
Int. J. Appl. Math. Comput. Sci., 2006, Vol. 16, No. 4, 537–549

GUIDED LOCAL SEARCH FOR QUERY REFORMULATION
USING WEIGHT PROPAGATION

ISSAM MOGHRABI

Computer Science Department
Faculty of Science, Beirut Arab University

P.O. Box 11–5020, Beirut, Lebanon
e-mail: imoghrabi@bau.edu.lb

A new technique for query reformulation that assesses the relevance of retrieved documents using weight propagation is
proposed. The technique uses a Guided Local Search (GLS) in conjunction with the latent semantic indexing model (to
semantically cluster documents together) and Lexical Matching (LM). The GLS algorithm is used to construct a minimum
spanning tree that is later employed in the reformulation process. The computations done for Singular Value Decomposition
(SVD), LM and the minimum spanning tree are necessary overheads that occur only initially and all subsequent work is
based on them. Our experimental results reveal the effectiveness of the new technique.

Keywords: relevance feedback, clustering, latent semantic, query reformulation

1. Introduction

In a relevance feedback cycle, the user is presented with
a list of retrieved documents and, after examining them,
marks those which are relevant. In practice, only the top
10 (or 20) ranked documents need to be examined. The
main procedure consists in selecting important terms, or
expressions, attached to the documents that have been
identified as relevant by the user, and enhancing the im-
portance of these terms in a new query formulation. The
expected effect is that the new query will focus on target-
ing the relevant documents and skip the nonrelevant ones
(Baeza-Yates and Ribeiro-Neto, 1999, p. 118). Relevance
Feedback (RF) has been found to improve precision by up
to 60% (Daniels and Rissland, 1995).

Some of the most advanced RF techniques used
in operating interactive information retrieval systems
are query reformulation using classification, clustering
vectors (Rijisbergon, 1979), Latent Semantic Indexing
(LSI) (Letsche and Berry, 1997) and query expansion.
Query expansion could be both interactive and automatic
(Ruthven et al., 2001).

Standard relevance feedback algorithms do not usu-
ally perform better given negative relevance judgment ev-
idence (Dunlop, 1997), although in this paper we will ex-
ploit a negative feedback.

2. Latent Semantics

The LSI model was described in detail in (Letsche and
Berry, 1997). In this paper we will briefly review some of
those details. LSI is an extension of the vector retrieval

method. The representation of the documents is based
mainly on the relationships between the terms.

It is assumed that there is some underlying, or “la-
tent”, structure in the pattern of word usage across docu-
ments. Statistical techniques can be used to estimate this
latent structure. A description of terms, documents and
user queries based on the underlying (“latent semantic”)
structure, rather than a surface level word choice, is used
for retrieving information.

Truncated SVD is used to estimate this latent struc-
ture. The computation of truncated SVD of a large sparse
term by document matrices is expensive, but it is per-
formed only once. The most common method used for the
solution of the SVD problem is incorporated in the Golub-
Kahan SVD algorithm, which requires O(mn2) time on a
single processor computer, where m represents the num-
ber of terms and n stands for the number of documents.
Vectors obtained from truncated SVD are used for the re-
trieval process.

In an LSI model, an m × n matrix A is used to rep-
resent the terms and documents, respectively. Each of the
m unique terms in the document collection are assigned a
row in the matrix, while each of the n documents in the
collection is assigned a column in the matrix.

The SVD of the matrix A is defined as the product of
three matrices,

A = UΣV T ,

where the columns of U and V are the left and right sin-
gular vectors, respectively, corresponding to the monoton-
ically decreasing (in value) diagonal elements of Σ, which

I. Moghrabi538

are called singular values of the matrix A. Two theorems
in (Letsche and Berry, 1997) illustrate how SVD can re-
veal important information about the matrix structure.

The first k columns of U and V and the first k sin-
gular values of A are used to construct a rank-k approxi-
mation to A via

Ak = Σuiσiv
T
i

for i = 1, . . . , k. Truncated SVD is illustrated in Fig. 1.

Ak
=

 Σ

n x n

k

k

VT

n x n

k Document
vectors

 U

m x n

k

Term
vectors

m x n

Fig. 1. Truncated SVD.

The user query is represented as a vector in the k-
dimensional space by

query = qT Uk(Σk)−1,

where q is simply the vector of words in the user’s query.
The query vector is compared with all document vectors
using a common measure of similarity such as the cosine
between the query vector and the document vector. The
corresponding relevance feedback query is given by

f = qT Uk(Σk)−1 + dT Vk,

where q specifies the terms in the original query, and d
signifies a vector whose elements specify the documents
in the query.

3. Guided Local Search

Guided Local Search (GLS) (see Voudouris, 1997) for a
more detailed description) is a meta-heuristic based on lo-
cal search. Local search is the basis of many heuristic
methods for combinatorial optimization problems. When
a given local search algorithm settles in a local optimum,
GLS changes the objective function. Iterative calls are
made to the local search, each time using a new modi-
fied objective function which is intended to bring the al-
gorithm out of a local optimum neighborhood. The key is
in the way that the objective function is modified.

