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We study a new Hermite-type interpolating operator arising in a semi-Lagrangian scheme for solving the Vlasov equation
in the 2D phase space. Numerical results on uniform and adaptive grids are shown and compared with the biquadratic
Lagrange interpolation introduced in (Campos Pinto and Mehrenberger, 2004) in the case of a rotating Gaussian.
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1. Introduction

Adaptive semi-Lagrangian schemes for solving the
Vlasov equation in the phase space have recently been
developed. They include wavelet techniques (Gutnic et
al., 2004; Gutnic et al., 2005), the moving mesh method
(Sonnendrücker et al., 2004), and hierarchical finite el-
ement decomposition (Campos Pinto and Mehrenberger,
2004; Campos Pinto and Mehrenberger, 2005). One main
advantage of the latter method is that the underlying
dyadic partition of cells allows for an efficient paralleliza-
tion. It has been implemented with a biquadratic Lagrange
interpolation. But the use of higher-order methods is not
straightforward in that context. The same problem in fact
occurs in the case of semi-Lagrangian schemes on un-
structured grids. One solution there was to use a Hermite-
type interpolation (see (Besse and Sonnendrücker, 2003)
and also (Nakamura and Yabe, 1999)). We propose here to
do the same in the adaptive context. Thanks to a well cho-
sen Hermite interpolation recently found (Hong and Schu-
maker, 2004), we thus obtain a more accurate scheme.

The paper is organized as follows: Section 2 presents
two interpolating operators that we designed for our nu-
merical scheme. First, we recall the Lagrange operator
and then we present the new Hermite one. Section 3
briefly recalls our uniform and adaptive semi-Lagrangian
schemes. Section 4 focuses on the crucial point of the
computational cost of the two operators. We propose ef-

ficient algorithms to compute the interpolated value as a
sequence of assignments. Section 5 completes the defin-
ition of our adaptive scheme. For each operator, criteria
for compressing cells of the adaptive mesh are provided.
Finally, Section 6 shows our experimental results before
concluding.

2. Local Interpolating Operators

Notation. We use the square Ω = [0, 1[2 as a computa-
tional domain. It is decomposed using a partition M of
square shaped cells α = [k2−j , (k + 1)2−j[×[�2−j, (� +
1)2−j[, where k, � and j are integers, and j denotes the
level of the cell. For a point (x, y) ∈ Ω, we can thus de-
fine a unique cell αx,y ∈ M such that (x, y) ∈ αx,y.

Given a cell α, we denote by (0, 0)α, (1, 0)α, (1, 1)α,
(0, 1)α its four corners and, more generally, (λ, μ)α will
be the point whose local coordinates in α are λ, μ ∈
[0, 1]2. Let T α

k , k = 0, . . . , 3 be the four triangles obtained
by subdividing the cell α with the diagonals (Fig. 1).

For d ∈ N, we classically define

Qd =
{∑

ai,jx
iyj, i, j ≤ d

}
,

and
Pd =

{∑
ai,jx

iyj , i + j ≤ d
}
.

Now, let f be a function defined on Ω extended to R
2

by zero (we can similarly extend it by periodicity), and
(x, y) ∈ Ω.
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Fig. 1. Four triangles of a cell α.

Biquadratic Lagrange interpolation. PLf(x, y) is de-
fined as the unique element of Q2 on the cell α = αx,y

such that it coincides with f on the nine degrees of free-
dom at the equidistant nodes:

PLf
(
(p, q)α

)
= f

(
(p, q)α

)
p, q = 0, 1/2, 1.

Hermite interpolation. Assume that f is differentiable
on each cell α. PHf(x, y) is then the unique C1 spline on
the cell α = αx,y, P3 on the triangles T α

k , k = 0, . . . , 3
such that there is coincidence on the twelve degrees of
freedom at the corners:

f(a), ∂xf(a), ∂yf(a), a = (p, q)α p, q = 0, 1,

and also on the four normal derivatives on the edges, i.e.,

∂yf
(
(1/2, p)α

)
, ∂xf

(
(p, 1/2)α

)
, p = 0, 1.

3. General Iterative Scheme

A semi-Lagrangian scheme takes the form of a succession
of interpolation and transport steps.

