
Int. J. Appl. Math. Comput. Sci., 2007, Vol. 17, No. 3, 335–349
DOI: 10.2478/v10006-007-0028-x

HERMITE SPLINE INTERPOLATION ON PATCHES FOR PARALLELLY
SOLVING THE VLASOV-POISSON EQUATION

NICOLAS CROUSEILLES ∗ , GUILLAUME LATU ∗∗, ERIC SONNENDRÜCKER ∗∗∗

∗ INRIA Lorraine, CALVI
e-mail: crouseil@math.u-strasbg.fr

∗∗ INRIA Futurs, Scalapplix
e-mail: latu@labri.fr

∗∗∗ IRMA Strasbourg and INRIA Lorraine, CALVI
e-mail: sonnen@math.u-strasbg.fr

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-
In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov
equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry
out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase
domain, each patch being devoted to a processor. Some Hermite boundary conditions allow for the reconstruction of a good
approximation of the global solution. Several numerical results demonstrate the accuracy and the good scalability of the
method with up to 64 processors. This work is a part of the CALVI project.

Keywords: Vlasov-Poisson equation, semi-Lagrangian method, parallelism

1. Introduction

The Vlasov-Poisson equation describes the evolution of a
system of charged particles subjected to the effects of a
self-consistent electric field. The unknown f is a distribu-
tion function of particles in the phase space which depends
on time t ≥ 0, the physical space x ∈ R

d and the velocity
v ∈ R

d, where d is the dimension, d = 1, 2, 3. This kind
of model can be used for the study of beam propagation,
collisionless or gyrokinetic plasmas.

The numerical solution of Vlasov-type equations,
which depend at least on 6 variables plus time, is most
often performed using particle methods (Particle In-Cell-
methods), where the plasma is approached by a finite
number of macro-particles. The trajectories of these parti-
cles are computed using the characteristic curves given by
the Vlasov equation, whereas the self-consistent electric
field is computed on a fixed grid (Birdsall and Langdon,
1991). Even though these methods produce satisfactory
results with relatively few particles, for some applications
(in particular, when particles in the tail of the distribu-
tion function play an important physical role, or when one
wants to study the influence of density fluctuations which

are at the origin of instabilities), it is well known that the
numerical noise inherent in the particle methods becomes
too significant. Consequently, methods which discretize
the Vlasov equation on a phase space grid have been pro-
posed (see (Feix et al., 1994; Filbet et al., 2001; Filbet
and Sonnendrücker, 2003; Ghizzo et al., 1996; Ghizzo et
al., 1990; Shoucri and Knorr, 1974; Sonnendrücker E. et
al., 1999) for plasma physics and (Bermejo, 1991; Stan-
iforth and Coté, 1991) for other applications). Among
these Eulerian methods, the semi-Lagrangian method con-
sists in computing directly the distribution function on a
Cartesian grid of the phase space. The computation is
done by integrating the characteristic curves backward at
each time step and interpolating the value at the beginning
of the characteristics by some interpolation techniques
(e.g., Lagrange, Hermite or cubic splines). We refer the
reader to (Sonnendrücker E. et al., 1999) for more details
on the semi-Lagrangian method and to (Filbet and Son-
nendrücker, 2003) for a comparison of Eulerian solvers
dedicated to the Vlasov equation.

Eulerian methods have proven their efficiency on
uniform meshes in the two-dimensional phase space,

336 N. Crouseilles et al.

but when the dimensionality increases, the number of
points on a uniform grid becomes very important, which
makes numerical simulations challenging. Two kinds
of strategy have been recently developed to simulate
four-dimensional problems. Some adaptive methods de-
crease the computational cost by keeping only a subset
of all grid points. Such methods use moving distribu-
tion function grids well suited to manage data locality.
For more details, we refer the reader to (Campos-Pinto
and Merhenberger, 2004; Gutnic et al., 2004; Sonnen-
drücker et al., 2004). On the other hand, some paral-
lelized versions of codes were implemented to simulate
high-dimensional problems (Coulaud et al., 1999; Filbet
and Violard, 2002). Generally, the numerical schemes are
based on time-splitting schemes which can be parallelized
very efficiently on a moderate number of processors us-
ing a global transposition between each split step. Apart
from this transposition that can be overlapped with com-
putations, there is no communication between the proces-
sors. However, when heterogeneous grids and several
hundreds or more processors are targeted (Grandgirard et
al., 2006; Kim and Parker, 2000), a global transposition
involves a huge amount of data beeing transferred and this
may become very inefficient. For these reasons, in this pa-
per we develop a local spline interpolation technique that
avoids any global transposition.

This work is devoted to the parallel implementation
of the semi-Lagrangian method by using the cubic spline
interpolation operator. In order to check the method, we
have designed the parallel software LOSS (LOcal Splines
Simulator). Even though cubic spline interpolation seems
to be a good compromise between accuracy (small diffu-
sivity) and simplicity, it does not provide the locality of
the reconstruction since all the values of the distribution
function are used for the reconstruction in each cell. To
overcome this problem of global dependence, we decom-
pose the phase space domain into patches, each patch be-
ing devoted to one processor. One patch computes its own
local cubic spline coefficients by solving reduced linear
systems. Hermite boundary conditions are imposed at the
boundary of the patches to reconstruct a global C1 numer-
ical solution.

In fact, our strategy consists in getting a parallel ver-
sion of the code, the results of which are as close as pos-
sible to the results of the sequential version. Even if the
methodology remains slightly different from the sequen-
tial case (essentially due to the local determination of the
cubic spline coefficients versus the global solution), our
main efforts consist in recovering the global resolution in
the best possible way. Thanks to an adapted treatment
of the Hermite boundary conditions, the obtained numeri-
cal results are then in good agreement with those obtained
with the sequential version of the code. Moreover, some
communications between processors have to be managed
in a suitable way. Indeed, as particles can leave the sub-

domain, their information must be forwarded to the ap-
propriate processor that controls the subdomain in which
the particles now reside. Such interprocessor communica-
tions would involve a relatively huge amount of data ex-
change, but a condition on the time step allows us to con-
trol the shifts so that the communications are performed
only between adjacent processors. Hence, this commu-
nication scheme enables us to obtain competitive results
from a scalability point of view. Let us mention that even
though a uniform grid is used here, the methodology could
be extended to sets of lines which are not equally spaced
(e.g., adaptive meshes).

This work contributes to the improvement of a five-
dimensional semi-Lagrangian gyrokinetic code which
simulates the turbulent transport in magnetized fusion
plasma. This high-dimensional problem is very demand-
ing in terms of numerics and, therefore, the code is
devoted to be massively parallelized. A time-splitting
algorithm allows us to reduce the problem into a se-
quence of one-dimensional and two-dimensional advec-
tions. Our method enables us to accurately solve this ad-
vection part using parallel computations (see (Grandgirard
et al., 2006) for more details).