GLS employs solution features to distinguish be-
tween solutions with different characteristics, so that bad
characteristics can be penalized by GLS, and hopefully re-
moved by the local search algorithm. The choice of solu-
tion features depends therefore on the type of the problem,

and also, to some extent, on the local search algorithm. A
feature fi is represented by the following indicator func-
tion:

I(s) =

{
1 if a solution has the property i,

0 otherwise,

to indicate whether or not the feature is present in the cur-
rent solution.

A feature must have other components such as the
cost function c(s), which gives the cost of having the fea-
ture present in a solution, and a penalty p i, initially set
to zero, used to penalize the occurrences of the feature in
local minima.

When the local search algorithm returns a local mini-
mum, s, which is not a legal solution, GLS increments the
penalty (penalize) of all the features present in that solu-
tion which have maximum utility, util(s, fi), defined as

util(s, fi) = Ii(s)
ci(s)

(1 + pi)
.

The idea is to penalize features which have high
costs, although the usefulness of doing so decreases as the
feature is successively penalized. Local search is guided
out of the local minimum by using an augmented cost
function. This is done by penalizing features present in
that local minimum. The idea is to make the local min-
imum costlier than the neighboring search space where
these features are not present. The augmented cost func-
tion is defined as follows:

h(s) = g(s) + λ
n∑

i=1

piIi(s).

The strengthening of the search for solutions is con-
trolled by the parameter λ. A low value will result in
a more concentrated search for the solution, where the
basins and plateaus in the search landscape are searched
with greater care. A higher value of λ will result in a more
diverse search, where plateaus and basins in the search are
searched less carefully.

4. Relevance Feedback and Weight
Propagation

The weight propagation method was introduced by
Yamout et al. (2006). A relevant document propagates
positive weights to neighboring documents and negative
weights if it is nonrelevant. Initially, each document is
represented by a vector of terms.

Let G = 〈N, A〉 be a connected graph where N is
the set of nodes and A is the set of edges. Consider N
to represent the documents in the database and the edges
to be the distances between them using a symmetric dis-
tance matrix D = [distance(i, j)], which gives the dis-
tance between any two documents i and j. With LM the

Guided local search for query reformulation using weight propagation 539

documents are viewed as vectors in the multidimensional
term space of dimension m, where m is the number of
terms in the database. Thus, the matrix D contains the dis-
tances between the documents using any similarity mea-
sures such as the dot product (or inner product) to find a
Euclidean distance. Alternatively, the Hamming distance
function may be used to measure the “difference” between
two vectors (Susanna, 1990), instead of merely using the
similarity measure.

For illustration, in Fig. 2 doc01 is a relevant docu-
ment. Therefore, it propagates positive weights to doc2
and doc3, while doc4, which is not relevant, propagates
negative weights to the same documents.

doc01

doc02

doc03

doc04

Relevant

Nonrelevant Propagates
positive weights Propagates

negative weights

Fig. 2. Documents propagating negative and positive weights.

The propagation of weights is affected by how far the
documents are from a chosen origin. For example, a doc-
ument that is close to a relevant one is affected more than
a distant one. For this reason, the weight wij , propagated
from the document i to the document j, is based on the
distance between the two documents defined by

wij = 1/distance(doc i, doc j).

This process is repeated for all the relevant and non-
relevant documents. The propagated weights are summed
up for each document, and the documents with positive
weights are to be retrieved as the result of the relevance
feedback process. Figure 3 shows how weights are added
for the documents 2 and 3.

doc01

doc02

doc03

doc04

Relevant

Nonrelevant
From doc01 = + 1 / 8
From doc04 = − 1 / 6
Total = − 0.042

Distance = 17

Distance = 6
Distance = 8

Distance = 1.5

From doc01 = + 1 / 1.5
From doc04 = − 1 / 17
Total = + 0.608

Fig. 3. Adding up weights.

The document doc4 propagates a – 1/6 weight to
doc03 and a −1/17 one to doc02, while the document
doc01 propagates a +1/8 weight to the document doc03
and a +1/1.5 one to doc02. It should be emphasized how
the weights propagated are affected by the distance. As
a result, the weights are added up and doc03 accumulates
−0.042 while doc02 accumulates +0.608. It is evident

that doc02, with a total weight of +0.608, will be retrieved
as a result of the relevance feedback process.

The relevance feedback used in the LSI model (see
Section 2) is rather different. The user query is repre-
sented as a vector in the k-dimensional space by

query = qT Uk(Σk)−1,

where q is the vector of terms in the user’s query. The co-
ordinates for the query are computed (see Appendix B for
an example) and represented by the vector labeled query
in Fig. 4.

query

Fig. 4. User query represented as a vector in two dimensions.

All documents whose cosine with the query vector is
greater than a threshold are returned (Fig. 5); the docu-
ments are doc01, doc02, doc03 and doc04. The user then

query

Fig. 5. Documents whose cosine with the query
vector is greater than a threshold.

chooses, e.g., doc01 as relevant and doc04 as nonrelevant.
The relevance feedback query is given by

f = qT Uk(Σk)−1 + dT Vk,

where d is the vector of documents chosen as relevant.
The coordinates for the feedback query are computed and
represented by the vector labeled f in Fig. 6.

Query f

Fig. 6. Feedback query represented by the point labeled f .