Let us consider the Vlasov equation

∂tf + y∂xf + E(t, x)∂yf = 0. (1)

The electric field E is generally computed via the Poisson
equation. We will suppose here that it is a known function.
We define classically the characteristic curves

Z(t; s, x, y) = (X, Y ) = (X(t; s, x, y), Y (t; s, x, y)),

such that
d
dt

X = y,
d
dt

Y = E

together with Z(s; s, x, y) = (x, y). The function f =
f(t, x, y) that we want to approximate, satisfying (1), is
constant along these characteristics:

f(t, x, y) = f(t, Z(t; t, x, y)) = f0(Z(0; t, x, y)),

where f0 is a given initial condition defined in Ω and com-
plemented by zero outside Ω.

Let Δt > 0 be the time step, and T n be the exact
backward transport operator at iteration step n, which is
defined by

T n(x, y) = Z
(
(n − 1)Δt; nΔt, x, y

)
.

Since f is constant along the characteristics, we have

f
(
(n + 1)Δt, x, y

)
= f

(
nΔt, T n+1(x, y)

)
.

We focus here on the errors produced by the interpo-
lating process and we shall assume that the exact transport
operator (and thus also the exact solution) is known. In the
general case, we should use an approximation of the exact
transport operator.

The iterative scheme then consists in finding the de-
grees of freedom at each iteration step n, which give a
representation fn, complemented by zero outside Ω. We
fix a resolution level J ∈ N

∗.

Uniform scheme. The semi-Lagrangian method with
the propagation of the gradients was studied on uniform
grids in (Besse and Sonnendrücker, 2003; Nakamura and
Yabe, 1999). We consider a uniform grid MJ of 22J cells.

• (Iteration step n = 0) We compute the degrees of
freedom from f0 on the corresponding grid, which
gives a representation f0 at iteration step 0.

• (Iteration step n + 1) For each point (x, y) corre-
sponding to a degree of freedom, we compute the
backward advected point T n+1(x, y). The new value
of the degree of freedom is thus fn(T n+1(x, y)) (or
d
dz fn(T n+1(x, y)), with z = x or y). We thus have
a representation fn+1 at iteration step n + 1.

Adaptive scheme. We will use a compression step
(f̃ ,M̃) = C(f,M). From a representation of a function
f on a mesh M, we will derive a new coarser representa-
tion f̃ on a mesh M̃. Note that a cell αj

k,� is partitioned

into four cells αj+1
2k+k′,2�+�′ , k′, �′ = 0, 1. We will say

that the cell αj
k,� is the mother cell of the four daughter

cells αj+1
2k+k′ ,2�+�′ , k′, �′ = 0, 1. The compression can

then be done locally, by comparing the representation of
the current function on the four daughters cells with the
interpolated function on the mother cell. If the two rep-
resentations are not far from each other, we will keep the
coarser representation on the mother cell. Specific tests
for the biquadratic Lagrange interpolation and for the Her-
mite interpolation will be defined.

We also define a prediction step M̃n = T n+1(Mn).
From a mesh Mn and the backward advection operator
T n+1, we compute a new mesh M̃n. This is performed
by beginning with a coarse mesh and recursively refining
each cell of level j ≤ J , if the backward advected center
of the cell falls on a cell of Mn whose level is less than j.

The algorithm is then as follows:

• (Iteration step n = 0) From f0
u obtained by the uni-

form algorithm, we compress the solution and obtain
the representation (f0,M0) = C(MJ , f0

u).
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• (Iteration step n + 1) We predict a first grid
T n+1(Mn) from Mn, compute fn+1

1 as in the uni-
form algorithm (replacing MJ with T n+1(Mn)),
and next compute the representation of f on Mn+1:
(fn+1,Mn+1) = C(T n+1(Mn), fn+1

1 ).

4. Fast Formulas

Our formulas are defined on any square cell α = [a, a +
h[×[b, b + h[, i.e., for a ≤ x < a + h and b ≤ y < b + h.

Biquadratic Lagrange interpolation. Given nine num-
bers gi,j , i, j = 0, 1, 2, the function g(x, y) of a degree no
greater than 2 that satisfies

g(a + ih/2, b + jh/2) = gi,j , for i, j = 0, 1, 2,

is uniquely determined. We can compute it as follows:
We first set N = 1/h (which can be precomputed) and
t0 = (x − a)N, t1 = 2t0 − 1, which gives

h0 = g1,j + t1(g1,j − g0,j),
h1 = g1,j + t1(g2,j − g1,j),
gj = h0 + t0(h1 − h0) for j = 0, 1, 2.

We next set t0 = (v − b)N, t1 = 2t0 − 1, so that we
have

h0 = g1 + t1(g1 − g0),
h1 = g1 + t1(g2 − g1),

g(x, v) = h0 + t0(h1 − h0).