The paper is organized as follows: First, we draw
up some basic properties of the Vlasov-Poisson model.
Then, we recall the main steps of the semi-Lagrangian
method. Next, we propose the Hermite spline interpo-
lation on patches before illustrating the efficiency of the
method by presenting several numerical results.

2. Vlasov-Poisson Model

The evolution of the distribution function of particles
f(t, x, v) in phase space (x, v) ∈ R

d×R
d with d = 1, 2, 3

and t denoting time is given by the dimensionless Vlasov
equation

∂f

∂t
+ v · ∇xf + F (t, x, v) · ∇vf = 0, (1)

where the force field F (t, x, v) can be coupled to the dis-
tribution function f . For the Vlasov-Poisson system, this
coupling is accomplished through the macroscopic den-
sity

ρ(t, x) =
∫

Rd

f(t, x, v) dv.

The force field which depends only on t and x makes the
system nonlinear. It is given by

F (t, x, v)=E(t, x), ∇x · E(t, x)=ρ(t, x) − 1, (2)

where E is the electric field and φ the electric potential.
These two quantities depend on the total charge in the
plasma where the ions form a fixed and uniform back-
ground. In the sequel, we briefly recall some classical

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation 337

estimates regarding the Vlasov-Poisson system (1), (2).
First of all, mass and momentum are preserved in time,

d
dt

∫
Rd×Rd

f(t, x, v)

(
1
v

)
dxdv = 0, t ∈ R

+.

Next, multiplying the Vlasov equation (1) by |v|2 and
integrating the result by parts, we express the conservation
of the energy for the system (1)–(2):

1
2

d
dt

[∫
Rd×Rd

f(t, x, v)|v|2 dxdv+
∫

Rd

|E(t, x)|2 dx

]
=0,

for all t ∈ R
+. Finally, the Vlasov-Poisson system (1)–(2)

conserves the kinetic entropy

H(t) =
∫

Rd×Rd

f(t) log(f(t)) dxdv = H(0).

On the other hand, we can define the characteristic
curves of the Vlasov-Poisson system (1)–(2) as the solu-
tions to the following first-order differential system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dX

dt
(t; s, x, v) = V (t; s, x, v),

dV

dt
(t; s, x, v) = E(t, X(t; s, x, v)),

(3)

with the initial conditions

X(s; s, x, v) = x, V (s; s, x, v) = v.

We denote by (X(t; s, x, v), V (t; s, x, v)) the position in
phase space at time t, of a particle which was at (x, v) at
time s. Let t → (X(t; s, x, v), V (t; s, x, v)) be the char-
acteristic curve solution to (3). Then the solution of the
Vlasov-Poisson equation (1)–(2) is

f(t, x, v) = f
(
s, X(s; t, x, v), V (s; t, x, v)

)

= f0

(
X(0; t, x, v), V (0; t, x, v)

)
, (4)

for all (x, v) ∈ R
d × R

d, t ≥ 0, where f0 is a given
initial condition of the Vlasov-Poisson equation. This
means that the distribution function f is constant along
the characteristic curves, which is the basis of the numer-
ical method we present in the next section. For more de-
tails, we refer the reader to (Bouchut et al., 2000; Glassey,
1996).

3. Semi–Lagrangian Method

In this section, we recall the principles of the Semi-
Lagrangian method for the Vlasov-Poisson equation (see
(Sonnendrücker E. et al., 1999) for details) in a two-
dimensional phase space.

First of all, we introduce a finite set of mesh points
(xi, vj), i = 0, . . . , Nx and j = 0, . . . , Nv to discretize
the computational domain. Then, given the values of the
distribution function f at the mesh points at any given time
step tn, we obtain the new value at mesh points (xi, vj) at
tn+1 using

f(tn + Δt, xi, vj) = f(tn, Xn, V n),

where the notation

(Xn, V n) = (X(tn; tn+Δt, xi, vj), V (tn; tn+Δt, xi, vj)

is used for the solutions of (3), and Δt stands for the time
step. For each mesh point (xi, vj), the distribution func-
tion f is then computed at tn+1 in two steps:

1. Find the starting point of the characteristic ending at
(xi, vj), i.e., Xn and V n.

2. Compute f(tn, Xn, V n) by interpolation, f being
known only at mesh points at time tn.

In order to deal with the first step, we have to intro-
duce a time discretization of (3). To guarantee second-
order accuracy in time, we use the Ampère equation to get
an approximation of the electric field at time tn + Δt,

∂E(t, x)
∂t

= −J(t, x), (5)

where J = J(t, x) is the current given by

J(t, x) =
∫

R

f(t, x, v)v dv.

Equation (5) is discretized as

E
n+1/2
i = En

i − Δt

2
Jn

i ,

where Δt is the time step, En
i is the electric field evaluated

at t = tn and x = xi, and Jn
i is the current evaluated at

time tn in xi,

Jn
i =

Nv∑
j=0

f(tn, xi, vj)vjΔv, (6)

Δv being the velocity step. Then we solve (3) with
the second-order accuracy in time thanks to a predictor-
corrector scheme. The semi-Lagrangian method then re-
duces to the following algorithm:

Let us suppose that f(tn, xi, vj), En
i are known at

the mesh points.

Step 1. Computation of a prediction of E
n+1/2
i , denoted

by Ẽ
n+1/2
i , through solving the Ampère equation

Ẽ
n+1/2
i = En

i − Δt

2
Jn

i ,

where Jn
i is computed via (6).

Step 2. Solution of (3):

338 N. Crouseilles et al.

• Backward advection of Δt/2 in the spatial direction:

Xn+1/2 = Xn+1 − Δt

2
V n+1.

• Backward advection of Δt in the velocity direction:

V n = V n+1 − Δt Ẽn+1/2(Xn+1/2).

• Backward advection of Δt/2 in the spatial direction:

Xn = Xn+1/2 − Δt

2
V n.

Step 3. Interpolation of f(tn, Xn, V n), update of the dis-
tribution function owing to

f(tn+1, Xn+1, V n+1) = f(tn, Xn, V n),

and computation of the density

ρn+1(Xn+1) =
∫

R

f(tn+1, Xn+1, v) dv.

Step 4. Correction step: computation of the electric field
by solving the Poisson equation at time tn+1,

∂En+1

∂x
= ρn+1 − 1.

Hence, Step 2 allows for the computation of the start-
ing point of the characteristic (Xn, V n) thanks to the
knowledge of (Xn+1, V n+1). Once we have followed the
characteristics curves backward, we have to evaluate the
distribution function at the end points of the characteris-
tic curves which do not generally coincide with the mesh
where f is known (Step 3). The last step is a correction
step since the predicted electric field Ẽn+1 is replaced by
the true electric field En+1 at time tn+1, the solution to
the Poisson equation at time tn+1. Let us remark that the
evaluation of the electric field at time tn+1/2 in Xn+1/2

that does not necessarily belong to the mesh is performed
thanks to a linear approximation.