I. Moghrabi540

The relevance feedback query vector is compared
with all documents using the cosine measure of similar-
ity between the relevance feedback query vector and the
documents. All documents whose cosine with the feed-

Query f

Fig. 7. Documents whose cosine with feedback query
vector is greater than a threshold.

back query vector is greater than a threshold are returned;
(Fig. 7) the documents are doc01 and doc02.

Since, in our technique, the weight magnitude
is based on the distance between documents, the
weight propagated to a distant document is insignificant.
Therefore, it would be more profitable to remove lengthy

doc01

doc02

doc03

doc04

Relevant

Nonrelevant

Distance = 17

Distance = 1.5

From doc01 = + 1 / 1.5
From doc04 = − 1 / 17
Total = + 0.608

From doc01 = + 1 / 1.5
From doc04 = − 1 / 17
Total = + 0.667

Before After

Fig. 8. Removing lengthy edges.

edges (shown using a dashed line). A minimal cluster is
appropriate for this problem since it will return a subset of
edges such that all nodes remain connected and the sum
of the edge lengths is as small as possible. Thus, for each
document, only those connected to it with an edge are con-
sidered the nearest ones.

5. Guided Local Search and Query
Reformulation

The GLS algorithm is used to build a minimal cluster for
which the total distance between documents is minimal.
Recall from Section 3 that GLS finds a set of solution fea-
tures that are responsible for part of the overall solution
cost, and that it employs solution features to distinguish
between solutions with different characteristics. It is es-
sential to determine features that depend completely on
the type of the problem. In this paper the goal of GLS
is to find a tour which visits each document exactly once
and is of minimum length. This tour includes a number
of edges and the solution cost (the tour length) is the sum

of the edge lengths in the tour. Therefore, edges are ideal
features for our problem.

Each edge carries a cost equal to the edge length,
given by the distance matrix D = [distance(i, j)]. The
indicator function, I(s), which indicates whether or not
the feature is present in the current solution, is applied to
decide whether or not a tour includes an edge.

Local search starts from an arbitrary solution to find
a local minimum. The basic GLS algorithm described so
far is depicted in Fig. 9.

procedure GuidedLocalSeach(S, g, l, [I1, . . . , IM],

[c1, . . . , cM], M)

begin

k ← 0;

s0 ← random or heuristically generated solution in S;

for i← 1 until M do /* set all penalties to 0 */

pi ← 0;

while StoppingCriterion do

begin

h← g + λ ∗Σpi ∗ Ii;

sk + 1← LocalSearch(sk, h);

for i← 1 until M do

uti li ← Ii(sk + 1) ∗ ci/(1 + pi);

for each i such that utili is maximum do

pi ← pi + 1;

k ← k + 1;

end

s∗←bestsolutionfoundwithrespect to cost function g;

return s∗;
end

Notation: S: search space, g: cost function, h: augmented
cost function, λ: regularization parameter, Ii: indicator
function for feature i, ci: cost for feature i, M : number
of features, pi: penalty for feature i.

Fig. 9. Guided local search algorithm.

GLS increments the penalty of all the features
present in a local minimum which have maximum util-
ity, util(s, fi). Therefore, each edge eij connecting the
documents i and j is assigned a penalty (i, j), initially
set to 0, and GLS will penalize the edges that appear in
some local minimum, using the utility function. The edge
penalties can be arranged in a symmetric penalty matrix
P = [penalty(i, j)]. Due to the symmetry, only n(n−1)/2
components have to be stored.

Penalties have to be combined with the problem’s
cost function to form the augmented cost function mini-
mized by local search. This can be done by considering
the auxiliary distance matrix

D′ = D + λP =
[
distance(i, j) + λ penalty(i, j)

]
.

Guided local search for query reformulation using weight propagation 541

Fig. 10. Documents represented on the Cartesian plane.

Fig. 11. Shortest path returned by GLS.

Fig. 12. Minimum spanning tree.

I. Moghrabi542

Local search must use D′ instead of D in move as-
sessments. GLS modifies P and thereby D whenever the
local search reaches a local minimum.

After the penalties have been increased, local search
is restarted from the last local minimum to search for a
new local minimum. This is repeated until a termination
criterion is satisfied. In the general case, the criterion is
either a maximum number of iterations or a time budget
(Voudouris and Tsang, 1994).

We modify the basic GLS algorithm to match it to our
objectives of building a minimal cluster. The local search
algorithm embedded in the GLS is to disallow it from re-
turning to the initial document it started from. This will
result in a minimal cluster for the documents rather than
a closed path. Consider, e.g., a database with 14 docu-
ments. Figure 10 shows these documents represented on
the Cartesian plane using the SVD algorithm. The GLS
algorithm will return a near optimal solution that reveals
the shortest path that traverses all the documents in the
document space as shown in Fig. 11.

Consider, e.g., the document 6. The document will
propagate to the documents 7 and 5, while the document
11 will propagate to the documents 10 and 12.

An additional modification is needed to adjust the
edges, since it would not be appropriate for the docu-
ment 12 to propagate to the document 7 while the doc-
ument 11 is closer to it than 12. Therefore, the edge that
connects the document 12 to 7 is removed, and replaced
by an edge that connects the document 11 to 7 instead.
These steps are prescribed in the for loop in the line 04 in
the Construct_DS algorithm (cf. Fig. 15). The edge re-
moved is shown as a dashed line. The result is a minimum
spanning tree. The results are presented in Fig. 12.

