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Text retrieval using Latent Semantic Indexing (LSI) with truncated Singular Value Decomposition (SVD) has been inten-
sively studied in recent years. However, the expensive complexity involved in computing truncated SVD constitutes a major
drawback of the LSI method. In this paper, we demonstrate how matrix rank approximation can influence the effectiveness
of information retrieval systems. Besides, we present an implementation of the LSI method based on an eigenvalue analysis
for rank approximation without computing truncated SVD, along with its computational details. Significant improvements
in computational time while maintaining retrieval accuracy are observed over the tested document collections.
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1. Introduction

Several studies have reported that Latent Semantic Index-
ing (LSI) based on truncated Singular Value Decomposi-
tion (SVD) could be compared favorably with other In-
formation Retrieval (IR) techniques in terms of retrieval
accuracy (April and Pottenger, 2006; Berry et al., 1995;
1999; Gao and Zhang, 2005; Parry Husbands et al., 2001;
Yun Qing Ye, 2000). LSI became famous as one of the
first IR techniques exhibiting effectiveness in dealing with
the problems of synonymy and polysemy. The basic idea
of LSI is that if two document vectors represent the same
topic, they will share many associated words with a key-
word and they will have very close semantic structures af-
ter dimension reduction via truncated SVD (Deerwester,
1990; Landauer et al., 1998). However, for large-scale
datasets, the computing and storage costs associated with
truncated SVD representation may be prohibitive. Re-
cent studies also indicate that retrieval accuracy of the
truncated SVD technique can deteriorate if the document
sets are large (Balinski and Damilowicz, 2005; Berry and
Shakhina, 2005). Several strategies have been proposed to
deal with LSI on large datasets. The sparsification strat-
egy was used to remove less important entries in truncated
SVD matrices (Gao and Zhang, 2003). Clustered and dis-

tributed SVD strategies were proposed to partition large
datasets (Bass and Behrems, 2003; Tang, 2003). Unfortu-
nately, the investigations of both clustered and distributed
SVD strategies are incomplete. Fan et al. (1999) exam-
ined a random sampling based approach to SVD approx-
imation and presented their results. Even though their al-
gorithm performed well in reducing computational time,
the retrieval quality was not similar to that of truncated
SVD. Yingbo Hua (2000) proposed an alternative power
method for rank reduction without computing truncated
SVD. The alternate power method is an iterative algorithm
that is globally and exponentially convergent under a weak
condition.

Numerous researchers in LSI have devoted a lot of
time to testing the effectiveness of SVD in solving the
problems of synonymy and polysemy (Berry, 1992; Berry
et al., 1999; Husbands and Ding, 2005). Empirical re-
sults show a general increase in the retrieval quality, but
to the best of our knowledge, such algorithms come with
no guarantee regarding the quality of the approximation
produced. Most of the rank reductions achieved via trun-
cated SVD concern some properly chosen characteristic
matrices. This fact led to a common practice where the
computation of SVD is first carried out before rank reduc-
tion is accomplished.
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In this paper, we present an implementation of ma-
trix rank approximation using an eigenvalue analysis for
LSI. This methodology was initially introduced and dis-
cussed by Praks et al. (2003) for image retrieval in a hard
industrial environment. We expand upon this work, show-
ing that LSI can exploit the eigenvalues and eigenvectors
produced from term-by-document matrices, thereby de-
creasing computational time and preserving retrieval ac-
curacy. In this paper, we demonstrate the application of
this methodology to LSI based text retrieval and present
experimental results using this method. We compare this
method with the truncated SVD approach of rank approxi-
mation and discuss the experimental results using standard
testing document collections. We show that in the case
of LSI, we can achieve similar optimal approximations of
truncated SVD using considerably fewer computations by
the eigenvalue and eigenvector based method. This work
is also aimed at studying the effect of rank approximation
on IR and performance improvement in using LSI over
the traditional VSM. Our paper is structured as follows:
Section 2 presents the vector space method. In Section 3,
we discuss LSI and SVD. Section 4 presents the method-
ology for matrix rank approximation using eigenvalues in
the LSI context for text retrieval. Section 5 presents exper-
imental results regarding the effect of rank approximation
on IR, the superiority of LSI over the VSM, the numer-
ical aspects and computational details of the eigenvalue
methodology of rank approximation in comparison with
the truncated SVD method, followed by conclusions and
references.