This algorithm may be iterated so that the predicted
electric field Ẽn+1 becomes sufficiently close to the true
electric field En+1 at time tn+1. In practice, one iteration
of this algorithm already gives enough accuracy.

4. Local Spline Interpolation

In this section, we present our interpolation technique
based on a cubic spline method (DeBoor, 1978; Hammer-
lin and Hoffmann, 1991; Sonnendrücker E. et al., 1999).
Even if the cubic spline approach is quite standard for
solving Vlasov equations, it remains a global method
since it requires the values of the distribution function in

the whole domain, which is inconvenient from a paral-
lelization point of view. Our approach avoids this glob-
ality. Indeed, we decompose the phase space into several
patches, each being assigned to one processor. The strat-
egy is based on adapted boundary conditions which yield
a C1 reconstructed solution on the global phase space do-
main even on the patch boundaries.

We first present the interpolation on one patch in
a one-dimensional context before focusing on the two-
dimensional case.

4.1. Local Spline Interpolation in One Dimension.
Consider a function f which is defined on a global do-
main [xmin, xmax] ⊂ R. This domain is decomposed into
several subdomains denoted generically by [x0, xN]. Each
subdomain will be assigned to a processor. In the follow-
ing, we will use the notation xi = x0 + ih, where h is the
mesh size h = (xN − x0)/(N + 1).

Let us now restrict the study of f : x → f(x) to
an interval [x0, xN], N ∈ N, where x0 and xN are to
be chosen according to the decomposition domain. The
projection s of f onto the cubic spline basis is

f(x) � s(x) =
N+1∑
ν=−1

ηνBν(x),

where the cubic B-spline Bν is defined by

Bν(x) =
1

6h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − xν−2)3 if xν−2 ≤ x ≤ xν−1,

h3 + 3h2(x − xν−1) + 3h(x − xν−1)2

−3(x − xν−1)3 if xν−1 ≤ x ≤ xν ,

h3 + 3h2(xν+1 − x) + 3h(xν+1 − x)2

−3(xν+1 − x)3 if xν ≤ x ≤ xν+1,

(xν+2 − x)3 if xν+1 ≤ x ≤ xν+2,

0 otherwise.
(7)

The interpolating spline s is uniquely determined by N+1
interpolating conditions

f(xi) = s(xi), ∀i = 0, . . . , N (8)

and the Hermite boundary conditions at both ends of the
interval in order to obtain a C1 global approximation,

f ′(x0) � s′(x0), f ′(xN) � s′(xN). (9)

The only cubic B-splines not vanishing at point xi

are Bi±1(xi) = 1/6 and Bi(xi) = 2/3. Hence, (8) yields

f(xi) =
1
6

ηi−1 +
2
3

ηi +
1
6

ηi+1, i = 0, . . . , N. (10)

On the other hand, we have B′
i±1(xi) = ±1/(2h), and

B′(xi) = 0. Thus, the Hermite boundary conditions (9)
become

f ′(x0) � s′(x0) = −1/(2h) η−1 + 1/(2h) η1, (11)

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation 339

and

f ′(xN) � s′(xN) = −1/(2h) ηN−1 + 1/(2h) ηN+1.

Finally, η = (η−1, . . . , ηN+1)T is the solution of the
(N + 3) × (N + 3) system Aη = F , where

F = [f ′(x0), f(x0), . . . , f(xN), f ′(xN)]T (12)

and

A =
1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3/h 0 3/h 0 · · · 0

1 4 1 0
...

0 1 4 1
. . .

...
...

. . .
. . .

. . .
. . . 0

... 0 1 4 1
0 0 0 −3/h 0 3/h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)
Bear in mind that f ′ is a notation, and from a numer-

ical point of view, the derivative of f has to be approxi-
mated in a well-defined sense. We will focus on this in
the sequel of the paper.

Solving the linear system Aη = F . The matrix A of the
linear system has a special structure. Its LU decomposi-
tion is of the following form:

L=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · · · · 0

−h/3 1 0
. . .

...

0 l1 1
. . .

...

0 0
. . .

. . . 0
...

...
. . .

. . . lN 1 0
0 · · · 0 −(3lN)/h (3lN+1)/h 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

U =
1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3/h 0 3/h 0 · · · 0

0 d1 2 0
...

0 0 d2 1
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . .
. . . dN+1 1

0 · · · 0 0 0 (3dN+2)/h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where li and di can be computed from the following rela-
tions:

d1 = 4, l1 = 1/4, d2 = 4 − 2l1 = 7/2,

for each i = 2, . . . , N we have

li = 1/di, di+1 = 4 − li,

and

lN+1 =
1

dNdN+1
, dN+2 = 1 − lN+1.

The LU decomposition of A can then be performed
only once. At each time step, a spline interpolant needs
to be computed solving LUη = F into two steps: the
solution of Lϕ = F , and then the solution of Lη = ϕ.

4.2. Local Spline Interpolation in Two Dimensions.
In a two-dimensional space, f is projected on a cubic
spline basis for every (x, y) ∈ [x0, xNx] × [y0, yNy] as
follows:

f(x, y) � s(x, y) =
Nx+1∑
ν=−1

Ny+1∑
β=−1

ην,βBη(x)Bβ(y). (14)

The same notation as that used in the previous section is
employed and we have to compute the coefficients ηνβ .
For that purpose, we first solve Ny + 1 systems

s(x, yj) =
Nx+1∑
ν=−1

γν(yj)Bν(x), ∀j = 0, . . . , Ny, (15)

where

γν(yj)

= [γ−1(yj), γ0(yj), . . . , γν(yj), . . . , γNx+1(yj)]
T

.

Each of the Ny + 1 systems (15) satisfies Nx + 1 interpo-
lation conditions (at fixed j)

f(xi, yj) = s(xi, yj), i = 0, . . . , Nx,

and the Hermite boundary conditions in the x-direction

∂f

∂x
(x0, yj) � ∂s

∂x
(x0, yj),

∂f

∂x
(xNx , yj) � ∂s

∂x
(xNx , yj).

We have

γν(yj) =
Ny+1∑
β=−1

ην,βBβ(yj). (16)

We have thus arrived at solving Ny + 1 linear systems
Aγν(yj) = F (yj), one for each value of j, involving
the (Nx + 3) × (Nx + 3) matrix (13) and an (Nx + 3)
vector similar to (12) evaluated at yj . Following the pro-
cedure used previously (via the LU decomposition), we
then obtain the (Nx + 3) vector of unknown γν(yj), for
j = 0, . . . , Ny,

γν(yj)

= [γ−1(yj), γ0(yj), . . . , γν(yj), . . . , γNx+1(yj)]
T

.