In order to perform relevance feedback using weight
propagation, an intermediate mixed data structure (MDS)
is built for collecting information pertaining to docu-
ments. First, the representation of documents and the
neighborhood can (in our view) be best captured in a
linked list, where nodes represent documents and edges
represent the connection to the nearby documents. A
linked list is constructed for each document. All the doc-
uments that are in close proximity are inserted into the
corresponding linked list. Second, an array of documents
is constructed such that each entry forms a pointer to a
linked list of documents which contains the nearest docu-
ments. Fig. 13 illustrates the data structure that represents
the documents in Fig. 12.

For example, the document 4 has an entry in the ar-
ray and is connected to a linked list that contains the docu-
ments 2, 3 and 9. The distances between the documents in
the array and the nearest ones are kept in a linked list. For
example, in Fig. 14 the distances between the document 4
and the nearest documents are stored in a linked list.

An entry for each
document

Nearest documents

01

02

02 01

03 04

04 02

05 03

06 05

07 06

08 09

09 04

10 11

11 07

12 11

13 10

14 13

14

10 12

13

08 04

05

0 09

06

07

11

An entry for each
document

Nearest documents

Fig. 13. Linked representation of the documents in Fig. 12.

04 02
distance= 0.176

03
distance= 0.348

09
distance= 0.383

Fig. 14. Example of the nodes stored in a linked list.

The algorithm for constructing the MDS traverses the
documents returned by GLS and for each document con-
nected to it – a linked list that contains the nearest ones.
The steps are formalized in Fig. 15.

// function: Construct_DS (sol[], D)
//
// Construct the Mixed Data Structure (MDS) for relevance
// feedback using weight propagation
// sol: array that contains the documents traversed by GLS
// D: distance matrix. Contains the edge lengths that connect
// two documents
// n: number of documents in the database
// distance(ij): distance between document i and j
// A: array used in the MDS. It contains elements of linked
// lists type
// nd: represents a node in the linked list. It contains two
// variables:
// nd.document: document number
// nd.distance: distance

01 for i = 1 to (n− 1) do
02 min = distance(sol[i], sol[i + 1])
03 ishort = i//ishort is an index to reference the closest

document to documenti+1

04 for j = 1to(i− 1) do
05 if distance(sol[j],sol[i + 1]) < min
06 min = distance(sol[j],sol[i + 1])
07 ishort = j
08 create a new node nd with nd.document = sol[i + 1] and

nd.distance = distance(sol[ishort],sol[i + 1])
09 add nd to the linked list at A[sol[ishort]]
10 create a new node nd with nd.document = sol[ishort] and

nd.distance = distance (sol[i + 1],sol[ishort])
11 add nd to the linked list at A [sol[i + 1]]
12 return MDS

Fig. 15. Construct_DS algorithm.

Guided local search for query reformulation using weight propagation 543

The algorithm for the reformulation process using
weight propagation (as explained earlier) is specified in
Fig. 16. It is worth mentioning here that either the Ham-

// function: Reformulation (MDS, q)
//
// Reformulation process based relevance feedback using
// weight propagation
// MDS: Mixed data structure that contains an array where
// each of its element represents a document in the
// database. Each element is connected to a linked list that
// contains the nearest documents
// q: contains the documents retrieved initially by the user’s
// query
// RFL: Linked list that contains the documents to be returned
// as a result of the reformulation process
// rf_nd: represents a node in the RFL linked list.
// It contains two variables:
// rf_nd.document: document number
// rf_nd.weight: distance
// A: array used in the MDS. It contains elements of linked
// lists type
// nd: represents a node in the linked list connected to an
// element of the array in the MDS.
// It contains two variables:
// nd.document: document number
// nd.distance: distance

01 repeat
02 doc < - document removed from q
03 if doc is relevant then
04 sign = +1
05 create a new node rf_nd with rf_nd.document = doc

all relevant documents are retrieved
06 add rf_nd to RFL
07 else sign = -1
08 traverse the linked list connected to A[doc] and for each

node nd
09 locate in RFL for a node with rf_nd.document =

nd.document
10 if node not found
11 create a new node rf_nd with rf_nd.document =

nd.document
12 add rf_nd to RFL
13 rf_nd.weight = rf_nd.weight + sign*(1/nd.distance)
14 until q is empty
15 return RFL

Fig. 16. Reformulation algorithm.

ming Distance (HD) or LM is used to calculate the matrix
D in GLS.

6. Complexity Analysis

Let q be the number of documents retrieved initially by
the query and marked relevant or nonrelevant by the user,
and n′ be the maximum number of documents found in
a linked list pointed to by an element in the data struc-
ture array. For each of the q documents, we will have at

most n′ documents to traverse in the linked list. There-
fore, the complexity of the proposed technique is O(qn ′).
The value of q depends on the choices made by the user.
Recent experiments have shown that the user will mark on
average 10 documents as relevant or nonrelevant. We will
show next that the value of n′ is actually very small.

The maximum number of elements (documents) in
a linked list would not exceed n, which is the number of
documents in the database, since a document may be com-
pared with at most n − 1 documents. We will show next
that, on average, the number of documents to traverse in a
linked list is at most two. Initially, each of the documents
found in the minimal cluster is connected to at most two
documents. The total number of edges is not affected by
the adjustments of the edges, since each edge added to a
node is faced with the removal of another.