This procedure thus needs only 10 assignments, 16 multi-
plications and 28 additions (or subtractions).

Hermite interpolation. Given 16 numbers gi,j , gx
i,j ,

gy
i,j , i, j = 0, 1, gx

0 , gx
1 , gy

0 and gy
1 , the C1cubic spline

P3 on the triangles T α
0 , T α

1 , T α
2 and T α

3 , satisfying

g(a + ih, b + jh) = gi,j ,

∂xg(a + ih, b + jh) = gx
i,j ,

∂yg(a + ih, b + jh) = gy
i,j for i, j = 0, 1

and

∂xg(a + ih, b + h/2) = gx
i ,

∂yg(a + h/2, b + ih) = gy
i for i = 0, 1,

is uniquely determined.
On the triangle T α

0 we can compute it as follows (for-
mulas on the other triangles can be similarly derived): By
setting u = (x − a)N and v = (y − b)N , we obtain

g(x, y)
= g00 + (2u3 − 3u2)(g00 − g10)
+ (v3 − 3v2 + 3uv2)(g00 − g01)
+ (v3 − 3uv2)(g10 − g11)

+ h
(
(2/3v3 − 2u2 − 3/2v2 + u + 3/2uv2 + u3)gu

00

+ (−1/2v2 + uv2 + v − 3uv + 1/6v3 + 2u2v)gv
00

+
(
2/3v3 − 2v2 + 4(−u2 + u)v

)
gv
0

+ (−2/3v3 − u2 + 3/2uv2 + u3)gu
10

+ (1/2v2 − uv2 − uv + 1/6v3 + 2u2v)gv
10

+ (4/3v3 − 2uv2)gu
1 + (−2/3v3 + 1/2uv2)gu

11

+ (5/6v3 − uv2)gv
11 − 2/3v3gv

1

+
(
2/3v3 + 1/2(−v2 + uv2)

)
gu
01

+ (5/6v3 − v2 + uv2)gv
01

+
(
− 4/3v3 + 2(v2 − uv2)

)
gu
0

)
.

We used the ‘optimize’ function of the ‘codegen’ package
of Maple to reduce the cost of these interpolation oper-
ators and implement them in our code. We applied this
optimization in the practical case where a, b = 0 and h is
the size of a mesh cell.

For example, in our code, the cost of the computation
of g(x, y) on the triangle T α

0 by the Hermite operator is 18
assignments, 49 multiplications and 53 additions. It is ob-
tained by introducing some auxiliary variables as follows:

v1 = v2, v2 = 3v1, v3 = uv2,

v4 = vv1, v5 = 2/3v4, v6 = 4/3v4,

v7 = 5/6v4, v8 = uv1, v9 = 1/6v4 + 2x1v,

x1 = u2, x2 = uu1, x3 = ux2, x4 = x3 + 3/2v8.

Moreover, for the Hermite operator, instead of com-
puting g(x, y), ∂xg(x, y) and ∂vg(x, y) separately, we
compute them together, which reduces the number of re-
quired elementary operations and reduces the computation
cost at least by 10% for most processor architectures.

5. Compression Formulas

Hermite compression. In the case of the Hermite inter-
polation, the compression test used for the four daughter
cells of a given cell α of length h is

dx
0 + dx

1 + dv
0 + dv

1 ≤ ε,

with dx
k =

∣∣f((1/2, k)α) − f̃1/2k

∣∣, where

f̃1/2k =
(
f((0, k)α) + f((1, k)α)

)
/2

+ h/8
(
∂xf((0, k)α) + ∂xf((1, k)α)

)
,

and dv
k =

∣∣f((k, 1/2)α − f̃k1/2)
∣∣, where

f̃k1/2 =
(
(f((k, 0)α) + f((k, 1)α)

)
/2

+ h/8
(
∂vf((k, 0)α) + ∂vf((k, 1)α)

)
,

for k = 0, 1. Here f̃k1/2 and f̃1/2k are the reconstructed
values at the middle of the edges, with the 1D Hermite
interpolation operator. Note that this compression test is
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not exactly the same as that introduced in Section 3. How-
ever, it provides an easy and cheap local criterion for the
order of accuracy, because it only uses a 1D interpolation,
and it has been successfully applied in our testcase. Other
criteria may be used and compared.

Biquadratic Lagrange compression. For a given
mother cell α, the compression test used is

4∑
p,q=0

∣∣f(
(p/4, q/4)α

)
− f̃pq

∣∣ ≤ ε,

where f̃pq is the value obtained by interpolation on the cell
α at point (p/4, q/4)α.