340 N. Crouseilles et al.

The second step consists in solving a one dimen-
sional problem given by (16) for each ν = −1, . . . , Nx +
1. However, the left-hand side of this system is only
known for values of yj , j = 0, . . . , Ny (i.e., it is a vec-
tor of Ny + 1 components) whereas the right-hand side is
an (Ny + 3) vector. Some boundary conditions are neces-
sary to complete the system. Hermite boundary conditions
are imposed for the first and last components of the vector
(which correspond to j = −1 and j = Ny, respectively),
that is to say, we have to compute γ′

ν(y0) and γ′
ν(yNy),

∀ν = −1, . . . , Nx + 1. To achieve this task, we solve two
systems: we first differentiate (16) with respect to y, and
then evaluate the result at yj = y0 and yj = yNy . The
Hermite boundary conditions have to be adapted to this
particular case. Consequently, we have to solve the fol-
lowing two systems (associated with j = 0 and j = Ny):
Aγ′

ν(yj) = ∂yf(x, yj), where A is the matrix (13),

γ′
ν(yj) =

[
γ′
−1(yj), . . . , γ′

ν(yj), . . . , γ′
Nx+1(yj)

]T
,

and the right-hand side is

∂yf(x, yj) = [∂xyf(x0, yj), ∂yf(x0, yj),

. . . , ∂yf(xi, yj), . . . , ∂xyf(xNx , yj)]
T .

Once we have computed γ′
ν(y0) and γ′

ν(yNy), for all
ν = −1, . . . , Nx + 1, we solve the system (16), which
here takes the form Aην,β = Γνβ . The matrix A is given
by (13) and the right-hand side is

Γνβ =
[
γ′

ν(y0), γν(y0), . . . , γν(yNy), γ′
ν(yNy)

]T
,

for each ν = −1, . . . , Nx + 1.
Once the spline coefficients ην,β have been computed

for all ν and β, the value of f at the origin of the charac-
teristics (Xn, V n) (determined following the algorithm of
Section 3) is taken to be the value of the spline s(Xn, V n).
If (Xn, V n) belongs to [xi, xi+1]× [yj, yj+1], the approx-
imation of the function f(Xn, V n) is given by

s(Xn, V n) =
i+2∑

ν=i−1

⎛
⎝ j+2∑

β=j−1

ην,βBν(Xn)Bβ(V n)

⎞
⎠ ,

where Bν and Bβ are given by (7). Computing
s(Xn, V n) for all mesh points requires O(NxNy) float-
ing points operations.

Remark 1. In summary, we have to solve

• Ny + 1 systems of size (Nx + 3)× (Nx + 3) (to get
γν(yj), ∀j = 0, . . . , Ny),

• 2 systems of size (Nx +3)× (Nx +3) (to get γ′
ν(y0)

and γ′
ν(yNy)),

• Nx + 3 systems of size (Ny + 3)× (Ny + 3) (to get
ην,β).

From a computational cost point of view, the solution
of a linear system of size Nx using the LU decomposition
needs O(Nx) operations. This procedure has to be per-
formed Ny times for the x-direction. The same is true for
the y-direction. Finally, the two-dimensional interpolation
leads to O(NxNy) operations.

4.3. Towards an Accurate Parallelization. In order
to get accurate numerical simulations, one has to take ac-
count of boundary conditions for each local LU decompo-
sition. Indeed, our strategy consists in being as close as
possible to the corresponding sequential version. Hence,
from a decomposition of the global domain into several
patches, each processor being devoted to a patch, we want
our local determination of cubic spline coefficients to re-
cover in the best way a usual solution on the global do-
main. For that purpose, some efforts have to be made to
approximate the derivatives of f in a particular way with
respect to x and y. The points where derivatives must
be computed are shared between two processors since x0

and xN are both beginnings and ends of subdomains (xN

of the target processor corresponds to x0 of the adjacent
processor). Hence, these derivatives of f join adjacent
subdomains and play an important role in the quality of
the numerical results (see Fig. 5).

Various ways have been explored to obtain the deriv-
atives: finite differences of different orders, cubic spline
approximation, etc. In order to reconstruct a smooth ap-
proximation (C1 on the global domain, say), the cubic
spline approximation has been chosen. Indeed, we remark
that even in regions where f is smooth enough, a finite-
difference approximation remains quite different from a
cubic spline approximation given by (11). Hence, as we
want to reconstruct the distribution function via a cubic
spline approximation, the first line of the linear system
whose matrix is given by (13) can introduce some numer-
ical errors which can be propagated in the rest of the sys-
tem. In the numerical experiments we have performed, the
final results are incorrect, especially when one checks the
mass conservation. Indeed, the finite-difference approxi-
mation leads to some variations in the mass conservation,
which is inconvenient for the long-time behavior of the
numerical solution. On the contrary, the approximation
of the derivatives using cubic splines enables us to obtain
a robust code with a relatively small number of discrete
points.

By constructing an approximation of the derivatives
using the cubic spline coefficients as well as Eqns. (10)
and (11), we manage to overcome this kind of error (see
Fig. 6). Moreover, the final global reconstructed numeri-
cal solution is consistent with a numerical solution which
is computed through a sequential solution. We shall ex-

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation 341

plain it in the following, in the one-dimensional case (the
multi-dimensional case can be easily deduced). First, (11)
and (10) enable us to write

s′(xi) =
1
2h

(ηi+1 − ηi−1),

=
1
2h

(
3
2
fi+1 − 1

4
ηi − 1

4
ηi+2

−3
2
fi−1 +

1
4
ηi−2 +

1
4
ηi

)

=
3
4h

(fi+1−fi−1)+
1
8h

(ηi−2−ηi+2) (17)

to obtain

s′(xi) =
3
4h

(fi+1 − fi−1) − 1
4
(s′(xi−1) + s′(xi+1)).

(18)
Substituting (17) in (18) to compute s′(xi±1), we obtain

s′(xi) =
3
4h

(fi+1 − fi−1) − 1
4

(
3
4h

(fi+2 − fi−2)

+
1
8h

(ηi−3 − ηi+1 + ηi−1 − ηi+3)
)

=
3
4h

(fi+1 − fi−1) − 1
4

(
3
4h

(fi+2 − fi−2)
)

− 1
16

(2s′(xi) + s′(xi−2) + s′(xi+2)).