We have performed some experiments to examine the
maximum and minimum nodes a linked list could possibly
have. These experiments are based on inverted files with
different sizes, generated with their corresponding linked
lists. To determine the average number of 1s required
per document, three document collections were used: the
standard King James version of the Bible (Table 1), the
full text of Alice in Wonderland, and a set of several hun-
dred securities filings from the Securities and Exchange
Commission’s EDGAR database (Fray, 1996).

For the Bible, the average number of terms per doc-
ument is 21.6 out of 9,232 terms (i.e., the number of 1s is
equal to 0.25% of the total number of terms). For Alice in
Wonderland, the average number of terms per document
is 25.7 out of 1, 891 terms (i.e., the number of 1s is equal
to 1.40% of the total number of terms). For EDGAR, the
average number of terms per document is 940.8 out of
20, 391 terms (i.e., the number of 1s is equal to 5.00% of
the total number of terms). The average number of terms
is 2.5% (the mean of 0.25%, 1.40% and 5.00%) of the to-
tal number of terms. Therefore, 2.5% of the terms were
assigned randomly to each document.

The results are shown in Tables 2–5, where for each
inverted file (IF) the maximum number of nodes, n ′, in the
linked lists is shown.

7. Experimental Results

This section describes the experiments conducted on dif-
ferent test collections using the existing and some state-
of-the-art techniques. It starts with the small Medline
test collection in two environments, the first one in the
LSI model and the second one using LM methods. The
experiments are then conducted on two large test collec-
tions, WT10G and WT18G. The results are measured by
the mean of 11 different recall values (0.0, 0.1, . . . 0.9,
1.0) followed by efficiency results. The Rocchio and Ide
techniques are used together in conjunction with the WP

I. Moghrabi544

Table 1. Three documents collections used to determine the number of 1s.

Style Documents Terms No. of 1’s
No. of 1’s
per term

No. of 1’s
per document

Bible
Each verse is
a document

31,219 9,232 673,106 73 21.6

Alice
Each paragraph is

a document
835 1,891 21,433 11 25.7

Edgar
Each filing is

a large document
605 20,391 569,183 28 940.8

Table 2. Maximum number of nodes for fifty
inverted files of size 50× 50.

Inverted files generated with size = 50× 50

IF n′ IF n′ IF n′ IF n′ IF n′

1 5 11 4 21 4 31 4 41 7

2 5 12 4 22 4 32 4 42 6

3 4 13 6 23 5 33 5 43 4

4 5 14 4 24 5 34 4 44 7

5 4 15 5 25 5 35 5 45 7

6 4 16 4 26 6 36 6 46 5

7 7 17 8 27 5 37 4 47 5

8 6 18 5 28 3 38 5 48 4

9 5 19 5 29 5 39 8 49 4

10 5 20 4 30 5 40 4 50 5

Maximum linked list varies between 3 and 8

Table 3. Maximum number of nodes for fifty
inverted files of size 100 × 100.

Inverted files generated with size = 100× 100

IF n′ IF n′ IF n′ IF n′ IF n′

1 21 11 10 21 13 31 19 41 12

2 13 12 13 22 16 32 8 42 11

3 17 13 14 23 13 33 8 43 14

4 10 14 14 24 11 34 12 44 9

5 14 15 19 25 15 35 10 45 8

6 15 16 15 26 16 36 16 46 12

7 13 17 12 27 14 37 13 47 12

8 14 18 10 28 12 38 13 48 12

9 12 19 12 29 7 39 17 49 18

10 6 20 14 30 14 40 13 50 14

Maximum linked list varies between 6 and 21

method and tested with different values of n ′ (the number
of documents affected by the propagation) using positive
and negative feedback.

Table 4. Maximum number of nodes for fifty
inverted files of size 200× 200.

Inverted files generated with size = 200 × 200

IF n′ IF n′ IF n′ IF n′ IF n′

1 43 11 66 21 62 31 53 41 53

2 59 12 70 22 56 32 42 42 66

3 45 13 57 23 49 33 42 43 53

4 44 14 52 24 65 34 61 44 58

5 43 15 65 25 46 35 50 45 50

6 75 16 69 26 48 36 54 46 66

7 68 17 60 27 51 37 46 47 47

8 56 18 44 28 60 38 60 48 61

9 63 19 56 29 43 39 72 49 48

10 58 20 57 30 82 40 89 50 50

Maximum linked list varies between 42 and 89

Medline Document Collection. The Medline collection
is a small-size test collection (1.1 Megabytes). It consists
of 1,033 documents and 8,915 terms after indexing. The
experiments were conducted first using the LSI model pre-
ceded by computing SVD to estimate the underlying (or
“latent”) structure in the pattern of word usage across doc-
uments and by determining optimal dimensionality that
will correctly capture the underlying semantics that ex-
ist between the documents. Our experiments show that
peak performance is achieved at dimension 80. The ob-
tained results demonstrate the performance using the aver-
age precision followed by the efficiency of the techniques
in terms of time.

