzy value can be written as (Czogała and Łęski,
1999):

μB′(y, x0)
I⊕

i=1

μB(i)(y)

=
I⊕

i=1

Ψ
(
μA(i)(x0), μB(i)(y, x0)

)
, (2)

where Ψ denotes fuzzy implication,
⊕

stands for the ag-
gregation operation, μB′ and μA represent fuzzy mem-
bership functions (the output and inputs, respectively).
Assuming isosceles triangular membership functions for
the rule consequent part, the output crisp value y0 of
the FIS, excited by the vector of singletons x0 repre-
senting input data, can be obtained using the modified
indexed center-of-gravity (MICOG) defuzzifier (Czogała
and Łęski, 1999):

y0 =

I∑
i=1

g
(
F (i)(x0), w

(i)
)
y(i)(x0)

I∑
i=1

g
(
F (i)(x0), w(i)

) , (3)

where y(i)(x0) denotes the location of the center of grav-
ity on the X axis of the consequent fuzzy set for the i-th
rule, F (i)(x0) denotes the firing strength (the activation
level) of the i-th rule (Czogała and Łęski, 1999), w (i) de-
notes the support length of the triangle consequent fuzzy
set for the i-th rule. The form of the function g depends
on the chosen fuzzy implication. In this article, the Re-
ichenbach fuzzy implication was selected and thus g is
calculated as (Czogała and Łęski, 1999):

g =
w(i)

2
F (i)(x0). (4)

The Gaussian membership function for the input linguistic
variables was selected as

μA(x) = e−
(x−c)2

2σ2 , (5)

where c and σ denote the core location and the Gaussian
bell deviation, respectively, and the firing strength
F (i)(x0) i-th rule is calculated using a selected t-norm
(Czogała and Łęski, 1999):

F (i)(x0) = μ
A

(i)
1

(x0,1) �T · · · �T μ
A

(i)
N

(x0,N ), (6)

where �T stands for the t-norm.

3. Multi-Phase FIS Development Method
Using a GA and an ES

Various hybrid fuzzy systems have been developed in the
last decade (Cordón et al., 2004). Literature analysis
shows that the most prominent systems are those using a
knowledge base (KB) of fuzzy if-then rules, where genetic
algorithms (GAs) and evolution strategies (ESs) constitute
a toolbox for processing on different levels of complexity,
starting from FIS parameter optimization, but even learn-
ing a total FIS KB. The following sections present a multi-
phase learning method, capable of obtaining an FIS KB:
its rule-base set (RB) and the fuzzy membership functions,
the so-called fuzzy database (DB), from a training data set.
The first phase contains an iterative algorithm that extracts
fuzzy if-then rules and a fuzzy database simultaneously,
with the use of an iterative rule learning approach (Cordón
and Herrera, 1997b; 2001; Cordón et al., 1999; González
and Pérez, 1999) and an evolutionary strategy (ES) using
the Michigan approach (Bonarini, 1996; Holland and Re-
itman, 1978; Ishibuchi et al., 1999; Parodi and Bonelli,
1993; Valenzuela-Rendón, 1991; Velasco, 1998). The
following phase performs rule-base reduction, selecting
the best fuzzy rules (in terms of selected criteria) and
removing redundant ones using GAs. The final phases
perform fuzzy DB tuning with the use of ESs, applying
the Pittsburgh approach (Baron et al., 2001; Carse et al.,
1996; Hoffmann and Pfister, 1997; Holland and Reitman,
1978; Lee and Takagi, 1993; Magdalena and Monasterio,
1997; Park et al., 1994; Pham and Karaboga, 1991; Thrift,
1991). The whole process is presented in Fig. 1.

3.1. Fuzzy Knowledge Base Extraction from Exam-
ples. The iterative rule learning processs consists in us-
ing two elements: a covering algorithm and an ES, respon-
sible for a fuzzy rule discovery, based on the training data
set ENT . The primary training data set is considered to
be noiseless and composed of NT numerical input-output
pairs eNT [j] = (x0[j], t0[j]), x0[j] = x0,0, . . . , x0,n for
j = 1, . . . , NT . Each iteration generates a single fuzzy
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Fig. 1. General scheme of the multi phase process.

rule R(i) constituting an element of the FIS KB refer-
enced as R. The i-th rule description contains member-
ship function definitions of the rule premises μA(i)(·) and
the consequences μB(i)(·), but also linear parameters—
a matrix Θ, describing the locations of fuzzy member-
ship functions for the rule consequences. Additionally, a
training data subset EC is introduced, containing currently
processed training data pairs. Assuming that every iter-
ation of the covering algorithm adds a newly discovered
rule to R, the training data set EC is modified to make it
contain only those elements from ENT that are left uncov-
ered. During the first iteration, we have EC = ENT .