Then we get another expression for the derivative of s:

s′(xi) =
6
7h

(fi+1 − fi−1) − 3
14h

(fi+2 − fi−2)

+
1
14

(s′(xi+2) − s′(xi−2)). (19)

Thanks to (19), the evaluation of s′(xi+2) and s′(xi−2)
leads to the following new approximation of s′(xi):

αs′(xi) =
6
7h

(fi+1 − fi−1) − 3
14h

(fi+2 − fi−2)

+
6

98h
(fi+3 − fi+1 + fi−1 − fi−3)

− 3
142h

(fi+4 − fi−4)

+
1

142
(s′(xi+4) − s′(xi−4)),

where α = (1 − 2/142). The last iteration allows us to
obtain a high-order approximation of the derivative of s:

αs′(xi)

=
8∑

j=−8

ωjfi+j +
1

α142

(
s′(xi+8)+2s′(xi)+s′(xi−8)

)
,

Hence(
1 − 2

142
− 2

(1 − 2/142)142

)
s′(xi)

=
j=8∑

j=−8

ωjfi+j +
1

α142
(s′(xi+8) + s′(xi−8)), (20)

where the derivatives s′(xi+8) and s′(xi−8) are evaluated
thanks to a finite-difference approximation of the fourth
order. For example, s′(xi+8) is approximated by

s′(xi+8)

=
−f(xi+10) + 8f(xi+9) − 8f(xi+7) + f(xi+6)

12h
,

where h is the stepsize. Even if this choice may introduce
some noise in the final evaluation of s′(xi), the resulting
errors remain negligible since the use of the finite differ-
ences is now sufficiently far from the junction points. The
final approximation of s′(xi) then becomes

s′(xi) =
10∑

j=−10

ω̃jfi+j ,

=
−1∑

j=−10

ω̃−
j fi+j +

10∑
j=1

ω̃+
j fi+j , (21)

since the coefficient ω̃0 is zero here. Note that ω−
j and

ω+
j are computed only once. Other iterations can also be

performed, but (21) gives satisfying results.
The coefficients ω̃j, j = −10, . . . , 10 are sum-

marized in Table 1. The ω̃+
j coefficients are defined as

ω̃+
j = −ω̃−

j .

Table 1. Coefficients for the approximation of the derivatives.

ω̃−
−10 ω̃−

−9 ω̃−
−8 ω̃−

−7 ω̃−
−6

0.22143E-5 -1.77144E-5 7.9715E-5 -3.01146E-4 1.11379E-3

ω̃−
−5 ω̃−

−4 ω̃−
−3 ω̃−

−2 ω̃−
−1

-4.1452E-3 0.01546474 -0.05771377 0.21539034 -0.80384758

5. Parallelization of Computations

In order to perform a parallelization of the interpolation
step, data and computation have to be distributed onto
processors. A classical technique of domain decomposi-
tion is used here to split the phase space in subdomains.
Thus, a single processor works on local data and shares
information located on the borders of its subdomain with
adjacent processors. The set of values exchanged with the
eight processors in the neighborhood of a given processor
is named the ghost area. This area is needed because each
processor has to know information belonging to others, in
order to build the right-hand side matrix of Section 4.2.

342 N. Crouseilles et al.

The values of the function f and some kind of derivatives
are stored in the ghost zone in order to manage this step.
From a parallel performance point of view, the number of
values transmitted between processors must be minimal.
Accordingly, the ghost zone should be chosen as small as
possible.

Indeed, on the patch, only points (xi, yj) for i =
0, . . . , Nx − 1 and j = 0, . . . , Ny − 1 are known, and
the interpolation step requires the knowledge of values
on the patch borders. Moreover, we have to evaluate the
derivative at (x0, yj) and (xNx , yj) for all j, (xi, y0), and
(xi, yNy) for all i, which requires (see the previous sec-
tion) a linear combination of 21 points.

The knowledge of these points enables us to
build and solve the LU systems, and to interpolate on
[x0, xNx] × [y0, yNy]. But we have to take into account
the advected points that come from the targeted patch. As
was mentioned in the introduction, we impose a restriction
on the time step to enforce the displacement to be lower
than the cell size. Hence, the interpolation area becomes
[x0 − Δx, xNx + Δx] × [y0 − Δy, yNy + Δy] (here Δx
and Δy denote the stepsizes) and additional cubic spline
coefficients have to be computed.

For that purpose, the solution of the linear systems
described in Section 4.2 takes into account the augmented
right-hand side matrix (23) (the derivatives are approxi-
mated in accordance with (21)).

The solution in the x-direction is accomplished for
all j, which yields the temporary spline coefficients
γν(yj), ν = −1, . . . , Nx and j = −2, . . . , Ny + 1. The
coefficients corresponding to ν = −2 and ν = Nx +1 are
deduced from (10) for i = −1 and i = Nx.

In the same way, the solution in the y-direction is
accomplished for all ν = −2, . . . , Nx + 1, and gives the
coefficients ην,β for β = −1, . . . , Ny + 1. The boundary
values ην,−2 and ην,Ny+1 are obtained from (10).

The target processor has to gather all points needed
to form the matrix (22). For that purpose, as the values
of the distribution function are known at (xi, yj) for i =
0, . . . , Nx−1 and j = 0, . . . , Ny−1, the local ghost zone
received from other processors is

• f(−1, j) for j = 0, . . . , Ny − 1,

• f(i,−1) for i = 0, . . . , Nx − 1,

• f(Nx : Nx + 1, j) for j = 0, . . . , Ny − 1,

• f(i, Ny : Ny + 1) for i = 0, . . . , Nx − 1,

• f(−1,−1),

• f(−1, Ny : Ny + 1),

• f(Nx : Nx + 1,−1),

• f(Nx : Nx + 1, Ny : Ny + 1).

Moreover, some weighted sums of 10 points are com-
puted on the neighboring processors to evaluate all deriv-
atives.

6. Numerical Simulations

In this section, some numerical results obtained with the
methodology we have exposed above are presented. We
compare sequential and parallel simulations for two prob-
lems that occur in plasma physics: the Landau damping
and the two-stream instability test cases.

6.1. Landau Damping. In this section, we propose
to validate the method against the standard test case of
the Landau damping. We study the evolution of elec-
trons whose distribution function is initially isotropic and
Maxwellian of unit density and temperature. The plasma
is then perturbed and a damped periodic wave is thus cre-
ated. The purpose of this numerical test is the study of the
evolution of this damped wave. To achieve this task, we
consider the distribution function of electrons which is a
solution to the Vlasov-Poisson system (1)–(2).

Linear Landau Damping. The initial condition associ-
ated with the scaled Vlasov-Poisson equation (1)–(2) has
the following form:

f0(x, v) =
1√
2π

exp(−v2/2)(1 + α cos(kx)), (23)

with (x, v) ∈ [0, 2π/k] × R, where k is the wave number
and α = 0.001 is the amplitude of the perturbation, so that
we consider linear regimes here. To capture the Landau
damping, the size of the velocity domain must be chosen
greater than the phase velocity vφ. The phase velocity is
equal to ω/k, where ω is the frequency related to k, which
is approximated by

ω2 � 1 + 3k2. (24)

Then we set vmax = 6 where the velocity domain spans
from −vmax to vmax. We set the number of cells as Nv =
32 or 64 for the velocity domain, and Nx = 32 or 64 in
the spatial direction. The time step is given by dt = 0.25.
The boundary conditions for the distribution function are
periodic in the space variable and compact in the velocity
direction. Finally, the wave number is taken as k = 0.3
or 0.5. The final time is T = 60 ω−1

p , with ωp being the
plasma frequency.