Medline and LSI. The 11-point average precision for the
Medline collection is 0.6626 for the query formulation
alone, without query reformulation. The average preci-
sion for LSI with Rocchio weighing and positive feed-
back, but no WP, is somewhat higher at 0.72335. The
average precision is still better when WP is used in con-
junction with LSI and positive Rocchio weighing for any
number of propagated documents. Peak performance is
found for 24 and 42 propagated documents, when the av-

Guided local search for query reformulation using weight propagation 545

erage precision is 0.855 (see Fig. 6). When the experi-
ments were repeated with both positive and negative Roc-
chio weighing, the performance of LSI without WP was
found to be poorer than when positive weighting alone had
been used, with an average precision of 0.668. The per-
formance of LSI with WP became less degraded by the
incorporation of negative feedback, and peak precision of
0.825 was obtained when weights were propagated to 48
or 50 documents (cf. Fig. 17).

Medline Positive Feedback

0.60

0.65

0.70

0.75

0.80

0.85

0.90

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Propagated documents

P
re

ci
si

o
n

LSI feedback using WP (Rocchio) LSI feedback (Rocchio) Query

Fig. 17. Precision comparison for different methods.

When the experiments are repeated by using Ide
weighing instead of Rocchio one, an average precision of
0.744 is obtained for LSI with positive weighing and no
WP, and a best average precision of 0.865 when WP is
propagated to 40 documents or more (cf. Fig. 18). Thus,
the performances of both the Rocchio and Ide weighing
formulas when using positive feedback are similar.

Medline Positive Feedback

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Propagated documents

P
re

ci
si

o
n

LSI feedback using WP (Ide) LSI feedback (Ide) Query

Fig. 18. Precision comparison for different methods.

The performance using the Ide formula degraded
when both positive and negative feedback was used, both
with and without WP (see Fig. 19).

When LSI is used in conjunction with Ide weighing
with both positive and negative feedback, the average pre-
cision is 0.536 without WP (which is poorer than in the
case where no relevance feedback was used at all), and
the highest precision when using WP was 0.877 for prop-
agation to 46 or more documents. The main conclusion
here is that the average precision when using WP is better
than that obtained without WP for all the Medline exper-
iments. The peak performance of WP does not degrade

Medline Positive Feedback

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Propagated documents

P
re

ci
si

on

LM feedback using WP (Rocchio) LM feedback (Rocchio) Query

Fig. 19. Precision comparison for different methods.

when negative feedback is taken into consideration, al-
though precision without WP did so. The performance of
the Ide formula was more degraded by negative feedback
than the Rocchio formula, but otherwise the two formulas
produced comparable performances. Table 5 summarizes
the results.

Table 5. Precision for the Medline test collection using LSI.

LSI Query = 0.662

Positive
feedback (Rocchio)

Positive
feedback (Ide)

LSI RF = 0.735 0.741

W
ei

gh
tp

ro
pa

ga
tio

n
w

ith
di

ff
er

en
tv

al
ue

s
of

n
′

2 0.790 0.770

4 0.814 0.776

6 0.822 0.778

8 0.826 0.793

10 0.826 0.790

12 0.827 0.795

14 0.832 0.805

16 0.840 0.817

18 0.843 0.826

20 0.844 0.831

22 0.851 0.839

24 0.855 0.844

26 0.853 0.846

28 0.852 0.851

30 0.853 0.854

32 0.852 0.855

34 0.854 0.860

36 0.853 0.862

38 0.852 0.863

40 0.836 0.865

42 0.855 0.865

44 0.852 0.865

46 0.851 0.865

48 0.852 0.865

50 0.851 0.865

I. Moghrabi546

Medline using LM Methods. The Medline experiments
were all repeated, using LM as the initial query formula-
tion method rather than LSI as before (see Figs. 19 to 21).
For the baseline evaluation (no reformulation), the preci-
sion was poorer for LM than LSI. Otherwise, the results
were very similar for both sets of experiments, with the
following findings:

(a) Without WP, a positive feedback outperforms a com-
bination of positive and negative feedbacks.

(b) When using WP, precision is less degraded by nega-
tive feedback than without using WP.

(c) The Ide formula produced better precision than the
Rocchio one. Table 6 summarizes the results.

Medline Positive & Negative Feedback

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Propagated documents

P
re

ci
si

on

LM feedback using WP (Rocchio) LM feedback (Rocchio) Query

Fig. 20. Precision comparison for different methods.

Medline Positive Feedback

0.50
0.55

0.60
0.65
0.70

0.75
0.80

0.85
0.90

2 4 6 8
1

0
1

2
1

4
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0
3

2
3

4
3

6
3

8
4

0
4

2
4

4
4

6
4

8
5

0

Propagated documents

P
re

ci
si

o
n

LM feedback using WP (Ide) LM feedback (Ide) Query

Fig. 21. Precision comparison for different methods.

Time Required by the Medline Experiments. Table 7
compares the times needed to perform RF for a single
query in the collection, just for one iteration, using the LSI
model and the weight propagation technique. The number
of terms is assumed to increment at the same rate as the
number of documents. The table shows the time required
to perform relevance feedback in addition to the time re-
quired for the sorting needed to display the documents in
the order of increasing weight magnitudes. The time re-
quired for query reformulation with WP is much less than
that required for query reformulation with LSI. The time
required by LM depends only on the constant k, which is

Table 6. Precision for the Medline test collection
using LM using LSI.