3.1.1. Covering algorithm. The covering value of the
pair eNT [j] is defined as (Cordón and Herrera, 1997a):

CVR
(
eNT [j]

)
=

I∑
i=1

R(i)
c

(
eNT [j]

)
. (7)

The learning process ends when for all NT tuples within
the training data set ENT we have (Cordón and Herrera,
1997a):

CVR
(
eNT [j]

) ≥ ε, (8)

where j = 1, . . . , NT . Here R
(i)
c (eNT [j]) denotes the

compatibility degree between the i-th rule and j-th train-
ing data pair, computed as

R(i)
c

(
eNT [j]

)
= μA(i)

(
x0[j]
)

�Tc μB(i)

(
t0[j]
)
, (9)

where �Tc stands for a t-norm. In this article, the minimum

t-norm was chosen. To obtain the value of R
(i)
c (eNT [j]),

it is necessary to estimate the linear consequence parame-
ter vector θ(i) in order to locate the output triangle fuzzy
set, and hence the weighted least squares estimator (Łęski,
2006) on the training data set ENT was used:

θ(i) =
(
XTG(i)X

)−1
XTG(i)T , (10)

where X denotes the modified input data matrix

X =

⎡
⎢⎢⎣

x
′
0[1]T

...

x
′
0[NT ]T

⎤
⎥⎥⎦ , (11)

x
′
0[j] =

[
1

x0[j]

]
. (12)

The matrix G represents the weights of the training data
pairs for the i-th rule, defined as

G(i) =

⎡
⎢⎢⎢⎢⎢⎣

g
(
F (i)
(
x0[1]
))

0 · · · 0

0
.... . .... 0

0 · · · 0 g
(
F (i)
(
x0[NT ]

))

⎤
⎥⎥⎥⎥⎥⎦,

(13)

where the function g depends on the chosen fuzzy impli-
cation, cf. (4), and T denotes the output values vector of
the training data set

T =
[
t0(1), . . . , t0(NT )

]T
. (14)

The global rule learning process estimates the consequent
parameter matrix Θ composed of the vectors θ (i) (one per
rule) whenever it is necessary to simultaneously obtain
these parameters for all the rules constituting the FIS,

Θ =
[
θ(1)T, . . . , θ(I)T

]T
. (15)

The process utilizes the least-squares estimator defined on
the training data set ENT (Łęski, 2006):

Θ =
(
DTD

)−1
DTT , (16)

where D denotes the rule activation matrix defined as

D =

⎡
⎢⎢⎣

g(1)(x0[1])x
′
0[1]

T · · · g(I)(x0[1])x
′
0[1]T

...
. . .

...

g(1)(x0[NT ])x
′
0[NT ]T · · · g(I)(x0[NT ])x

′
0[NT ]T

⎤
⎥⎥⎦ .

(17)
Here g(i) represents the normalized output value for the
i-th rule,

g(i)
(
x0(j)

)
=

g
(
F (i) (x0 (j)) , w(i)

)
I∑

k=1

g
(
F (k) (x0 (j)) , w(k)

) . (18)
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Fig. 2. Michigan rule coding.

3.1.2. Rule discovery. The rule discovery algorithm
utilizes an (μ + λ) ES. The training data subset EC , used
during the rule discovery process, consists of the uncov-
ered elements from the training data set, directing the
method towards rules that potentially differ from those al-
ready constituting the KB. The ES utilizes a real coding
(Arabas, 2001), an elitist strategy and stochastic sampling
(Holland, 1975), max-min-arithmetic crossover (Herrera
et al., 1995) and periodic-nonuniform mutation operators.
In accordance with the Michigan model, each chromo-
some represents a single rule. The unconstrained free se-
mantics (Cordón and Herrera, 1997a) was selected, and
thus a chromosome is a vector of 2N + 1 real numbers
representing the parameters of membership functions, two
values for each input Gaussian fuzzy set and one value
representing the support of the output isoscele triangle
fuzzy set (see Fig. 2). Whenever it is necessary to esti-
mate the output value for a rule, the local rule learning
process is executed, cf. (10).