In this test, we are interested in the evolution of the
square root of the electric energy approximated by

Eh(t) =

(∑
i

E2
i (t)Δx

)1/2

, (25)

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation 343
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(−1,−1) ∂yf(−1, 0) f(−1, 0) · · · f(−1, Ny + 1)
∂xf(0,−1) ∂2

xyf(0, 0) ∂xf(0, 0) · · · ∂xf(0, Ny + 1)
f(0,−1) ∂yf(0, 0) f(0, 0) · · · f(0, Ny + 1)

...
...

...
...

f(Nx,−1) ∂yf(Nx, 0) f(Nx, 0) · · · f(Nx, Ny + 1)
∂xf(Nx,−1) ∂2

xyf(Nx, 0) ∂xf(Nx, 0) · · · ∂xf(Nx, Ny + 1)
f(Nx + 1,−1) ∂yf(Nx + 1, 0) f(Nx + 1, 0) · · · f(Nx + 1, Ny + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

where Δx is the space step. According to Landau’s the-
ory, the amplitude of Eh(t) is expected to be exponentially
decreasing with frequency ω.

Figure 1 presents the evolution of log(Eh(t)) in the
sequential case. Two different values of the wave number
are shown, namely k = 0.3 and k = 0.5. The number of
cells is equal to Nx = Nv = 32 or Nx = Nv = 64. We
observe that Eh(t) is always exponentially decreasing, and
the damping rate becomes larger when k increases, as pre-
dicted by the Landau theory. The damping rates obtained
are given by γ = 0.0127 for k = 0.3, and γ = 0.154 for
k = 0.5, i.e., they are very similar to the predicted values
available in the literature ((McKinstrie et al., 1999; Besse
and Sonnendrücker, 2003; Filbet et al., 2001)).

We also observe the “recurrence effect” (Manfredi,
1997): for example, in Fig. 1 (b) with Nx=Nv=32 points,
the amplitude of the electric energy increases at t �
31 ω−1

p , which appears to be in good agreement with the
theoretical time TR ≈ 2π/(kΔv). This time is predicted
from the free streaming case (Δv is the velocity step).
This phenomenon is alleviated by taking more points in
velocity (see Fig. 1 with Nx = Nv = 64 points).

In Fig. 2, the same results are shown for the paral-
lel case. The phase space domain is decomposed into
4 patches of the same size 32 × 32 points, so that the
global domain involves 64 × 64 points. Moreover, Her-
mite boundary conditions are imposed at the boundary of
each patch using the approximation (21). We can observe
that the results are very similar to the sequential case since
the damping rate is the same and the recurrence effect oc-
curs at the correct time.

Strong Landau Damping. The initial datum is the fol-
lowing:

f(0, x, v) =
1√
2π

exp(−v2/2)(1 + α cos(kx)),

where (x, v) ∈ [0, 2π/k] × R, and the amplitude of the
initial perturbation in the density is α = 0.5. Moreover,
the wave number is k = 0.5, whereas vmax is equal to
6.5 in order to take into account nonlinear effects. The
number of cells will be equal to Nx = Nv = 128, whereas
the time step is dt = 0.125.

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6

0 10 20 30 40 50 60

t

k=0.3, 32 points
k=0.3, 64 points

y=-0.0127

(a)

-16

-14

-12

-10

-8

-6

0 10 20 30 40 50 60

t

k=0.5, 32 points
k=0.5, 64 points

y=-0.154

(b)

Fig. 1. Electric energy as a function of time for the linear Lan-
dau damping in the sequential case: (a) k=0.3 with
Nx=Nv=32 points and Nx=Nv=64 points, (b) k=0.5
with Nx=Nv=32 points and Nx=Nv=64 points.

We are also interested in the evolution of log(Eh(t))
(where Eh(t) is given by (25)) as a function of time.
The linear theory of the previous test cannot be applied
in this case since the nonlinear effects have to be taken
into account. Nevertheless, this test has been studied by
several authors and comparisons can be made with nu-
merical results available in the literature (Besse and Son-

344 N. Crouseilles et al.

-6

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6

0 10 20 30 40 50 60

t

k=0.3, 64 points
y=-0.0127

(a)

-16

-14

-12

-10

-8

-6

0 10 20 30 40 50 60

t

k=0.5, 64 points
y=-0.154

(b)

Fig. 2. Electric energy as a function of time for the linear
Landau damping in the parallel case. (a) k=0.3 with
Nx=Nv=64 points. (b) k=0.5 with Nx=Nv=64 points.

nendrücker, 2003; Filbet et al., 2001; Filbet and Sonnen-
drücker, 2003; Manfredi, 1997).

In Fig. 3, we compare the evolution of the loga-
rithm of electric energy between the sequential and paral-
lel cases. We notice that first the amplitude of the electric
energy exponentially decreases in time, and then oscillates
around a constant for larger times for two simulations. As
in the linear case, the sequential and parallel cases present
quite good results compared with the results available in
the literature. Moreover, until large times, the two cases
are very similar, and only at t � 50 ω−1

p do the two re-
sults become slightly different. In Fig. 3, we also plot a
reference solution computed using 512 × 1024 points.

Moreover, in Fig. 4 we can see the projection of the
distribution function as a function of the velocity. We plot
the quantity

F (v) =
∫ 2π/k

0

f(x, v) dx

-7

-6

-5

-4

-3

-2

-1

0

1

0 10 20 30 40 50 60

t

k=0.5, 128 points, sequential
k=0.5, 128 points, parallel

k=0.5, EXACT

Fig. 3. Electric energy as a function of time for the strong
Landau damping. Comparison between the sequen-
tial and parallel cases, k=0.5 and Nx=Nv=128. An
almost “exact” solution (512×1024 points) is plot-
ted for comparison.