LM Query = 0.528

Positive
feedback (Rocchio)

Positive
feedback (Ide)

LM RF = 0.636 0.807

W
ei

gh
tp

ro
pa

ga
tio

n
w

ith
di

ff
er

en
tv

al
ue

s
of

n
′

2 0.706 0.676

4 0.738 0.719

6 0.751 0.741

8 0.761 0.757

10 0.772 0.776

12 0.780 0.791

14 0.783 0.795

16 0.786 0.803

18 0.789 0.808

20 0.786 0.809

22 0.789 0.813

24 0.792 0.816

26 0.792 0.821

28 0.791 0.821

30 0.790 0.822

32 0.787 0.822

34 0.789 0.823

36 0.788 0.824

38 0.788 0.825

40 0.789 0.826

42 0.787 0.829

44 0.787 0.828

46 0.786 0.829

48 0.785 0.830

50 0.784 0.830

the number of dimensions in LSI to which the dataset is
reduced, and is therefore much less than the time required
for either WP or LSI.

WT18G. WP gave better precision than the baseline
(no reformulation) when tested on the WT18G collec-
tion. When positive feedback based on Rocchio weigh-
ing was employed, the precision improved from 0.309436
to 0.366467, whereas WP improved the precision to
0.538477 when the weights were propagated to 27 or
more documents. When negative feedback was consid-
ered, the precision was 0.385 409 for LM and 0.490 536
for WP when weights were propagated to 23 or more
documents. The performance was thus improved by WP
(see Fig. 22). Applying the Ide technique, WP also re-
vealed better precision. Peak precision was 0.561470 with
WP, and 0.464366 without WP for positive feedback, and
0.536490 with WP and 0.325 without 252 for negative
feedback (see Figs. 22 and 23).

Guided local search for query reformulation using weight propagation 547

Table 7. Times required by query reformulation algorithms.

LSI (miliseconds) WP (miliseconds)

Matrix Size R
el

ev
an

ce
fe

ed
ba

ck

So
rt

in
g

To
ta

l

R
el

ev
an

ce
fe

ed
ba

ck

So
rt

in
g

To
ta

l

10, 000× 10, 000 191 10 201 0 20 20

20, 000× 20, 000 390 20 410 0 20 20

30, 000× 30, 000 601 20 621 0 31 31

40, 000× 40, 000 791 40 831 0 30 30

50, 000× 50, 000 1,011 50 1,061 0 50 50

60, 000× 60, 000 1,202 50 1,252 0 60 60

70, 000× 70, 000 1,412 80 1,492 0 70 70

80, 000× 80, 000 1,863 80 1,943 0 80 80

90, 000× 90, 000 2,123 90 2,213 0 80 80

100, 000× 100, 000 2,133 100 2,233 0 110 110

110, 000× 110, 000 2,233 110 2,343 0 120 120

120, 000× 120, 000 2,503 120 2,623 0 150 150

130, 000× 130, 000 2,654 140 2,794 0 150 150

140, 000× 140, 000 2,864 141 3,005 0 140 140

150, 000× 150, 000 3.124 171 3,295 0 350 350

160, 000× 160, 000 3,345 170 3,515 0 150 150

170, 000× 170, 000 3,575 190 3,765 0 180 180

180, 000× 180, 000 3,816 210 4,026 0 250 250

190, 000× 190, 000 4,557 450 5,007 0 160 160

200, 000× 200, 000 4,821 315 5,136 0 190 190

8. Conclusions

In this paper, we presented a new technique for query re-
formulation using weight propagation. The technique uses
GLS with SVD and LM. In weight propagation, positive
and negative weights are propagated to documents in a
given vicinity within semantic and nonsemantic spaces.
The proposed technique improves precision since the doc-
uments are treated as independent vectors instead of merg-
ing them into a single vector, as is the case with traditional

WT18G Positive Feedback

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

2 4 6 8
1

0
1

2
1

4
1

6
1

8
2

0
2

2
2

4
2

6
2

8
3

0
3

2
3

4
3

6
3

8
4

0
4

2
4

4
4

6
4

8
5

0

Propagated documents

P
re

ci
si

on

LM feedback using WP (Rocchio) LM feedback (Rocchio) Query

Fig. 22. Precision comparison for different
methods for WT 18G.

Table 8. Positive feedback precisions for
Rocchio and Ide.

Positive
feedback (Rocchio)

Positive
feedback (Ide)

LM RF = 0.471 0.469

W
ei

gh
tp

ro
pa

ga
tio

n
w

ith
di

ff
er

en
tv

al
ue

s
of

n
′

2 0.460 0.449

4 0.482 0.466

6 0.496 0.483

8 0.500 0.491

10 0.509 0.501

12 0.513 0.505

14 0.518 0.508

16 0.521 0.514

18 0.522 0.518

20 0.522 0.519

22 0.522 0.521

24 0.525 0.525

26 0.526 0.527

28 0.527 0.530

30 0.528 0.531

32 0.531 0.534

34 0.530 0.534

36 0.531 0.534

38 0.535 0.539

40 0.535 0.539

42 0.536 0.541

44 0.537 0.542

46 0.536 0.542

48 0.537 0.546

50 0.536 0.552

approaches. In addition, the developed approach con-
sumes less computation time since it inspects only nearby
documents.