The starting pool consists of μ (= M1 + M1,2 +
M2 + M3) chromosomes generated heterogeneously:

• M1 chromosomes are generated using a fuzzy
c-means (FCM) algorithm (Bezdek, 1981) performed
on the data set EC , (the total number of chromosomes
obtained in this way is denoted by nFCM );

• M1,2 chromosomes are also generated with the use
of FCM, including only two cluster seeds (in fact, no
more than two rules if the FCM clustering succeeds
at all);

• M2 chromosomes are generated within the training
data input and output intervals of performance, ob-
tained from the training data set ENT ;

• M3 chromosomes are generated randomly without
any reference to the training data set.

The t estimator sets a balance between the clustered
and random pools and is defined as

t = min
(
round (0.75μ), card(EC)

)
. (19)

Thus, it is required that

M1 + 2 ≤ round(t/2), (20)

and

M1 = min
(
nFCM , card

(EC − (t/2) + 1
))

,

M1,2 ∈ {0, 2} ,
M2 = t− (M1 + M1,2),
M3 = μ− t.

(21)

M2 chromosomes are generated heuristically using a
training data subset where min (M2, card (EC)) pairs are
selected from the subset EC with uniform distribution and
the DB parameters of the chromosome are determined as

cj,n = EC
(
x0,n[j]

)
,

Δxn = max
(
EC
(
x0,n[j]

)−←−−x0,n,−−→x0,n − EC
(
x0,n[j]

))
,

σj,n =

√
(δ[0.0001, 1]Δxn)2

−2 ln (GL)
, (22)

wj = 2δ[0.0001, 1]

×
(
min
(EC(t0[j])−←−t0 ,

−→
t0 − EC(t0[j])

))
,

where n = 1, . . . , N , j = 1, . . . , M2, δ[·, ·] stands for a
uniformly distributed random variable and GL is a para-
meter.
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M3 chromosomes are generated randomly within the
corresponding intervals of performance, defined as

x−
0,n = min

1≤nt≤card(EC)

(
x0,n(nt)

)
,

x+
0,n = max

1≤nt≤card(EC)

(
x0,n(nt)

)
,

x−
0 =

[
x+

0,1, . . . , x
+
0,N

]T
,

(23)
x+

0 =
[
x−

0,1, . . . , x
−
0,N

]T
,

[←−x0,
−→x0] =

[
x−

0 − 0.1(x+
0 − x−

0 ), x+
0 + 0.1(x+

0 − x−
0 )
]
,[←−

t0 ,
−→
t0

]
=
[
t−0 − 0.1(t+0 − t−0 ), t+0 + 0.1(t+0 − t−0 )

]
.

All the DB parameters within the M3 scope are generated
randomly with uniform distribution. It is required that ran-
domized DB parameters cj,n, σj,n, wj (Fig. 2) belong to
the intervals of performance

cj,n ∈ [←−−x0,n,−−→x0,n] ,

σj,n ∈
⎡
⎣0.0001 (−−→x0,n −←−−x0,n) ,

√
(−−→x0,n −←−−x0,n)2

−2 ln (GL)

⎤
⎦ ,

wj ∈
[
0.0001

(−→
t0 −←−t0

)
,
(−→

t0 −←−t0
)]

,

(24)

where n = 1, 2, . . . , N and j = 1, 2, . . . , M3. The pre-
sented starting pool selection algorithm bases partially on
Cordón and Herrera’s studies (1997b), but it also equips
the staring pool with chromosomes supposed to be close
to the desired ones, generated by means of the FCM. On
the other hand, a part of the pool is generated randomly
and heuristically to spread chromosomes through the in-
tervals of performance and ensure pool diversity.

Two genetic operators were used during the gen-
eration of a new chromosome pool in each iteration
of the ES: a max-min-arithmetic operator, described in-
depth in (Herrera et al., 1995), and periodic nonuniform
mutation, based on Michalewicz’ nonuniform mutation
(Michalewicz, 2003), as a remedy for premature ES con-
vergence. The mutation operator changes a single value
in the chromosome with respect to the generation number
and the corresponding DB parameter interval of perfor-
mance, increasing or decreasing its value by

Δ(l, d) = d
(
1− δ[0, 1](1−

mod (l,10)
L )b)

, (25)

where l andL denote the current pool generation and max-
imum pool generation numbers, respectively, d stands for
the interval of performance and b > 0 represents a muta-
tion parameter. The selection of the operators was deter-
mined by both experiments by Cordón, Herrera, Lozano,

Verdegay and the observed results confirming a proper
choice. Also, attention was paid to the crossover opera-
tor as a tool to obtain offsprings located between parent
individuals within the search domain.