as a function of the velocity for different times in the par-
allel case. We observe that particles whose kinetic en-
ergy is smaller than the potential energy are trapped by
electrostatic waves around the phase velocity vφ = ω/k,
where small bumps appear preceded by small holes. Only
the parallel case is presented since the sequential results
are too close to discuss differences. We can first notice
that the projection is symmetric with respect to the ori-
gin. This is a consequence of the centered approximation
of the derivatives (see Section 4.3). Indeed, uncentered
approximation using finite-difference formulas introduces
some unsymmetry in the distribution function leading to
a loss of accuracy. Moreover, we observe a good junc-
tion (similar to the sequential case) of the global recon-
structed distribution function at v = 0 where a decompo-
sition point of our parallelization is located. The patches
are joined to each other by the Hermite boundary condi-
tions, which preserves an accurate global numerical ap-
proximation, even though the distribution function is very
unstable (see, e.g., Fig. 4 at t = 35 ω−1

p).
Moreover, to emphasize the influence of the approxi-

mation of the derivative on the results, in Figs. 5 and 6 we
plot the time evolution of the total relative mass. Compar-
isons between the parallel and sequential cases are pre-
sented in two different contexts. In Fig. 5, all the deriva-
tives are approximated through the following fourth-order
finite-difference operator:

s′(xi) � −f(xi−2) + 8f(xi−1) − 8f(xi+1) + f(xi+2)
12h

,

where h is the step corresponding to the derivative direc-
tion. In Fig. 6, the derivatives are replaced by the formula
(21). We can observe that the finite-difference approxi-
mation is not well suited for the parallel implementation

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation 345

0

1

2

3

4

5

6

-6 -4 -2 0 2 4 6

t

0

1

2

3

4

5

6

-6 -4 -2 0 2 4 6

t

(a) (d)

0

1

2

3

4

5

6

-6 -4 -2 0 2 4 6

t

0

1

2

3

4

5

6

-6 -4 -2 0 2 4 6

t

(b) (e)

0

1

2

3

4

5

6

-6 -4 -2 0 2 4 6

t

0

1

2

3

4

5

6

-6 -4 -2 0 2 4 6

t

(c) (f)

Fig. 4. Time development of the spatially integrated distribution function for the strong Landau
damping: the parallel case, Nx = Nv = 128, (a) t = 5 ω−1

p , (b) t = 15 ω−1
p ,

(c) t = 25 ω−1
p , (d) t = 35 ω−1

p , (e) t = 45 ω−1
p , (f) t = 60 ω−1

p . .

346 N. Crouseilles et al.

since the total mass presents some important oscillations
from t � 20 ω−1

p . These fluctuations become more sig-
nificant when time increases. On the contrary, the use of
cubic spline approximation with 21 points leads to a mass
conservation which is very similar to the mass conserva-
tion occuring in the sequential case. Let us remark that the
use of finite-difference or cubic spline approximation does
not affect the mass conservation in the sequential case.

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 10 20 30 40 50 60

t

128 pts, finite difference derivative, parallel
128pts, finite difference derivative, sequential

Fig. 5. Comparison between the sequential and the parallel case
for the total relative mass conservation as a function
of time, for the strong Landau damping. The finite-
difference approximation of fourth order is used.

-0.0002

-0.00015

-0.0001

-5e-05

0

0 10 20 30 40 50 60

t

128pts, cubic spline derivative, parallel
128pts, cubic spline derivative, sequential

Fig. 6. Comparison between the sequential and parallel cases
for the total relative mass conservation as a function of
time for the strong Landau damping. The cubic spline
approximation with 21 points is used.

6.2. Two-Stream Instability. In this section, we solve
the Vlasov-Poisson equation considering the following
initial datum:

f(0, x, v) =
1√
2π

v2 exp(−v2/2)(1 + α cos(kx)),

with (x, v) ∈ [0, 2π/k] × R, where the amplitude of the
perturbation is α = 0.05, the wave number is k = 0.5,
and vmax equals 9. To get a good accuracy, the number
of mesh points is Nx = 128 in space and Nv = 128 in
velocity. The final time is T = 500 ω−1

p .
In this model, two streams of charged particles en-

counter each other in the physical space with opposite ve-
locities (see (Birdsall and Langdon, 1991) for more de-
tails). When evolving in time, a perturbation occurs and
grows rapidly. In the phase space, this perturbation corre-
sponds to a vortex creation at the center of the computa-
tional domain.

In Figs. 6 and 7, we plot the time evolution of the dis-
tribution function in the phase space in the parallel case (4
patches equally decompose the phase space domain). At
time t � 10 ω−1

p (where ωp is the plasma frequency) we
observe vortex creation which is associated with trapped
particles. From t � 10 ω−1

p until t � 20 ω−1
p , the insta-

bility grows rapidly and a hole appears. After t � 20 ω−1
p ,

the trapped particles oscillate in the electrostatic potential
and the vortex rotates periodically. These remarks are in
good agreement with the results available in (Besse and
Sonnendrücker, 2003; Filbet and Sonnendrücker, 2003).

This simulation is quite interesting since the hole has
to stay in the middle of the computational domain during
all the simulations. A displacement of this centered vor-
tex can occur due to a failed numerical solution for large
times. Here again, the good mass conservation depends
on the derivative approximation, as explained previously.
In particular, we remarked that finite-difference approxi-
mations (even centered ones) lead to uncorrect results for
large times (the hole comes out early). Moreover, the in-
herent precision of the cubic spline interpolation allows us
to follow thin filaments developed by the solution. Even
if the methodology which enables the parallelization is
slightly different from the sequential version, we observe
that the parallelization does not affect the precision due to
the spline interpolation.

Finally, several tests have been implemented to
evaluate the influence of the number of processors on the
numerical results and on the simulation time. The number
of points in each patch has to be substantial (for small
patches, the overhead in computations to estimate the
derivatives becomes too large). The performance of the
parallel algorithm is summarized in Tables 2 and 3 for the
two-stream instability implemented with Nx = Nv = 512
points. The experiments were conducted on two parallel

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation 347

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=0wp

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=10wp

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=16wp

(a) (b) (c)

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=20wp

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=26wp

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=30wp

(d) (e) (f)

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=50wp

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=100wp

-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=200wp

(g) (h) (i)

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14
-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

t=500wp

(j)

Fig. 7. Evolution of the distribution function f in the phase space with Nx = 128 and Nv = 128 in the
parallel case (4 processors are used), for the two stream instability: (a) t = 0 ω−1

p , (b) t = 10 ω−1
p ,

(c) t = 16 ω−1
p , (d) t = 20 ω−1

p , (e) t = 26 ω−1
p , (f) t = 30 ω−1

p , (g) t = 50 ω−1
p , (h) t =

100 ω−1
p , (i) t = 200 ω−1

p , (j) t = 500 ω−1
p .

348 N. Crouseilles et al.

Table 2. Speedup for the two-stream instability on a shared
memory SGI machine. The results corresponds to
512 × 512 points in the phase space. The simulation
was stopped after 300 iterations.

Processors 1 4 8 16 32 64

Time [s.] 40 9.4 4.7 2.4 1.2 0.7

Speedup 1 4.25 8.51 16.6 33.3 57.14

Table 3. Speedup for the two-stream instability on a cluster of
11 IBM nodes. The results corresponds to 512 × 512
points in the phase space. The simulation was stopped
after 300 iterations.