The proposed technique has a complexity of O(qn ′),
where q is the number of documents chosen as relevant or
nonrelevant by the user, and n ′ is the maximum number of

WT18G Positive Feedback

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

2 4 6 8
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Propagated documents

P
re

ci
si

on

LM feedback using WP (Ide) LM feedback (Ide) Query

Fig. 23. Precision comparison for different
methods for WT 18G.

I. Moghrabi548

Table 9. Precision for the WT18G test
collection using LM.

LM Query = 0.437

Positive
feedback (Rocchio)

Positive
feedback (Ide)

LM RF = 0.470 0.467

W
ei

gh
tP

ro
pa

ga
tio

n
w

ith
di

ff
er

en
tv

al
ue

s
of

n
′

2 0.480 0.471

4 0.519 0.488

6 0.525 0.505

8 0.534 0.521

10 0.538 0.529

12 0.541 0.534

14 0.547 0.540

16 0.548 0.542

18 0.549 0.541

20 0.555 0.546

22 0.555 0.550

24 0.564 0.561

26 0.565 0.562

28 0.564 0.562

30 0.564 0.563

32 0.564 0.565

34 0.564 0.565

36 0.564 0.566

38 0.563 0.567

40 0.565 0.570

42 0.566 0.574

44 0.568 0.575

46 0.568 0.576

48 0.569 0.577

50 0.570 0.578

documents found in a linked list pointed to by an element
in the MDS array. We showed that the value of n ′ is very
small and so is q.

We believe that the results obtained from the pro-
posed technique are better than the ones achieved by the
LSI model. Alternative and more efficient data structures
and algorithms for the construction of the MDS are cur-
rently being explored.

References

Baeza-Yates R. and Ribeiro-Neto B. (1999): Modern Informa-
tion Retrieval. — New York: Prentice Hall.

Daniels J. and Rissland, E. (1995): EXPRESS: A case based
approach to intelligent information retrieval. — Proc. SI-
GIR’95 Conf., Seattle, WA, USA 1995, pp. 31–43.

Dunlop M.D. (1997): The effect of accessing non-matching doc-
uments on relevance feedback. — ACM Trans. Inf. Syst.,
Vol. 15, No. 2, pp. 137–153.

Epp S.S. (1990): Discrete Mathematics with Applications. —
London: Wadsworth Publishing Company.

Letsche T.A. and Berry M.W. (1997): Large-scale information
retrieval with latent semantic indexing. — Inf. Sci., Vol. 9,
No. 2, pp. 111–121.

Lopez-Pujalte C., Guerrero-Bote V.P., de Moya-Anegon F.
(2002): A test of genetic algorithms in relevance feedback.
— Inf. Process. Manag., Vol. 38, No. 7, pp. 793–805.

Ruthven I., Tombros A. and Jose J. (2001): A study on the
use of summaries and summary-based query expansion for
a question-answering task. — Proc. 23rd BCS European
Annual Colloquium on Information Retrieval Research,
Berlin, Germany, pp. 48-54.

Ruthven I., White R. and Jose J.M. (2001): Web document
summarization: A task-oriented evaluation. — Proc. Int.
Workshop Digital Libraries, Proc. 12-th Int. Conf. Data-
base and Expert Systems Applications, (DEXA 2001), Mu-
nich, Germany, pp. 52–61.

Van R. (1979): Information Retrieval, 2nd Ed., London: Mc-
Graw Hill.

Voudouris C. and Tsang E. (1994): Tunneling algorithm for
partial CSPs and combinatorial optimization problems. —
Tech. Rep. No. CSM-213, Dept. of Computer Science,
University of Essex, Colchester, UK.

Voudouris C. (1997): Guided Local Search for Combinatorial
Optimisation Problems. — Ph.D. thesis, Dept. Computer
Science, University of Essex, Colchester, UK.

Appendix A

The documents referred to in this paper are the following:

Doc01: Optimal clustering of relations in a database
system

Doc02: Web document summarization – a task-oriented
evaluation

Doc03: One term or two

Doc04: Detecting change in categorical data – mining
contrast sets

Doc05: Criteria for testing exception-handling constructs
in Java programs

Doc06: Evaluating document clustering for interactive
information retrieval

Doc07: Effective information retrieval using genetic
algorithms based matching function (adapted)

Doc08: Interactive information organization technique

Doc09: Using Dempster-Shafer’s theory of evidence to
combine aspects of information use

Guided local search for query reformulation using weight propagation 549

Doc10: Topic models for summarizing novelty

Doc11: Incorporating aspects of information use into rel-
evance feedback

Doc12: An application of text mining – bibliographic
navigator powered by extended association rules

Doc13: A study on the use of summaries and summary-
based query expansion for a question-answer task

Doc14: Improved force-directed layouts

Doc15: Text categorization based on regularized linear
classifications

Doc16: A probabilistic approach to crosslingual informa-
tion retrieval

Doc17: Guided local search for combinatorial optimiza-
tion problems

Doc18: A general language model for information re-
trieval

Doc19: Singular value decomposition on processor ar-
rays

Doc20: Guided local search – an illustrative example

Doc21: Poisson mixtures

Received: 21 November 2005
Revised: 1 August 2006