A new chromosome pool consists of μ best chromo-
somes, selected from among the current pool and the mu-
tated/crossed pool, according to the assessment made by a
fitness function.

The fitness function f consists of five partial criteria,

f (R,R, EC) = ΨNT

(
R(i), EC

)Cp(R(i), EC
)Cn(R(i), EC

)
× ϑ
(
R(i), EC

)
Ξ (R,R) . (26)

Each criterion performs an assessment of a different con-
text of the chromosome:

• ΨNT

(
R(i), EC

)
—the high rule compatibility degree,

assessing the compatibility between the chromosome
and the training data pairs EC ,

ΨNT

(
R(i), EC

)
=

1
e

e∑
j=1

R(i)
c

(EC(j)
)
, (27)

where e = card(EC);

• Cp
(
R(i), EC

)
—the average covering degree of the

subset EC ,

Cp
(
R(i), EC

)
=

∑
(j|EC(j)∈E+

ω (R(i),EC))

R
(i)
c (EC(j))

n+
ω

,

(28)

where n+
ω denotes the cardinality of the set E+

ω , and
E+

ω represents the set of positive examples for the
rule Ri, defined as

E+
ω

(
R(i), EC

)
=
{
EC(j) ∈ EC | R(i)

c

(
R(i), EC(j)

) ≥ ω
}

, (29)

with ω standing for the minimal rule compatibility
degree;

• Cn
(
R(i), EC

)
—the rule consequence compatibility

degree,

Cn
(
R(i), EC

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if n− ≤ κn+
ω ,

1
n− − κn+

ω + exp(1)
if n− > κn+

ω ,

(30)

where κ ∈ [0, 1], n− denotes the cardinality of the
set

E−(R(i), EC)

=
{
EC(j) ∈ EC |

R(i)
c (EC(j))=0 ∧ μA(i)

(
x0(j)

)
>0
}
; (31)
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• ϑ
(
R(i), EC

)
—the width of membership functions vs.

the intervals of performance,

ϑ
(
R(i), EC

)

=
exp
(
1−
(

w(i)

t+0 −t−0
+

N∑
n=1

2
√
−0.5(σ

(i)
n )2 ln (GL)

x+
0,n−x−

0,n

))
−1

exp(1)− 1
,

(32)

where t−0 , t+0 , x−
0,n and x+

0,n can be obtained as

t−0 = min
j|{EC(j)∈EC}

(
t0(j)
)
,

t+0 = max
j|{EC(j)∈EC}

(
t0(j)
)
,

x−
0,n = min

j|{EC(j)∈EC}
(
x0,n(j)

)
,

t+0,n = max
j|{EC(j)∈EC}

(
x0,n(j)

)
. (33)

Here σ
(i)
n and w(i) denote the parameters of the

premise and consequent membership functions, re-
spectively. This criterion prevents the discovering of
rules that may cover most of the training data set,
thus dominating the whole KB;

• Ξ (R,R) assesses the similarity between the i-th rule
R(i) and the RBR, ensuring rule diversity in the KB,

Ξ
(
R(i),R

)
= 1− max

{k|R(k)∈R}
(
μA(i)(C(k)

x ) �Tc μB(i)(C(k)
y )
)
.

(34)

Here C(k)
x denotes a vector of DB parameters, rep-

resenting Gaussian membership function centers for
the premises of the k-th rule, C (k)

y represents the cen-
ter of the consequence membership function for the
k-th rule. To obtain the location of a moved conse-
quent, each rule participating in the assessment was
learned locally using the training data set ENT and
excited using the vector of ones as input data to es-
timate the location of the consequent membership
function and, in this way, to make the comparison
feasible.