6. Numerical Results

For initial data we take

f0(x, y) = e−0.07((40(x−0.5)+4.8)2+(40(y−0.5)+4.8)2),

in Ω = [0, 1]2 and Δt = 0.19635. The transport operator
is given here by a rotation of angle Δt around the center
(0.5, 0.5), so that the equation that is numerically solved
is (1) with E(t, x) = −(x − 0.5).

We implemented our schemes in C++ and executed
our code on a Pentium 4 processor (3.06GHz, 512MB
RAM). We considered our adaptive scheme for ε = 10−4,
10−5, 10−6, 10−7 and 10−8. The error is computed on a
uniform grid of 256 × 256 points.

Figure 2 shows the average absolute error (norm L1)
as a function of the number of mesh cells for the different
schemes after 99 iteration steps. We observe that for any
given error threshold, any ε and any interpolation opera-
tor, the number of cells is always lower with the adaptive
scheme than with the uniform one. But that does not nec-
essarily mean that the execution time is always lower with
the adaptive scheme than with the uniform one as illus-
trated in Fig. 3.

Figure 3 displays the average absolute error as a
function of the average time to compute one iteration step
(in seconds). We notice that, for the Hermite operator, the
performance of the adaptive scheme is always better than
the performance of the uniform scheme. But this is not the
case for the Lagrange operator.

Figure 4 shows the error as a function of the number
of steps for each of the two operators. We observe that the
Hermite operator for J = 9 and ε = 10−8 has a slightly
better accuracy than the uniform Lagrange operator for
J = 10. Moreover, we notice that the amplitude of the
error oscillation is lower for the Hermite operator than for
the Lagrange operator. The execution time is also better:
0.419 seconds per iteration step with 86092 cells for the
Hermite operator and 0.646 seconds with 1048576 cells
for the uniform Lagrange operator.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 1000  10000  100000  1e+06  1e+07

ε =1e-4
ε =1e-5
ε =1e-6
ε =1e-7
ε =1e-8
Uniform

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 1000  10000  100000  1e+06  1e+07

ε =1e-4
ε =1e-5
ε =1e-6
ε =1e-7
ε =1e-8
Uniform

Fig. 2. Error/number of cells for Hermite (top) and Lagrange
(bottom) interpolations. Each point corresponds to a
value of J between 7 and 11. The first three symbols
go from 7 to 11, and the last three symbols go from 7 to
10 (from left to right).
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Fig. 3. Error/average time to compute one iteration step [s]
for Hermite (top) and Lagrange (bottom) interpolations.
Each point corresponds to a value of J between 7 and
11. The first three symbols go from 7 to 11, and the last
three symbols go from 7 to 10 (from left to right).
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Fig. 4. Error in the norm L1 (top), L2 (middle), L∞ (bot-
tom) for an adaptive Hermite scheme with J = 9
and ε = 10−8, a uniform Lagrange scheme with
J = 10 and from 50 to 500 iteration steps.

7. Conclusions

In this paper, we defined a Hermite interpolating operator
which can be used in both uniform and adaptive schemes
for solving the Vlasov equation. The numerical results
show that this operator offers great advantages in com-
parison with the Lagrange operator which was originally
used.

Our first goal was to demonstrate the feasibility of
developing a Vlasov solver based on the Hermite opera-
tor. Therefore, we defined it for a 2D phase space and
considered a test case for which the analytic solution was
known. Our next goal is to run more realistic test cases
and extend our approach to four dimensions.

In a physical test case, the backward operator is com-
puted at each step from the charge density. Since the com-
putation cost of this density is proportional to the number

of cells, it means that it is even more advantageous to use
the Hermite operator instead of the Lagrange one, as the
results in this paper show.

Further work includes parallelizing our sequential
code. We plan to reuse some parallelization techniques
which resulted in good speed-up on distributed memory
parallel machines for a similar numerical scheme but the
Lagrange operator (Hoenen et al., 2004). In particular,
we designed a specific data structure (Hoenen and Vio-
lard, 2006) which is suitable to exploit data locality com-
ing from the local nature of these schemes and which
can be advantageously reused to design a code for shared
memory parallel machines using OpenMP directives.

Fig. 5. Solution f and the error for ε = 10−6 and J =
7 after 900 steps in the Hermite case.

Fig. 6. Solution f and the error for ε = 10−6 and J =
7 after 900 steps in the Lagrange case.
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