2. Vector Space Method (VSM)

A vector-based information retrieval method represents
both documents and queries with high-dimensional vec-
tors, while computing their similarities by the vector inner
product. When the vectors are normalized to unit lengths,
the inner product measures the cosine of the angle be-
tween the two vectors in the vector space (Yates and Neto,
1999). In the VSM, each document �dj is represented by
a weight vector �dj = (w1j , w2j , . . . , wtj)T , where wzj is
the weight or importance of the term z in the representa-
tion of the document �dj , and t is the size of the indexing
term set. A collection of n documents is then represented
by a term-by-document matrix with t rows and n columns.

In the VSM, two main components of the term
weight are used to represent the elements of the term-by-
document matrix, the frequency (TF) of occurrences of
each word in a particular document and the inverse doc-
ument frequency (IDF) of each word, which varies in-
versely with the number of documents to which a word
is assigned. So, the weight of a term i in a document j is

given by the following equation:

wi,j = tfi,j idfi = tfi,j log
( N

dfi

)
, (1)

where tf i,j is the frequency of the i-th term in the j-th
document, df i is the number of documents in which the
term i appears at least once, and N is the number of doc-
uments in the collection. This method assigns the high-
est weight to those terms which appear frequently in a
small number of documents in the documents set. For
queries, also the same vector representation is given as
�qi = (q1i, q2i, . . . , qti)T , where qzi is the weight of term
z in the representation of the query �qi. We measure the
similarity between a document and a query where both are
normalized to unit lengths in the underlying vector space
(Yates and Neto, 1999),

SimVSM(�qi, �dj) =

t∑
z=1

(qziwzj)√
t∑

z=1
q2
zi

√
t∑

z=1
w2

zj

. (2)

The advantages of this approach are adaptability, ro-
bustness and minimal user intervention.

3. Latent Semantic Indexing (LSI) and
Singular Value Decomposition (SVD)

LSI is a variant of the VSM which maps a high dimen-
sional space into a low dimensional space. LSI replaces
the original matrix by another matrix whose column space
is only a subspace of the column space of the original ma-
trix. In the VSM, since every word does not appear in
each document, the document matrix is usually of a high
dimension and sparse. High dimensional and sparse ma-
trices are susceptible to noise and have difficulty in cap-
turing the underlying semantic structure. Additionally, the
storage and processing of such data place great demands
on computing resources (Berry et al., 1999; Deerwester,
1990; Kontostathis and Pottenger, 2002a).

Reduction in model dimensionality is one way to
address this problem (Park and Elden, 2003; Schislen,
2004). SVD takes advantage of the implicit higher or-
der structure in the association of terms within documents
by largest singular vectors. The vectors representing the
documents and queries are projected onto a new, low-
dimensional space obtained by truncated SVD (April and
Pottenger, 2006; Kontostathis and Pottenger, 2002b; Lan-
dauer et al., 1998).

The dimensionality reduction is accomplished by ap-
proximating the original term-by-document A with a new
matrix Ak, where rank(A) = r > rank(Ak) = k. In
SVD, a large term-by-document matrix is decomposed
into a set of orthogonal factors from which the original
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term-by-document matrix can be approximated by a lin-
ear combination. Vectors of factor weights represent doc-
uments. The SVD of a matrix A is written as

A = UΣV T . (3)

If the term-by-document matrix A is t × d, and then U is
a t × d orthogonal matrix, V is a d × d orthogonal ma-
trix, and Σ is a d×d diagonal matrix, where the values on
the diagonal of Σ are called the singular values. The sin-
gular values can then be sorted by magnitude and the top
k values are selected as a means of developing a ‘latent
semantic’ representation of the original matrix. The geo-
metric interpretation of SV D is to regard the rows of V ,
i.e., the columns of V T as defining the new axes, the rows
of U as coordinates of the objects in the space spanned by
these new axes, and Σ as a scaling factor indicating the
relative importance of each new axis. By changing all but
the top k rows of Σ to zero rows, low rank approximation
to A, called Ak, can be created through the truncated SVD
as

Ak = UkΣkV T
k , (4)

where Uk is the t × k term-by-concept matrix, Σk is the
k×k concept-by-concept matrix; Vk is the k×d concept-
by-document matrix (AswaniKumar et al., 2005; Berry
and Shakhina, 2005; Landauer et al., 1998). Only the first
k columns are kept in Uk and only the first k columns
are recorded in V T

k . Each row of Uk is a k-dimensional
vector representing a term in the original collection. To
each of the k reduced dimensions there is associated a la-
tent concept which may not have any explicit semantic
content, yet helps to discriminate documents. By analogy
to the VSM, the vector representation of a document is a
weighted sum of vector representations of its constituent
terms. That is, for an original document vector e j in A, it
can be represented in the reduced dimension vector space
as

UT
k ej = ΣkV T

k ej . (5)