3.2. Rule Base Reduction. The KB obtained during
the preceding step may contain useless or undesirable
rules, and thus it must be reduced. It is necessary to en-
sure that the reduced KB contains a minimal set of rules
that still cover the training data set ENT . During this
process, only the RB is optimized and the DB remains

unchanged. This step utilizes a simple genetic algorithm
(Holland, 1975) using binary coding, proportional selec-
tion, two-point cross-over and a classic mutation. The GA
was chosen to ensure an acceptable time of rule reduction
in the case of an increasing complexity (huge training data
sets, a high number of rules discovered in the first stage).
Each chromosome represents an RB of the FIS. The chro-
mosome fitness function performs an assessment of FIS
quality and ensures a minimum covering level for all pairs
in the training set. A chromosome consists of I fields,
representing an ordered set of rules obtained during the
rule discovery process (see Fig. 3). The binary value 1 de-
notes the rule (identified by a locus position) participating
in an RB of the FIS. The DB remains unchanged during
the entire reduction process, but to obtain an output FIS
value, it is necessary to know the consequence parameters
Θ. Thus, for each chromosome, a global consequence pa-
rameter learning method was used on the training data set
ENT , see (16). The best chromosome (in terms of the fit-
ness function) represents an FIS with a reduced RB, and
thus a reduced KB that contains III rules.

Fig. 3. Rule base coding.

The starting pool consists of p (= M + 1) chromo-
somes, where M chromosomes are generated randomly
with uniform distribution on the RB. The other chromo-
some is generated as a vector of ones, representing the
FIS formed of all rules obtained during the preceding rule
discovery phase.

The fitness function f utilized during RB reduction
is defined in the following way:

f (x̃, (ENT )) =
1√

fJ (x̃, (ENT ))
,

fJ (x̃, (ENT ))

=

⎧⎪⎪⎨
⎪⎪⎩

JSRMSE (x̃, (ENT )) if JRc

(
x̃, (ENT )

) ≥ τ,

NT∑
j=1

(
t0(j)
)2

if JRc

(
x̃, (ENT )

)
< τ,

(35)

where JRc denotes the covering rate, defined as

JRc

(
x̃, (EC)

)
=

NT∑
j=1

Ix̃∑
i=1

R
(i)
c (ENT (j))

NT Ix̃
, (36)

with Ix̃ as the chromosome x̃ rule cardinality, i.e., the
number of rules represented by the chromosome. The
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Fig. 4. Pittsburgh rule coding.

quality factor JSRMSE utilizes the root mean square error,
estimated as

JSRMSE

(
x̃, (ENT )

)
=

1
2NT

NT∑
j=1

(
t0(j)−y0

(
x0(j)

))2
,

(37)
where y0(x0(j)) denotes the crisp output value generated
by the FIS with the RB that suits the chromosome x̃ (see
Fig. 3), obtained for the training data input vector x 0(j).

It is also necessary to observe that the first stage of
the presented method (rule discovery) also contains some
elements of rule reducing, hidden within the employed fit-
ness function: protection against discovering low firing
strength rules (27), training data incompatible rules (28,
30) and redundant rules (34).

3.3. Fuzzy DB Tuning. The reduced RB obtained in
the previous step and the corresponding DB both consti-
tute a new KBRII . This KB underlies the following tun-

ing process, described in this section. The tuning process
is executed twice. For every but the first execution of the
tuning process, the underlying KB is the best FIS obtained
during the former run. The methodology utilizes a (μ+λ)
elitist ES model, real coding using the Pittsburgh ap-
proach, max-min-arithmetic crossover, periodical nonuni-
form mutation and stochastic selection. The chromosome
length is constant and thus the RB line-up is frozen during
the tuning process. Only the DB parameters correspond-
ing to the rules constituting the FIS are tuned. Those pa-
rameters represent only the premise and consequent fuzzy
membership function sets (Gaussian and isoscele triangle
ones, respectively). Assuming unconstrained free seman-
tics, the chromosome vector consists of the (2N + 1)III

real numbers that represent all but Θ DB parameters de-
scribing the FIS (see Fig. 4). The matrix Θ is estimated
with the use of global learning, see (16), whenever it is
necessary to obtain an FIS crisp output value. The es-
timation of the fitness function and the Θ parameters is
performed using the full training data set ENT .
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The starting pool consists of μ chromosomes, and
each of them is composed of an RII RB with the respec-
tive DB obtained during the rule discovery process (for the
first execution of the tuning process) or the best chromo-
some obtained during the former execution of the tuning
phase. The other chromosomes are generated randomly
with uniform distribution on intervals of performance,