Processors 1 4 8 16 32 64

Time (s.) 89.2 19.4 9.7 4.9 2.6 1.6

Speedup 1 4.6 9.2 18.2 34.3 55.75

machines: a cluster1 of 11 IBM nodes (16-way Power5
processors at 1.9 GHz) and a shared memory SGI ma-
chine2 of 512 processors (Origin 3800 with 500 MHz
processors). Let us mention that the results presented in
Tables 2 and 3 do not take into account the diagnostics
computations.

Our speedup is quite good since it takes into account
the numerical solution of the Poisson equation. Indeed,
after each two-dimensional advection in the phase space,
the Poisson equation has to be globally solved (the cor-
rector part of the algorithm, c.f. Section 3). This step is
time consuming when the number of processor increases.
Nevertheless, our methodology focuses on the interpola-
tion step. In particular, we believe that higher-dimensional
problems will improve the speedup since we will perform
communication-computation overlap easily in the four-
dimensional cases. Let us remark that the decomposition
of the global domain affects neither the numerical results,
nor the length of the simulation.

7. Conclusion

In this paper, we introduced a local semi-Lagrangian
method which has been applied to the Vlasov-Poisson
equation. The methodology seems to present a good be-
haviour when tested on standard plasma configurations.
Indeed, the numerical results demonstrade the good effi-
ciency of our code for the two-dimensional case and its
good scalability with up to 64 processors.

Using the method introduced here, we developed a
Fortran 90 module to locally interpolate any advected
function on a two-dimensional domain. This module will
then enable us to deal with many problems occuring in

1 The IBM machine belongs to the M3PEC group, Bordeaux 1
University.

2 The SGI machine is located in Montpellier, France, in the comput-
ing center CINES http://www.cines.fr.

plasma physics using the semi-Lagrangian methodology.
Future extensions will be devoted to the paraxial Vlasov
model. Moreover, coupling this methodology with the
moving grid strategy can also be envisaged. Finally, a new
algorithm that overcomes the restriction on the time step
has to be developed later on.

Acknowledgements

Support by Commissariat à l’énergie atomique (CEA-
Cadarache) is acknowledged. The authors wish to thank
the CINES center and the Bordeaux 1 University for time
allocation on their computers.

References

Bermejo R. (1991): Analysis of an algorithm for the Galerkin-
characteristic method. Numerische Mathematik, Vol. 60,
pp. 163–194.

Besse N. and Sonnendrücker E. (2003): Semi-Lagrangian
schemes for the Vlasov equation on an unstructured
mesh of phase space. Journal of Computational Physics,
Vol. 191, pp. 341–376.

Birdsall C.K. and Langdon A.B.: Plasma Physics via Computer
Simulation. Bristol: Institute of Physics Publishing.

Bouchut F., Golse F. and Pulvirenti M. (2000): Kinetic Equa-
tions and Asymptotic Theory. Paris: Gauthier-Villars.

DeBoor C. (1978): A Practical Guide to Splines. New-York:
Springer.

Campos-Pinto M. and Merhenberger M. (2004): Adaptive Nu-
merical Resolution of the Vlasov Equation.

Cheng C.Z. and Knorr G. (1976): The integration of the Vlasov
equation in configuration space. Journal of Computational
Physics, Vol. 22, p. 330.

Coulaud O., Sonnendrücker E., Dillon E., Bertrand P. and
Ghizzo A. (1999): Parallelization of semi-Lagrangian
Vlasov codes. Journal of Plasma Physics, Vol. 61, pp. 435–
448.

Feix M.R., Bertrand P. and Ghizzo A. (1994): Title? In: Kinetic
Theory and Computing, (B. Perthame, Ed.).

Filbet F., Sonnendrücker E. and Bertrand P. (2001): Conserva-
tive numerical schemes for the Vlasov equation. Journal of
Computational Physics, Vol. 172, pp. 166–187.

Filbet F. and Sonnendrücker E. (2003): Comparison of
Eulerian Vlasov solvers. Computer Physics Communica-
tions, Vol. 151, pp. 247–266.

Filbet F. and Violard E. (2002): Parallelization of a
Vlasov Solver by Communication Overlapping. Proceed-
ings PDPTA.

Glassey R.T. (1996): The Cauchy Problem in Kinetic Theory.
Philadelphia, PA: SIAM.

Ghizzo A., Bertrand P., Begue M.L., Johnston T.W. and Shoucri
M. (1996): A Hilbert-Vlasov code for the study of high-
frequency plasma beatwave accelerator. IEEE Transac-
tions on Plasma Science, Vol. 24.

Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation 349

Ghizzo A., Bertrand P., Shoucri M., Johnston T.W., Filjakow
E. and Feix M.R. (1990): A Vlasov code for the numeri-
cal simulation of stimulated Raman scattering. Journal of
Computational Physis, Vol. 90, pp. 431–457.

Grandgirard V., Brunetti M., Bertrand P., Besse N., Garbet
N., Ghendrih P., Manfredi G., Sarrazin Y., Sauter O.,
Sonnendrücker E., Vaclavik J. and Villard L. (2006): A
drift-kinetic semi-Lagrangian 4D code for ion turbulence
simulation. Journal of Computational Physics, Vol. 217,
pp. 395–423.

Gutnic M., Haefele M., Paun I. and Sonnendrücker E. (2004):
Vlasov simulation on an adaptive phase space grid. Com-
puter Physical Communications, Vol. 164, pp. 214–219.

Hammerlin G. and Hoffmann K.H. (1991): Numerical Mathe-
matics, New-York: Springer.

Kim C.C. and Parker S.E. (2000): Massively parallel three-
dimensional toroidal gyrokinetic flux-tube turbulence sim-
ulation. Journal of Computational Physics, Vol. 161,
pp. 589–604.

McKinstrie C.J., Giacone R.E. and Startsev E.A. (1999): Accu-
rate formulas for the Landau damping rates of electrostatic
waves. Physics of Plasmas, Vol. 6, pp. 463–466.

Manfredi G. (1997): Long time behaviour of strong linear Lan-
dau damping. Physical Review Letters, Vol. 79.

Shoucri M. and Knorr G. (1974): Numerical integration of
the Vlasov equation. Journal of Computational Physics,
Vol. 14, pp. 84–92.

Sonnendrücker E., Filbet F., Friedman A., Oudet E. and Vay J.L.
(2004): Vlasov simulation of beams on a moving phase
space grid. Computer Physics Communications, Vol. 164,
pp. 390–395.

Sonnendrücker E., Roche J., Bertrand P. and Ghizzo A. (1999):
The semi-Lagrangian method for the numerical resolution
of the Vlasov equations. Journal of Computational Physics,
Vol. 149, pp. 201–220.

Staniforth A. and Coté J. (1991): Semi-Lagrangian integra-
tion schemes for atmospheric models – A review. Monthly
Weather Review, Vol. 119, pp. 2206–2223.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /PLK ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.720 841.680]
>> setpagedevice