The rank of A has been lowered from r to k. A
key property of this reduced rank approximation is that
it achieves the best possible approximation with respect
to the Frobenius norm. This low rank approximation re-
moves redundancy from the original data and allows us
to uncover latent semantic relations among terms as well
as documents. A query can be considered as just another
document. Specifically, the m×1 user query vector q is lo-
cated at the weighted sum of its component term vectors in
the k-space. Queries are formed into pseudo-documents
that specify the location of a query in the reduced term-
document space (Bast and Weber, 2005). Given q, a vec-
tor whose non-zero elements contain the weighted term-
frequency counts of the terms that appear in the query, the
pseudo-document, q̂, can be represented by

q̂ = qT UkΣ−1
k . (6)

Thus, the pseudo-document consists of the sum of the
term vectors (qT Uk) corresponding to the terms specified
in the query scaled by the inverse of the singular values
(Σ−1

k ). The singular values are used to individually weigh
each dimension of the term-document space. Once the
query is projected onto the reduced term-document space,
one of several similarity measures can be applied to com-
pare the position of the pseudo-document. Documents are
ranked according to the results of this similarity measure,
and the highest ranked documents are returned to the user
(Berry et al., 1999; Husbands et al., 2001; Ye, 2000). To
date, several theoretical explanations and results have ap-
peared in the literature and these studies have provided a
better understanding of LSI (April and Pottenger, 2005;
Cheng and Lafferty, 2006; Deerwester, 1990; Landauer et
al., 1998).

Unfortunately, the SVD decomposition of a docu-
ment matrix is a memory and time-consuming operation,
especially for large data collections, where the term-by-
document matrix becomes large. A primary focus of this
paper is to address this problem.

4. LSI based on Eigenvalue Analysis

The SVD algorithm is O(n2k3), where n is the number
of terms plus documents and k is the number of dimen-
sions in the concept space. However, n grows rapidly as
the number of terms and documents increases. This makes
the SVD algorithm unfeasible for large document collec-
tions. Consequently, the bulk of LSI processing time can
be spent on computing the truncated SVD of large sparse
term-by-document matrices, especially when several new
terms or documents are to be added to the database (Zang
et al., 2002).

Hence there is a need for alternative solutions for
truncated SVD in LSI. The focus of this work is to demon-
strate that an alternate eigenvalue method can be used
for LSI based IR at a reduced computational cost com-
pared with truncated SVD. The concept-by-document ma-
trix (V T ) is orthogonal and it holds the matrix identity.
Similarly, the concept-by-concept matrix (Σ) is diagonal
and contains strictly positive integer values. There exists a
relationship between the SVD of a matrix A and the sym-
metric eigenproblem of symmetric square matrices AT A
(Golub and Van Loan, 1996; Praks et al., 2003). Comput-
ing the SVD of an m×n matrix A is basically computing
the eigenvalues and eigenvectors of symmetric matrices
AAT and AT A. The correlation matrices AAT (for terms)
and AT A (for documents) provide information about the
relationships in the document collection.

Spectral methods are usually based on some variant
of the Lanczos algorithm (Berry, 1992). For computing k
eigenvectors which give k concepts, the bulk of the run-
ning time of Lanczos and related algorithms is spent on
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computing O(k) matrix-vector products. This gives a total
running time of O(nk), where n is the number of nonzero
entries in the given matrix, which is typically sparse. Fol-
lowing these observations, a methodology for LSI without
computing SVD can be formulated as shown in Fig. 1.

1. Read the original term-by-document matrix (A) and the
query matrix.

2. Calculate the size (numbers of rows and columns) of the
term-by-document matrix.

3. Read the value (k) to which the matrix is to be approxi-
mated.

4. Compute k largest eigenvalues and eigenvectors of AT A
to obtain the document-by-concept matrix (VK ) contain-
ing the eigenvectors spanning the concept-by-concept
space (Σ2) containing the eigenvalues.

5. Compute the concept-by-concept matrix (ΣK) to get
singular values.

6. Compute the term-by-concept matrix (UK ) from the
original term-by-document, concept-by-document and
concept-by-concept matrices using the formula UK =
AVK(ΣK)−1.

7. Compute the coordinate (pseudo-document) of the query
vector as explained in Section 3.

8. Calculate the similarity coefficients between the coordi-
nates of the query vector and documents.

9. Rank the documents based on their similarity measures.

Fig. 1. Methodology 1 for LSI using eigenvalues.

1. Do Steps 1–5, as explained in Fig. 1, to compute the
document-by-concept matrix (VK) and the concept-by-
concept matrix (ΣK).