←−c 0,i = c0,i −
√

(σ0,i)2

−2 ln (GL)
,

−→c 0,i = c0,i −
√

(σ0,i)2

−2 ln (GL)
,

(38)
←−c 0 =

[←−c 0,1, . . . ,
←−c 0,NIII

]T
,

−→c 0 =
[−→c 0,1, . . . ,

−→c 0,NIII

]T
,

←−σ 0,i = 0.5σ0,i,

−→σ 0,i = 1.5σ0,i,
(39)

←−σ 0 =
[←−σ 0,1, . . . ,

←−σ 0,NIII

]T
,

−→σ 0 =
[−→σ 0,1, . . . ,

−→σ 0,NIII

]T
,

←−w 0,i = 0.25w0,i,

−→w 0,i = 1.25w0,i,
(40)

←−w 0 =
[←−w 0,1, . . . ,

←−w 0,NIII

]T
,

−→w 0 =
[−→w 0,1, . . . ,

−→w 0,NIII

]T
.

The fitness function defined below estimates the FIS
quality factor by means of the root mean square error,

f
(
x̃, (ENT )

)
=

1
4
√

fJ (x̃, (ENT ))
,

(41)

fJ

(
x̃, (ENT )

)
=

1
2NT

NT∑
j=1

(
t0(j)− y0

(
x0(j)

))2
,

where x̃ denotes the chromosome and y0 (x0(j)) is the
FIS crisp output value.

The final output is the best chromosome (in terms of
the fitness function) obtained during the last run of the ES.

4. Experimental Results

A series of experiments were performed using the pre-
sented method. The relevant software was written us-
ing the MATLAB 6.5 environment, running on a two-
processor PC (P4 XEON@2.4 GHz, Hyper-Threading

core) equipped with 4 GB RAM. As the MATLAB en-
vironment does not utilize a multi-threading technology,
four parallel experiments were executed simultaneously
(with different parameters, see Table 4).

For the experiments, the Box-Jenkins (Box and
Jenkins, 1976) gas furnace benchmark database and the
Sunspots (Weigend et al., 1990) database were chosen.
The system quality was measured using the root mean
square error factor calculated between the training data
output and the investigated FIS output,

JRMSE =

√√√√ 1
NT

NT∑
j=1

(
t0(j)− y0

(
x0(j)

))2
. (42)

4.1. Data Approximation. The first experiment
presents the ability to obtain an accurate FIS, performing
an accurate data approximation on the Box-Jenkins
benchmark database (using all pairs). The input data
consists of 290 vectors organized in the following form:

[xn, yn]

=
[
y(n−1), . . . , y(n−4), x(n−1), . . . , x(n−6), y(n)

]
.

(43)

The average JRMSE = 0.1280 (10 runs) for the Reichen-
bach fuzzy implication and the minimum t-norm was
demonstrated. The FIS output compared with the train-
ing data set output is presented in Fig. 5. The compar-
ison of JRMSE obtained using different methods is dis-
played in Table 1—the other results were taken from (Box
and Jenkins, 1976; Chen et al., 1998; Czogała and Łęski,
1999; Kim et al., 1997; Lin and Cunningham, 1995; Łęski,
2006; Pedrycz, 1984; Sugeno and Yasukawa, 1993; Tong,
1980; Wang and Langari, 1995; Xu and Lu, 1987; Zikidis
and Vasilakos, 1996).

4.2. Knowledge Generalization. The related experi-
ment presents the ability to generate an FIS capable of
generalizing its knowledge. The Box-Jenkins benchmark
data set, organized as presented in the former experiment,
(see Eqn. (43)) was divided into two subsets: the train-
ing subset, composed of the first 100 pairs, and the test-
ing data set, composed of the following 190 pairs. The
presented division permits a reliable comparison of the
presented method and others, i.e., the ones presented in
(Łęski, 2006; Łęski and Czogała, 1999). For the Reichen-
bach fuzzy implication and the minimum t-norm, the av-
erage values JRMSE = 0.0935 and JRMSE = 0.4423 were
demonstrated (10 runs, for the training data set and the
testing data set, respectively). The FIS outputs is pre-
sented in Fig. 6 versus the training and testing data set
outputs. The comparison of JRMSE obtained using differ-
ent methods is presented in Table 2—the other results are
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Fig. 5. Box-Jenkins data approximation.

Table 1. RMSE comparison obtained during the Box-Jenkins
training data approximation test.

Author Rules JRMSE

Tong 19 0.6848

Xu-Lu 25 0.5727

Pedrycz 81 0.5656

Box-Jenkins — 0.4494

Sugeno-Yasukawa 6 0.4348

Chen et al. 3 0.2678

Lin-Cunningham 4 0.2664

Sugeno-Tanaka 2 0.2607

Wang-Langari 2 0.2569

Zikidis-Vasilakos 6 0.2530

Kim-Park-Ji 2 0.2345

Kim-Park 2 0.2190

ANBLIR(fuzzy imp. Gödel) 2 0.1892

ANNBFIS 3 0.1791

Czogała-Łęski 6 0.1445

ANBLIR(fuzzy imp. Fodor) 6 0.1353

The presented method 8 0.1280

Table 2. RMSE comparison obtained during the Box-Jenkins
knowledge generalization test.

Author Rules JRMSE

Least squares 6 0.5579

Iterative quadratic programming 6 0.5537

ε-Insensitive learning 6 0.4956

The presented method 7 0.4423

ANBLIR 8 0.4020

ANBLIR 7 0.3870

Iterative quadratic programming

—local rule learning
2 0.3442

taken from (Łęski, 2005; Łęski, 2006). The results show
that decreasing the number of rules usually increases the
ability to generalize knowledge (thus, according to statis-
tical learning theory, simultaneously decreasing the qual-
ity of data approximation).

The other experiment on chaotic time series predic-
tion was performed using the Sunspots database (Weigend
et al., 1990). The data set contains time series tuples cre-
ated as the numbers of sunspots observed from the year
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Fig. 6. Box-Jenkins knowledge generalization.

Table 3. RMSE comparison obtained during the Sunspots
knowledge generalization test.

Author Rules JRMSE

Least squares 3 0.08416

Iterative quadratic programming 3 0.08032

ε-Insensitive learning 4 0.07945

Iterative quadratic programming
—local rule learning

5 0.07803

The presented method 8 0.07780

1700 to 1979 in the following form:

[xn, yn]

=
[
y(n−1), . . . , y(n−2), x(n−3), . . . , x(n−12), x(n)

]
.

(44)

The first 100 tuples constitute the training data set while
the following 168 tuples form the testing data set. The
FIS outputs are presented in Fig. 7 versus the training and
testing data set outputs. The values of JRMSE = 0.0608
and JRMSE = 0.0778 were observed for the training and

testing data sets, respectively. This ranks the presented
method among the best ones developed. A comparison
with other methods is shown in Table 3. All the experi-
ments were performed using the parameters presented in
Table 4.

Table 4. Method execution parameters.

Parameter Phase 1 Phase 2 Phase 3

μ 60 — 100

λ 20 — 20

p — 50 —

L 50 150 150

Crossover prob. 1 0.75 0.6

Mutation prob. 0.8 0.005 0.6

GL 0.25 — 0.9

τ — 0.25 —

ω 0.1 — —

κ 0.05 — —

b 5 — 5

ε 0.9–1.8 — —
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Fig. 7. Sunspots chaotic time-series prediction.

5. Summary and Further Work

The presented method still needs some refinement. Dur-
ing the calculation of the Θ parameters, it is common that
nearly singular matrices have to be inverted, thus leading
to a rapid growth of the calculation error. It is considered
to reorganize the matrix inversion method to a recursive
implementation, rather than the iterative one. Other pos-
sible t-norms (e.g., the algebraic product) and other fuzzy
implications will be the subjects of further research. Other
benchmark tests, e.g., a Mackey-Glass chaotic time se-
ries prediction, Boston Housing system identification, or
other image and pattern recognition data are also consid-
ered. Future work is aimed at preparing a system with
extra degrees of freedom, like a variable number of rules,
exploring different genetic operators, tuning algorithm pa-
rameters and working with FISs that utilize membership
functions different than Gaussian and isoscele triangles.
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Łęski J. and Czogała E. (1999): A new artifficial neural network
based fuzzy inference system with moving consequents in
if-then rules and selected applications. — Fuzzy Sets Syst.,
Vol. 108, No. 3, pp. 289–297.

Lin Y. and Cunningham H. (1995): A new approach to fuzzy-
neural modeling. — IEEE Trans. Fuzzy Syst., Vol. 3,
No. 2, pp. 190–197.