2. Compute the co-ordinate (pseudo-document) of the
query vector using VK , ΣK and term-by-document ma-
trices without computing the term-by-concept matrix
(UK) with the formula q̂ = (((qT A)VK)Σ−1

k )Σ−1
k .

3. Calculate the similarity coefficients between the coordi-
nates of the query vector and documents.

4. Rank the documents based on their similarity measures.

Fig. 2. Methodology 2 for LSI using eigenvalues.

Analyzing the methodology given in Fig. 1, we can
observe that the matrix UK does not need to be explicitly
computed and stored in memory. This observation brings
additional accelerating of speed and decreasing the mem-
ory requirements of LSI. This can be formulated as shown
in Fig. 2.

5. Experimental Results

In this section, we present the details of the experiments
we conducted on Medline, Cranfield, CACM, CISI and
20 News groups document collections and their results.
These collections were chosen because they have query
and relevance judgment sets that are already available.
All the programs used for the experiments were written
in MATLAB.

5.1. Effect of Rank Approximation on Information
Retrieval. In order to present the effect of matrix rank
reduction on IR, we conducted experiments on document
collections Medline and Cranfield. The Medline docu-
ment collection contains a total of 1033 documents in-
dexed by 5735 terms. So it forms a term-by-document
matrix of size 5735×1033 with rank 1033. The Cranfield
data collection contains 1398 documents indexed by 4563
terms. Hence it forms a term-by-document matrix of size
4563 × 1398 with rank 1398. We considered 17 queries
from Medline and 30 queries from the Cranfield data col-
lection. The elements of the term-by-document matri-
ces were weighted using the TF × IDF method explained
in Section 2. We explored the possible values for ranks
from k = 100, incremented by 100, up to 1000. As the
rank of the term-by-document matrix was increased, the
size of the approximated term-by-document matrix also
increased proportionally. At rank 100, the approximated
concept matrix of the Cranfield collection was of size 4.62
M.B. For low rank approximation 1000, it occupied the
size of 53.1 M.B. Similarly, at rank 100, the approximated
concept matrix of the Medline collection occupied the size
of 5.23 M.B and, as the rank was increased, the size of
the approximated matrix also increased. For rank-1000
approximation, the collection occupied a 59.2 MB disk
space.

The retrieval quality of LSI heavily depends on its
number of dimensions. We need an optimal rank that cap-
tures the underlying semantic nature of the data. If we
truncate the rank further from an optimal rank, it will lose
important factors, and if we keep a higher rank, it will re-
sult in modeling the unnecessary noise and lead to a poor
performance by regenerating the original data. The gen-
eral metrics used for testing the accuracy of the IR are
precision and recall. Precision is the ratio of the num-
ber of relevant documents retrieved to the total number of
documents retrieved. Recall is the ratio of the number of
relevant documents retrieved to the total number of rele-
vant documents in the collection. Among all, rank 300
yielded relatively better interpolated precision value for
the Cranfield collection. Ranks 100 performed fairly well
yielding better interpolated precision results for the Med-
line collection (AswaniKumar and Srinivas, 2006).



Latent semantic indexing using eigenvalue analysis for efficient information retrieval 555

 

Fig. 3. Comparison of the LSI and VSM methods for the Medline document collection.

5.2. LSI vs. the VSM. In order to compare the effec-
tiveness of the vector space method and latent semantic
indexing, we conducted experiments on the Cranfield and
Medline document collections. For LSI, we considered
ranks 300 and 100 for the Cranfield and Medline docu-
ment collections, respectively. Figure 3 presents the com-
parison of the VSM and LSI methods on the Medline and
Cranfield document collections. LSI clearly exhibits its
superiority over the VSM. There is a nearly 70% improve-
ment in retrieval results with LSI.

The difference in performance between LSI and the
VSM is especially impressive at lower recall levels, where
interpolated precision is very good. But at higher recall
levels, LSI yielded only a few more relevant documents
from the collection than the VSM. The VSM and LSI pro-
duced similar results, as Medline is a specialized collec-
tion. But there is a marginal superiority of LSI over the
VSM exhibited at higher recall levels. It is clear that LSI
offers better results when compared with the traditional
term matching VSM. What distinguishes LSI model from
the VSM and gives LSI power in dealing with synonymy
and polysemy is the refinement of the original semantic
space of the VSM using the truncated SVD of the term-
by-document matrix.