Magdalena L. and Monasterio F. (1997): A Fuzzy logic con-
troller with learning through the evolution of its knowl-
edge base. — Int. J. Approx. Reason., Vol. 16, Nos. 3–4,
pp. 335–358.

Mamdani E. and Assilian S. (1975): An experiment in linguistic
synthesis with a fuzzy logic controller. — Int. J. Man-Mach.
Stud., Vol. 7, No. 1, pp. 1–13.

Michalewicz Z. (2003): Genetic Algorithms + Data Struc-
tures = Evolution Programs. — Warsaw: Wydawnictwa
Naukowo-Techniczne, (in Polish).

Park D., Kandel A. and Langholz G. (1994): Genetic-based
new fuzzy reasoning models with application to fuzzy con-
trol. — IEEE Trans. Syst. Man Cybern., Vol. 24, No. 1,
pp. 39–47.

Parodi A. and Bonelli P. (1993): A new approach to fuzzy clas-
sifier systems. — Proc. 5-th Int. Conf. Genetic Algorithms,
Los Altos, pp. 223–230.

Pedrycz W. (1984): An identification algorithm in fuzzy re-
lational systems. — Fuzzy Sets Syst., Vol. 13, No. 2,
pp. 153–167.

Pedrycz W. (1997): Fuzzy Evolutionary Computation. — Dor-
drecht: Kluwer.



Evolution-fuzzy rule based system with parameterized consequences 385

Pham D. and Karaboga D. (1991): Optimum design of fuzzy
logic controllers using genetic algorithms. — J. Syst. Eng.,
Vol. 1, No. 2, pp. 114–118.

Sugeno M. and Kang G. (1988): Structure identification of fuzzy
model. — Fuzzy Sets Syst., Vol. 28, No. 1, pp. 15–33.

Sugeno M. and Yasukawa T. (1993): A fuzzy-logic based ap-
proach to qualitative modeling. — IEEE Trans. Fuzzy
Syst., Vol. 1, No. 1, pp. 7–31.

Tadeusiewicz R. (1998): Fundamental introduction to neural
neworks techniques with sample implementations. — War-
saw: Akademicka Oficyna Wydawnicza PLJ, (in Polish).

Takagi T. and Sugeno M. (1985): Fuzzy identification of sys-
tems and its application to modelling and control. — IEEE
Trans. Syst. Man Cybern., Vol. 15, No. 1, pp. 116–132.

Thrift P. (1991): Fuzzy logic synthesis with genetic algorithms.
— Proc. 4-th Int. Conf. Genetic Algorithms, Los Altos,
pp. 509–513.

Tong R. (1980): The evaluation of fuzzy models derived from
experimental data. — Fuzzy Sets Syst., Vol. 4, pp. 1–12.

Valenzuela-Rendón M. (1991): The fuzzy classifier system: Mo-
tivations and first results. — Proc. 1-st Int. Conf. Parallel
Problem Solving from Nature, Berlin, pp. 330–334.

Velasco J. (1998): Genetic-based on-line learning for fuzzy
process control. — Int. J. Intell. Syst., Vol. 13, Nos. 10-
11, pp. 891–903.

Wang L. and Langari R. (1995): Building Sugeno-type models
using fuzzy discretization and orthogonal parameter es-
timation techniques. — IEEE Trans. Fuzzy Syst., Vol. 3,
No. 4, pp. 454–458.

Weigend A., Huberman B. and Rumelhart D. (1990): Predict-
ing the future: A connectionist approach. — Int. J. Neural
Syst., Vol. 1, No. 3, pp. 193–209.

Xu C. and Lu Y. (1987): Fuzzy modeling identification and self-
learining for dynamic systems. — IEEE Trans. Syst. Man
Cybern., Vol. 17, No. 4, pp. 683–689.

Zadeh L. (1971): Towards a theory of fuzzy systems, In: Aspects
of Network and System Theory (R.E. Kalman and N. De
Claris, Eds.). — New York: Holt, Rinehart and Winston.

Zikidis K. and Vasilakos A. (1996): ASAFES2: A novel, neuro-
fuzzy architecture for fuzzy computing, based on functional
reasoning. — Fuzzy Sets Syst., Vol. 83, No. 1, pp. 63–68.

Received: 23 November 2005
Revised: 2 July 2006