5.3. Rank Approximation Using SVD and Eigenvalue
Analysis. To study the application of eigenvalue analy-
sis for rank approximation in the context of LSI, we per-
formed a set of retrieval experiments on the Cranfield,
Medline, CACM, CISI and 20 Newsgroups testing doc-
ument collections. The document database in the CACM
test collection consists of all the 3204 articles published in
Communications of ACM from 1958 to 1979. From this,

we extracted 5763 terms, creating a term-by-document
of size 5763 × 3204. 1460 documents in the CISI test
collection were selected from the Institute of Scientific
Information. This collection is indexed by 5544 terms.
So we created a term-by-document of size 5544 × 1460.
The 20 Newsgroups dataset is a collection of approxi-
mately 20,000 documents, partitioned evenly across 20
different news groups. From that, we considered a com-
puter science dataset which is partitioned into 3 sub-
groups as IBM PC hardware, MAC hardware and MS-
Windows datasets. It contained 2437 documents. After
preprocessing, we prepared a term-by-document matrix of
size 8258 × 2437. We evaluated the presented method-
ologies in terms of retrieval efficiency and accuracy, and
compared it with the truncated SVD based method.

5.3.1. Computational Time. We first performed rank
approximation using truncated SVD approximation and
then, using eigenvalue based rank approximation, we ap-
proximated the collections to ranks ranging from 100 to
1000. For both the methods, we compared their compu-
tational timings (CPU time) in minutes on an IBM Think
Pad running at 1.5 GHz with a 512 Mb memory using the
MATLAB 6.5 environment.

Truncated SVD took 3.62 minutes to approximate the
Cranfield collection to rank 300, whereas the first eigen-
value based method took only 0.94 minutes. But the sec-
ond eigenvalue method took only 0.88 minutes. Truncated
SVD took 0.59 minutes to approximate the Medline col-
lection to rank 100, whereas the first eigenvalue method-
ology approximated the collection within 0.3 minutes and
the second methodology took only 0.27 minutes. The dif-
ference between the computational times is big at higher
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Fig. 4. Rank approximation using SVD and eigenvalue analysis.

rank approximations. For approximating the Medline col-
lection to rank 1000, truncated SVD took 18 minutes. But
the same was achieved using the first eigenvalue method
within only 1.61 minutes and the second methodology
within 1.14 minutes.

For the CACM document collection, truncated SVD
took 10.42 minutes to approximate the collection to a rank
of 300, whereas the first eigenvalue methodology took
only 3.07 minutes and the second methodology took 3.06
minutes. For the CISI collection, truncated SVD took 3.62
minutes whereas the first eigenvalue methodology took
only 0.75 minutes and the second eigenvalue method-
ology took 0.71 minutes. We focused on rank 300 as
an optimal rank for this document collection. Truncated
SVD took 6.78 minutes to approximate 20 groups in the
computer science collection to a rank of 300. But the
first eigenvalue methodology took only 1.2 minutes and
the second methodology took 1 minute. These empirical
results show that the eigenvalue-based method has sub-
stantially lower computational time than truncated SVD.
Both methodologies based on eigenvalues approximated

the collections in almost the same amount of time. Only
for higher rank approximations (above 600), the second
eigenvalue methodology slightly outperformed the first
one. All these details are illustrated in Fig. 4. The most
time consuming part of these methodologies is the com-
putation of the correlation matrix AT A. For all these ex-
periments it took nearly 90% of computational time.

5.3.2. Retrieval Accuracy. We compared the retrieval
accuracy in terms of precision and recall using the eigen-
value methods with that of SVD. The eigenvalue methods
offered interpolated precision values at all standard recall
levels exactly similar to that of truncated SVD. Conse-
quently, we could not visualize the results through a graph,
as there was a clear overlap of the singular values gener-
ated from truncated SVD and eigenvalue methods. But
for illustration, in Figs. 5 and 6 we provide the singular
values produced in the concept space using the truncated
SVD and eigenvalue methods on the Cranfield and Med-
line collections, respectively.
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Fig. 5. Singular values produced from the Cranfield collection.

 
Fig. 6. Singular values produced from the Medline collection.

6. Conclusions

In this paper, an analysis and understanding of how matrix
rank reduction would help to derive the latent semantic na-
ture of information thereby improving the efficiency of IR
was provided. We conducted experiments on two standard
document collections and observed that the performance
of LSI with matrix rank reduction is superior to the tradi-
tional vector space method. In LSI, the effects of rank on
the size and retrieval quality of both collections were an-
alyzed. We presented two methodologies for implement-
ing LSI without truncated SVD based on the eigenvalues.
We evaluated the eigenvalue method in terms of retrieval
accuracy and efficiency and compared it with a truncated
SVD based method. A key observation is that LSI using
eigenvalues has lower computational time than truncated
SVD and a similar retrieval accuracy as SVD.
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